Outline
(Chapter 4, continued

« Directional Arc-consistency algorithms

 Directional Path-consistency and directional i-consistency
« Greedy algorithms for induced-width

« Width and local consistency

« Adaptive-consistency and bucket-elimination

Fall 2022



Width vs directional consistency
(Freuder 82)

Theorem 4.4.5 (Width (i-1) and directional i-consistency) Given a general net-
work R. its ordered constraint graph along d has a width of 1 — 1 and if it is also strong
directional 1-consistent. then R is backtrack-free along d.

Fall 2022 2



Width vs i-consistency

« DAC and width-1
e« DPC and width-2

 DIC; and width-(i-1)

2> backtrack-free representation

o If a problem has width 2, will DPC make it backtrack-
free?

« Adaptive-consistency: applies i-consistency when i is
adapted to the number of parents

Fall 2022



Adaptive-consistency

ADAPTIVE-CONSISTENCY (AC])

Input: a constraint network R = (X, D, C'), its constraint graph G = (V. E), d = ( z1,... ,Z,).
output: A backtrack-free network along d

Initialize: C' — C, E' — E

l. for 3 =ntol do

2 Let S «— parents(z;).

3. Rg — Revise(S, z;) (generate all partial solutions over § that can extend to z;).
4. C'— C'"URg

5. E' — E'"U{(zg, z,)|zk, xr € parents(z;)} (connect all parents of ;)

5. endfor.

Figure 4.13: Algorithm adaptive-consistencyv— version 1

Fall 2022 4



Bucket Elimination
Adaptive Consistency (Dechter & Pearl, 1987)

BucketE: E=D, E=C

Bucket D: D ;ND —C

Bucket C: C ;éB\A;ls C

Bucket B: B ;»:A\B =lA

|
Bucket A: \contradiction

Complexity: nkW *+1
w* is the induced-width along the ordering

Fall 2022 5



Adaptive-consistency, bucket-elimination

ADAPTIVE-CONSISTENCY (AC)

Input: a constraint network R, an ordering d = { z1,... ,Zp)
output: A backtrack-free network, denoted Eg(R), along d, if the empty constraint
was not gencrated. Else, the problem is inconsistent
1 Partition constraints into bucketq, ... . bucket, as follows:
for 2 — n downto 1. put in bucket; all unplaced constraints
mentioning z;.

2. for p — n downto 1 do

3. for all the constraints Rg,, ... , Rs, In bucket, do

4. = Uf‘:l Si — {zp}

D. RA < I]A(:N.g:l RS‘)

6. if R4 1s not the empty relation then add R4 to the bucket of the
latest variable in scope A,

i else cxit and return the omptv network

8.  return Eg(R) = (X, D, buckety U bucketa U - - - U buckety)

6
Figure 4.14: Adaptive-Consistency as a bucket-elimination algorithm



Bucket Elimination
Adaptive Consistency (Dechter & Pearl, 1987)

Il Ry
I R,cp
I R,

Il Ryp

Il RP,., R,
Il R,

Fall 2022

'S

@-@-0 @ =

~
~ -

S——



The Idea of Elimination

22222222



Variable Elimination

=
T
=
-

Eliminate 25

variables /2L o

onebyone: ~ / \X

“constraint

propagation” B (12

% eliminating E

Solution generation
after elimination is
backtrack-free

Fall 2022



Properties of bucket-elimination
(adaptive consistency)

* Adaptive consistency generates a constraint network
thadt i)s backtrack-free (can be solved without dead-
ends).

e The time and space complexity of adaptive consistency
along ordering d is respectively,
or O(r k¥ *1)) when r is the number of constraints.

e Therefore, problems having bounded induced width are
tractable (solved in polynomial time)

e Special cases: frees ( w*=1), series-parallel networks
(w*=2), and in general k-frees (w*=k).

