CompSci 275, CONSTRAINT Networks

Rina Dechter, Fall 2022

Directional consistency Chapter 4

Outline

- Directional Arc-consistency algorithms
- Directional Path-consistency and directional i-consistency
- Greedy algorithms for induced-width
- Width and local consistency
- Adaptive-consistency and bucket-elimination

Backtrack-free search: or What level of consistency will guarantee global-consistency

Let's explore how we can make a problem backtrack-free with a minimal amount of effort

Definition 4.1.1 (backtrack-free search) A constraint network is backtrack-free relative to a given ordering $d = (x_1, ..., x_n)$ if for every $i \leq n$, every partial solution of $(x_1, ..., x_i)$ can be consistently extended to include x_{i+1} .

> Backtrack free and queries: Consistency, All solutions **Counting** optimization

Directional arc-consistency: another restriction on propagation

Example 4.3.2 Assume that the constraints and the domains of the problem in Figure 4.5 are specified below.

$$
D_1 = \{red, white, black\}
$$

\n
$$
D_2 = \{green, white, black\}
$$

\n
$$
D_3 = \{red, white, blue\}
$$

\n
$$
D_4 = \{white, blue, black\}
$$

\n
$$
R_{12}: x_1 = x_2
$$

\n
$$
R_{13}: x_1 = x_3
$$

\n
$$
R_{34}: x_3 = x_4
$$

\n
$$
x_1
$$

Definition 4.3.1 (directional arc-consistency) A network is directional-arc-consistent relative to order $d = (x_1, ..., x_n)$ iff every variable x_i is arc-consistent relative to every variable x_i such that $i \leq j$.

Algorithm for directional arc-consistency (DAC)

$\mathrm{DAC}(\mathcal{R})$

3.

Input: A network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, its constraint graph G, and an ordering $d = (x_1, ..., x_n)$. **Output:** A directional arc-consistent network.

- for $i = n$ to 1 by -1 do 1.
- 2. for each $j < i$ s.t. $R_{ji} \in \mathcal{R}$,

$$
D_j \leftarrow D_j \cap \pi_j(R_{ji} \bowtie D_i)
$$
, (this is revise $((x_j), x_i)$).

end-for 4.

Figure 4.6: Directional arc-consistency (DAC)

• Complexity:

Directional arc-consistency may not be enough \rightarrow Directional path-consistency

Not equal constraints 2 colors in domains

Definition 4.3.5 (directional path-consistency) A network \mathcal{R} is directional pathconsistent relative to order $d = (x_1, ..., x_n)$ iff for every $k \geq i, j$, the pair $\{x_i, x_j\}$ is path-consistent relative to x_k .

Algorithm directional path consistency (DPC)

 $\mathrm{DPC}(\mathcal{R})$

Input: A binary network $\mathcal{R} = (X, D, C)$ and its constraint graph $G = (V, E), d = (x_1, ..., x_n)$. **Output:** A strong directional path-consistent network and its graph $G' = (V, E')$. Initialize: $E' \leftarrow E$.

for $k = n$ to 1 by -1 do $1.$ 2. (a) $\forall i \leq k$ such that x_i is connected to x_k in the graph, do 3. $D_i \leftarrow D_i \cap \pi_i(R_{ik} \bowtie D_k)$ (Revise($(x_i), x_k$)) (b) $\forall i, j \leq k$ s.t. $(x_i, x_k), (x_j, x_k) \in E'$ do 4. $R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj})$ (Revise-3 $((x_i, x_j), x_k))$ 5. 6. $E' \leftarrow E' \cup (x_i, x_j)$ 7. endfor

8. **return** The revised constraint network R and $G' = (V, E')$.

Figure 4.8: Directional path-consistency (DPC)

Theorem 4.3.7 Given a binary network R and an ordering d, algorithm DPC generates a largest equivalent, strong, directional-path-consistent network relative to d. The time and space complexity of DPC is $O(n^3k^3)$, where n is the number of variables and k bounds the domain sizes.

Last slide in class

Example of DPC

 \cdot d=A,B,C,D,E

 $R_{CB} = \{ (1,3)(2,3) \}$ R_{DB} = {((1,1)(2,2)} R_{CD} = {(1,1)(2,2)(1,3)(2,3)}

Directional i-consistency

Definition 4.3.8 (directional i-consistency) A network is directional *i*-consistent relative to order $d = (x_1, ..., x_n)$ iff every $i-1$ variables are *i*-consistent relative to every variable that succeeds them in the ordering. A network is strong directional i-consistent *if it is directional j-consistent for every* $j < i$ *.*

The induced-width

DPC recursively connects parents in the ordered graph, yielding Induced-ordered graph:

- Width along ordering *d*, w(d):
	- max # of previous parents in the Original graph
- Induced width $w^*(d)$:
	- The width in the ordered *induced graph: defined by recursively connecting the parents from last to first*
- Induced-width w*:
	- Smallest induced-width over all orderings
- Finding w^*
	- NP-complete *(Arnborg, 1985) but greedy heuristics (min-fill).*

Induced-width (continued)

Induced-width and DPC

- •The induced graph of (G,d) is denoted (G*,d)
- •The induced graph (G*,d) contains the graph generated by DPC along d, and the graph generated by directional i-consistency along d.

Refined complexity using induced-width

Theorem 4.3.11 Given a binary network R and an ordering d, the complexity of DPC along d is $O((w^*(d))^2 \cdot n \cdot k^3)$, where $w^*(d)$ is the induced width of the ordered constraint $graph$ along d .

Theorem 4.3.13 Given a general constraint network R whose constraints' arity is bounded by i, and an ordering d, the complexity of DIC_i along d is $O(n(w^*(d))^i \cdot (2k)^i)$. \Box

- Consequently we wish to have ordering with minimal induced-width
- Induced-width is equal to tree-width to be defined later.
- Finding min induced-width ordering is NP-complete

Outline

- Directional Arc-consistency algorithms
- Directional Path-consistency and directional i-consistency
- Greedy algorithms for induced-width
- Width and local consistency
- Adaptive-consistency and bucket-elimination

How to find a good induced-width greedily

The effect of the ordering:

Primal (moraal) graph

Greedy algorithms for induced-width

- •Min-width ordering
- •Min-induced-width ordering
- •Max-cardinality ordering
- •Min-fill ordering
- •Chordal graphs

Primal (moraal) graph

Min-induced-width

MIN-INDUCED-WIDTH (MIW) **input:** a graph $G = (V, E), V = \{v_1, ..., v_n\}$ **output:** An ordering