Fall 2022

10



Back to Induced width

e Finding minimum-w™* ordering is NP-complete
(Arnborg, 1985)

« Greedy ordering heuristics: min-width, min-degree,
max-cardinality (Bertele and Briochi, 1972; Freuder
1982), Min-fill.

Fall 2022 11



Solving Trees
(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and
equivalent to enforcing directional arc-consistency

(recording only unary constraints)

Fall 2022 12



CompSci 275, ConsTRAINT Networks

Rina Dechter, Fall 2022

General Search Strategies: Look-ahead
Chapter 5

Fall 2022



Directional i-Consistency

il g

Adaptlve i d-path i d-arc




Outline

« The search tree for CSPs, Variable ordering an consistency level

» Look-ahead for value selection:
e Forward checking,
e Full-arc-consistency,
 partial look-ahead,
e maintaining arc-consistency

e Dynamic Variable ordering (DVO, DVFC)
 Search for Satisfiability
e Converting a CSP into a SAT problem

Fall 2022



What if the constraint network is
not backtrack-free?

e Backtrack-free in general is too costly, so what to
do?

« Search?
« What is the search space?
e« How to search it? Breadth-first? Depth-first?



The search space for a CN

A tree of all partial solutions

A partial solution: (ay,..., a;) satistying all
relevant constraints

The size of the underlying search space
depends on:

Variable ordering

Level of consistency possessed by the
problem

Fall 2022



Search spaces: the effect of ordering

States = partial solutions
Operators: next consistent value

Z Goal: consistent solutions
. e
% L
Ordering d1 = (z,x,y,l): 1 deadend
Ordering d2 = (x,y,l,z): 18 deadends ‘s
¥y < ‘




Search spaces: the effect
of consistency level

 After arc-consistency z=5 and |=5
are removed

Ordering d1 = (z,x,y,l): 1 deadend
Ordering d2 = (x,y,l,z): 18 deadends

« After path-consistency

R =1(2,2),(2,4),(3,3))

R, =1{(2.2).(2.4).(3,3)}

Rl ={(2.2),(2,6).(3.6)}

R, ={(2,2),(2,4),(4,2), (4,4), (3,3)}
= 1(2,2),(2,6), (4,2), (4,6), (3,6)}

R, = {(2,2),(2,6), (4,2), (4,6),(3,6)}.

Fall 2022




The effect of consistency level on
search

Theorem 5.1.3 Let R’ be a tighter network than R, where both represent the same set
of solutions. For any ordering d. any path appearing in the search graph derived from R’
also appears in the search graph derived from R. O

Fall 2022



Cost of node’s expansion;
More constraints require more consistency checks

« Number of consistency checks for toy problem:

e For d1: 19 for R (original), 43 for R’ (after consistency)
e« Ford2:91 on Rand 56 on R’

e Reminder:

Definition 5.1.5 (backtrack-free network) A network R is said to be backtrack-free
along ordering d if every leaf node in the corresponding search graph is a solution.

Fall 2022



Backtracking search for a solution

2 search spaces:

d1=(x1,x2,x3,x4,x5,x6,x7) N e <40
d2=(x1,x7,x4,x5,x6,x3,x2) v ceQ P \E, v o
K 46 b @ l b
r (@ b b I b
q (OB (O 10K L g ) o
NoloXoloio} -} (laiiuiaiuie ) (e
- ®

Fall 2022



Backtracking Search for a single
Solution

vl X7 =

Xy b @ g @ :
\ ¢ @ @ b
blue.green X - @ @ , .
'\'4 " RED b ! b r b

,
5
o
%l
~ @ @ \
og
>
ug
o
>
ug

(a)

X

Xy

Xs

Xg

(b)

Fall 2022



Backtracking search for *all*
solutions

Bt T em——

X b 2 < B _____
Xy g “ V“ ®

/N
Xy r Q\ b @ / b ', h
i) 3. /" Dol '3 el o
X6 I g . & 4 ¥ ‘R, P

©® @®/‘r I)b
X7 L9 18 191
®
(a)

Fall 2022



Backtracking search for *all*
solutions

For all tasks
Time: O(exp(n))
Space: linear

Fall 2022



Traversing breadth-first (BFS)?

Not-equal

BFS space is exp(n) while no
Time gain > use DFS

Fall 2022



Backtracking

procedure BACKTRACKING
Input: A constraint network P = (X, D, ().
Output: Either a solution, or notification that the network is inconsistent.

i1 (initialize variable counter)
D;— D; (copy domain)
while 1 <i<n

instantiate 2; <+ SELECT VALUE

if x; is null (no value was returned)

ie—i—1 (backtrack)
else
i—i+1 (step forward)
D; — D
end while
ifi=0
return “inconsistent”
else
return instantiated values of {2y,... 25}

end procedure

subprocedure SELECTVALUE (return a value in [ consistent with @;_,)

while )} is not empty
select an arbitrary element @ < 1;, and remove a from D;
if CONSISTENT(@;—. 2 = @)
return a
end while
return null
end procedure

(no consistent value)

Figure 5.4: The backtracking algorithm.

Fall 2022

« Complexity of extending a partial
solution:

« Complexity of consistent O(e log

t), t bounds tuples, e, constraints

« Complexity of selectValue O(e k
log t)



Improving backtracking

 Before search: (reducing the search space)
e Arc-consistency, path-consistency
e Variable ordering (fixed)

e During search:

e Look-ahead schemes:
o value ordering,
o variable ordering (if not fixed)
« Look-back schemes:
e Backjump
« Constraint recording
« Dependency-directed backtacking

Fall 2022



Look-ahead: value orderings

e Intuition:

e Choose value least likely to yield a dead-end
« Approach: apply constraint propagation at each node in the search tree

« Forward-checking
 (check each unassigned variable separately

« Maintaining arc-consistency (MAC)
« (apply full arc-consistency)

o Full look-ahead
e One pass of arc-consistency (AC-1)

o Partial look-ahead
e directional-arc-consistency

Fall 2022



Generalized look-ahead

procedure GENERALIZED-LOOKAHEAD

Input: A constraint network P = (X, . ()

Output: Either a solution. or notification that the network is inconsis-
tent.

D—Diforl<i<n (copy all domains)
i—1 (initialize variable counter)
while l <1< n

instantiate z; — SELECTVALUE-XXX

if z; is null (no value was returned)
t—i—1 (backtrack)
reset each Dk > 4. to its value before »; was last instantiated
else
i—1i+1 (step forward)
end while
ife=0
return “inconsistent”
else
return instantiated values of {xy,... .2,}

end procedure

Figure 5.7: A common framework for several look-ahead based search algorithms. By
replacing SELECTVALUE-XXX with SELECTVALUE-FORWARD-CHECKING, the forward
checking algorithim is obtained. Similarly, using SELECTVALUE-ARC-CONSISTENCY vields
an algorithm that interweaves arc-consistency and search.



Forward-checking for value rejection

Forward-checking

(check each unassigned variable separately

Xq
‘s
‘7
/7
- , II
o, green
/
, ! Not searched
3, |j red ! blue by forward
! checking
! /

blue

) I )
X5 i blue green

\ 1

\ \

) ‘ \
Xg ‘. . red
. . green
S ~
~ < ~ -

X7 red ] = {1 blue

Fall 2022



Forward-checking for value rejection

blue,green red,green, leal

x5

x4
FC overhead:
For each value of a future variable e,

Tests: O(k ¢,), for all future variables O(ke)
For all current domain O(k? e)

Fall 2022

7z
7z
/
/ Il
o, green
/
;! Not searched
,’ |i| red 1I blue by forward
i ' checking
1 ! ;
1 U /
v ored ], blue
1 /
\ I
\ 1
\ " green
\ 1
\ \
\ \
S \
N ereen
N N O
S ~
~ ~
red ] =1 blue



Forward-checking

])I‘OC’(.‘dlll‘(" SELECT VALUE-FORWARD-CHECKING
while [ is not empty
select an arbitrary element e & £, and remove a from D!
empty-domain — false
forallk. i<k <n
for all values bin D}
if not CONSISTENT(@;—). 7, =@, 23 =b)
remove b from £},

end for
if 1} is empty (7; = a leads to a dead-end)
empty-domain — true
if empty-domain (don’t select a)
reset each £ @ < &k < n to value before @ was selected
else
return e
end while
return null (no consistent value)

end procedure

Figure 5.8: The sELECTVALUE subprocedure for the forward checking algorithm.

Complexity of selectValue-forward-checking at each node:

Fall 2022



Arc-consistency look-ahead
(Gacshnig, 1977)

« Applies full arc-consistency on all un-instantiated
variables following each candidate value
assignment to the current variable.

« Complexity:

o If optimal arc-consistency is used:

« What is the complexity overhead when AC-1 is
used at each node?

Forward-checking:

Full arc-consistency look-ahead
With optimal AC:

Fall 2022



MAC: Maintaining arc-consistency
(Sabin and Freuder 1994)

e Perform arc-consistency in a binary search
tree: Given a domain X={1,2,3,4} the
algorithm assigns X=1 (and apply arc-
consistency) and if x=1 is pruned, it applies
arc-consistency to X={2,3,4}

If inconsistency is not discovered, a new
variable is selected (not necessarily X)

Fall 2022



Arc-consistency look-ahead:

subprocedure SELECTVALUE-ARC-CONSISTENCY

while D! is not empty
select an arbitrary element e = 1, and remove a from 0}
repeat
removed-value — false
forall ji<j<mn
forallki<k<n
for each value b in 1,
if there is no value ¢ = D) such that
CONSISTENT(@;—, 7; =, x;=b, 2 =¢)
remove b from £}
removed-value — true
end for
end for
end for
until removed-value = false
if any future domain is empty  (don't select a)
reset each 1%,4 < j < n, to value before @ was selected
else
return e
end while
return null (no consistent value)
end procedure

Figure 5.10: The SELECTVALUE subprocedure for arc-consistency, based on the AC-1
algorithm.

I all £vcc



AC for value rejection

green
Not searched
by forward

I blue )
i 13 checking
| /
1 ! !
Xgy red ] blue
1 /
\ I
) \ 1
A5 I green
\ 1
\ \
\ \
.\'6 \ \
N . green
S ~
FW overhead: , S S~ o
X7 red ] 1 blue

MAC overhead:

Fall 2022



AC for value rejection

Arc-consistency prunes x1=red

Prunes the whole tree got I\:z%rched
y
X1 //”’— ,(’d /
/,:,
X5 py ,’ green
AR 2 Not searched
, ] red ! blue by forward
r 3 ¢hecking

A5 0 [ blue green
FW overhead: ' '

X6 \\\ Y red
MAC overhead: SN green

X7 red [ - 1 blue

Fall 2(



Full and partial look-ahead

« Full looking ahead:
« Make one pass through future variables (delete,
repeat-until)
e Partial look-ahead:

« Applies (similar-to) directional arc-consistency to
future variables.

« Complexity: also
e More efficient than MAC

Fall 2022



Example of partial look-ahead

Example 5.3.3 Conside the problem in Figure 5.3 using the same ordering of variables
and values as in Figure 5.9. Partial-look-ahead starts by considering 2, = red. Applying
directional arc-consistency from z; towards r; will first shrink the domains of z3. 74 and
z7. ( when processing z,). as was the case for forward-checking. Later. when directional
arc-consistency processes ry (with its only value, “blue”) against 27 (with its only value,
“blue” ), the domain of z; will become empty. and the value “red” for ; will be rejected.
Likewise. the value x; = blue will be rejected. Therefore, the whole tree in Figure 5.9 will
not be visited if either partial-look-ahead or the more extensive look-ahead schemes are
used. With this level of look-ahead only the subtree below x; = green will be expanded.

x1
red.blue,green

X T red
X7

green
Not searched
by forward

checking

blue

red,green,teal

blue,green

1
t
t
1 1
X4q red ]
' ’
! 1
A ]
X5 4 I
\ 1
\\ 1
" A
.X(, \\ \
N \ x4

~ ~

x; red O ™~ blue Fall 2022



Branching-ahead:
dynamic value ordering

Rank order the promise in non-rejected values to
estimate the likelihood of leading to a solution.
« Rank functions

e« MC (min conflict) counts the number of conflicts with
each future domain that are otherwise consistent.

e« MD (min domain) score is the largest domain size of
future variables.

o ES (expected solution counts)

e MIC results (Frost and Dechter, 1996)

« ES — showed good performance using [JGP
(Kask, Dechter and Gogate, 2004)

Fall 2022



Dynamic variable ordering (DVO)

 Following constraint propagation, choose the most
constrained variable

e Intuition: early discovery of dead-ends

e Highly effective: the single most important heuristic
to cut down search space

e Most popular with FC

o Dynamic search rearra ngement (Bitner and Reingold, 1975)
(Purdon,1983)

Fall 2022



Forward-checking: variable ordering

X1

green

Not searched
by forward
checking

blue,green red,green, leal

Xgy red ] , blue
:
) \ I
x5 A5y I blue green
red,blue \ 1
\ \
. \ \
x X6 ‘. \ red
\ green
FW overhead: RN
~ S o
X7 red [] 1 blue

MAC overhead:

Fall 2022



Forward-checking: variable ordering

After X1 = red choose X3 and not X2

FW overhead:

MAC overhead:

X
‘s
V4
V4
4
I 4
X, « : green
{
PR Not searched
1 1 i C e o
Xs | [::]lcui, blue by forward
i | checking
1- o
! /
1 1
Xgy red ] ,' blue
i 7
) 1
. L}
X5y : green
\ 1
\ i
Yo A \
X \
\ )
. green
A ~
- \ i - ~ L
X5 red ] [ blue

Fall 2022



Forward-checking: variable ordering

After X1 = red choose X3 and not X2

FW overhead:

MAC overhead:

X
/
/, /
X ¢t 1!
¢ 1

P Not searched
X; ! [ ]red ! by forward

i | checking

] i
o1 ! 7
Xgy red 1,

i /

' ’
_ |
s : green

\ \
\‘ 1
. A
X6 ‘. \
. green
~ . . ~ o
~ LY

X5 red ] [ hlue

Fall 2022



Forward-checking: variable ordering

After X1 = red choose X3 and not X2

FW overhead:

MAC overhead:

X,
Not searched
X | E:]IPd/ e by forward
i 155 checking
i
o1 ! 7
Xgy red 1,
i 7
'
R
X5 4 green
\
\
AY
X \
° s green
\
~ . . ~ o
X5 red ] =1 blue

Fall 2022



Example: DVO with forward-checking
(DVFC)

x1 x7

red,blue,green

red,green,teal

x5

bluc,grecn

x4

Example 5.3.4 Consider again the example in Figure 5.3. Initially, all variables have
domain size of 2 or more. DVFC picks 27, whese domain size is 2. and the value <
xy.blue >, Forward-checking propagation of this choice to each future variable restricts
the domains of z3. 74 and x5 to single values, and reduces the size of 2,'s domain by one.
DVFC selects 73 and assigns it its only possible value, red. Subsequently, forward-checking
causes variable 2 to also have a singleton domain. The algorithim chooses 2 and its only
consistent value, green. After propagating this choice, we see that 24 has one value,
red: it is selected and assigned the value. Then 25 can be selected and assigned its only
consistent value. blue. Propagating this assignment does not further shrink any future
domain. Next. 5 can be selected and assigned green. The solution is then completed,
without dead-ends. by assigning red or teal to xg. O

Fall 2022



Algorithm DVO (DVFC)

procedure DVFC
Input: A constraint network R = (X, D.C")
Output: Either a solution, or notification that the network is inconsistent.

Dl D forl <i<n (copy all domains)
i—1 (initialize variable counter)
$ = Mil<je, D] (find future var with smallest domain)
Tip1 — ¥, (rearrange variables so that x, follows ;)
whilel <i<n
instantiate 2; — SELECT VALUE-FORWARD-CHECKING

if ; is null (no value was returned)
reset each ) set to its value before »; was last instantiated
i—i—1 (backtrack)
else
ifz<n
i—i+1 (step forward to z,)

$ = Mil<je, D] (find future var with smallest domain)
Tip1 — ¥, (rearrange variables so that x, follows ;)

i—i+1 (step forward to z,)
end while
ifi=0
return “inconsistent”
else
return instantiated values of {xy,... .2,}

end procedure

Figure 5.12: The DVFC algorithm. It uses the SELECTVALUE-FORWARD-CHECKING sub-
procedure given in Fig. 5.8.



DVO: Dynamic variable ordering, more
involved heuristics

e dom: choose a variable with min domain
« deg: choose variable with max degree
« dom+deg: dom and break ties with max degree

* dom/deg (Bessiere and Ragin, 96): choose min dom/deg

e dom/wdeg: domain divided by weighted degree. Constraints are
weighted as they get involved in more conflicts. wdeg: sum the
weights of all constraints that touch x.

Fall 2022



Implementing look-aheads

« Cost of node generation should be reduced

«Solution: keep a table of viable domains for
each variable and each level in the tree.

«Space complexity
«Node generation = table updating

Fall 2022



Outline

« The search tree for CSPs, Variable ordering an consistency level

» Look-ahead for value selection:
e Forward checking,
e Full-arc-consistency,
 partial look-ahead,
e maintaining arc-consistency

e Dynamic Variable ordering (DVO, DVFC)
 Search for Satisfiability
e Converting a CSP into a SAT problem

Fall 2022



Branching strategies (selecting the search
space)

(see vanBeek, chapter 4 in Handbook)

Enumeration branching: the naive backtracking search choice

A branching strategy in the search tree: a set of branching constraints
P(by,...b;} where b; is a branching constraint

Branches are often ordered using a heuristic.

To ensure completeness, the constraints that are ordered on the
branches should be exclusive and exhaustive.

Most common are unary constraints:
Enumeration: (x=1,x=2,x=3...)
Binary choices: (x=1, x 1=1)
Domain spliting: ( x>3,x<3)
Using domain-specific formulas
Scheduling: one job before or after: (x 1 +d 1<x 2, x 2+d 2 <x 1)
Can be simulated by auxiliary variables.

Searching the dual problem
Formula-based splitting in SAT

Fall 2022



Branching on the dual graph




Randomization

« Randomized variable selection (for tie breaking rule)
« Randomized value selection (for tie breaking rule)

« Random restarts with increasing time-cutoff

e Capitalizing on huge performance variance

« All modern SAT solvers that are competitive use
restarts.

Fall 2022



The cycle-cutset effect

(relationship of look-ahead to some graph structure)

A cycle-cutset is a subset of nodes in an
undirected graph whose removal results in a
graph with no cycles

« A constraint problem whose graph has a
cycle-cutset of size ¢ can be solved by partial
look-ahead in time

«Question: what is the size of the search space
when the cycle-cutset has size: 1 (cycle),2,5...

Fall 2022



Extensions to stronger look-ahead

« Extend to path-consistency or i-consistency or
generalized-arc-consistency

Definition 5.3.7 (general arc-consistency) Given a constraint C' = (R.S) and a
wariable 7 = S, a value a = D, is supported in C' if there is a tuple t = R such that
tlz]| = a. t is then called a support for < z,a > in C. C is arc-consistent if for each
variable z, in its scope and each of its walues, a = 1), < r,a > has a support in . A
CSP is arc-consistent if each of its constraints is arc-consistent.

Fall 2022



Search for SAT



What is SAT?

Given a sentence:
« Sentence: conjunction of clauses

o Clause: disjunction of literals
o Literal: aterm or its negation

e Term: Boolean variable

Question: Find an assignment of truth values to the Boolean
variables such the sentence is satisfied.

Fall 2022



SAT (continued)

from Darwiche chapter 3

e Representation:

(AVBV-C)A(~AVD)A(BVCV D)

A convenient way to notate sentences in CNF is using sets. Specifically, a
clause [, VI V...V [, 1s expressed as a set of literals {l,,l».....[,,}. Moreover,
a conjunctive normal form a; Aas A ... A a, 1s expressed as a set of clauses
{oy,aa,...,0,}. For example, the CNF given above would be expressed as:

{{A,B,~C}. {=A.D}. {B,C,D} }.

Fall 2022



Resolution

1. {~P,R} 1:(P=> R)
2. {~-Q.R} :

3 (R 2:(Q> R)
1. {P.Q} 4: (~P =>Q)
5. {~P} 1,3

6. {-Q} 2.3

7. {Q} 4,5

8. {} 6, 7

The clauses before the line represent initial clauses, while clauses below the line
represent resolvents, together with the identifiers of clauses used to obtain them.
The above resolution trace shows that we can derive the empty clause from the
initial set of Clauses (1-4). Hence, the original clauses, together, are unsatisfiable.

Fall 2022



DP (Davis Putnam) or directional
reSOIUtiOn (Dechter and Rish, 1994)

The DP algorithm, also known as directional resolution |DR94], uses the
above observation to existentially quantify all variables from a CNF, one at a
time. One way to implement the DP algorithm is using a mechanism known as
bucket elimination [Dec97|, which proceeds in two stages: constructing and filling
a set of buckets, and then processing them in some order. Specifically, given a
variable ordering =. we construct and fill buckets as follows:

o A bucket is constructed for each variable P and is labeled with variable P.
e Buckets are sorted top to bottom by their labels according to order .
e Each clause a in the CNF is added to the first Bucket P from the top, such

that variable P appears in clause a.

o ——— . e e e

A= { {—A. B}, {ﬁA,C}, {ﬁB,D}, {ﬁC’ﬁD}, {A_ -C. E} }s
and the variable order C, B, A, D, E. Constructing and filling buckets leads to:*

: {=A.C}, {~C,~D}, {A.~C,E}
: {~A, B}, {~B, D}

mMo=mO

Fall 2022



DP (continued)

to Bucket A:

:{-A.C}, {-C,-D}, {A,-C, FE}
{—A, B}, {—-B,D}
{—A,~D}

The buckets below Bucket €' will now contain the result of existentially quanti-
fying variable C'. Processing Bucket B adds one B-resolvent to Bucket A:

: {=A.C}., {—~C,-D}, {A,~C,E}
: {—A, B}, {~B, D}
: [=A, =D}, {-A, D}

Do =m0

Fall 2022



Figure 3.3. A search tree for enumerating all truth assignments over variables A, B and C.

Fall 2022



Look-ahead for sat: DPLL

(Davis-Putnam, Logeman and Laveland, 1962)

DPLL(y)
Input: A cnf theory ¢
Output: A decision of whether ¢ is satisfiable.
1. Unit_propagate();
2. If the empty clause is generated, return(false);
3. Else. if all variables are assigned. return(¢rue);
4. Else
5. () = some unassigned variable:
6 return( DPLL{ o A Q) v

DPLL{(p A Q) )

Figure 5.13: The DPLL Procedure

Fall 2022



Boolean constraint propagation

Procedure UNIT-PROPAGATION

Input: A cnf theory, ¢. d = @4, ..., @x.

Output: An equivalent theory such that every unit clause

does not appear in any non-unit clause.

1. quene = all unit clauses.

2. while qucue is not empty, do.

3 T — next unit clause from Queue.

for every clause 3 containing T or =7
if 3 contains T delete 8 (subsumption elimination)
else, For cach clause v = resolve(3,T).
if ~. the resolvent, is empty, the theory is unsatisfiable.
else, add the resolvent ~ to the theory and delete 3.
if v is a unit clause, add to Queue.

. endfor.

9. endwhile.

Al

_--]

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.

Fall 2022



Example of DPLL

Figure 5.14: A backtracking search tree along the variables A, B, D). C' for a enf theory
g ={(-Av B),(-Cv A),(Av Bv D).C}. Hollow nodes and bars in the search tree
represent illegal states, triangles represent solutions. The enclosed area corresponds to
DPLL with unit-propagation.

Fall 2022



Using Conditioned CNF at each node

{-aBLiB-cic-onp A  Level0

B.e-a.c-op B~ ——— Levell
waec-mvC/l 00000 —_ Level2
O D\ =Dy Level 3

{ - Level 4

Figure 3.5. A termination tree, where each node is labelled by the corresponding CNF. The
last node visited during the search is labelled with {}. The label x indicates the detection of a
contradiction at the corresponding node.

Fall 2022



On Unit Resolution

To incorporate unit resolution into our satisfiability algorithms, we will intro-
duce a function UNIT-RESOLUTION, which applies to a CNF A and returns two
results:

e I: a set of literals that were either present as unit clauses in A, or were
derived from A by unit resolution.
e [': a new CNF which results from conditioning A on literals 1.

For example, if the CNF

A ={{~A,-B}, {B,C}, {-C,D}, {A} },
then I = {A,-B,C, D} and I' = {}. Moreover, if

A= {{~A,-B}, {B.C}, {=C, D}, {C} },

then I = {C,D} and I' = { {—~A,-~B} }. Unit resolution is a very important
component of search-based SAT solving algorithms. Part 1, Chapter 4 discusses
in details the modern implementation of unit resolution emploved by many SAT
solvers of this type.

Fall 2022



ronological Backtracking

Chapter 3. Complete Algorithms 111

A

Figure 3.6. A termination tree. Assignments shown next to nodes are derived using unit
resolution.

To consider a concrete example, let us look at how standard DPLL behaves
on the following CNF, assuming a variable ordering of A, B,C, XY, Z:

.{A,B)

{B.C}

{~A,-X, Y}

{-AX, 7} (3.1)
A{~A,-Y, Z)

A{~AX, -7}

N {ﬂA. =Y, ﬂZ}

W LD D e

& o

Fall 2022



Reduction from CSP to SAT

Example: CSP into SAT

Notation: variable-value pair = vvp

e VVP — term
« V,={a, b, c,d}yields x, = (V,, a), x,=(V,, b), x3=(V,, ¢), x, =(V, d),
« V,={a, b, c}yields x5 = (V,, a), xg = (V, b), x, = (V,,c).

« The vvp’s of a variable — disjunction of terms
. V,={a, b, c, d}yields

« (How do we express: “At most one VVP per variable

o

Fall 2022



CSP into SAT (cont.)

Constraint:

1. Way 1: Each inconsistent tuple — one disjunctive clause
. For example: how many?

2. Way 2:
a) Consistent tuple — conjunction of terms
b) Each constraint — disjunction of these conjunctions

— transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the
sentence is satisfied

Fall 2022



Outline

« The search tree for CSPs, Variable ordering an consistency level

» Look-ahead for value selection:
e Forward checking,
e Full-arc-consistency,
 partial look-ahead,
e maintaining arc-consistency

e Dynamic Variable ordering (DVO, DVFC)
 Search for Satisfiability
e Converting a CSP into a SAT problem

Fall 2022



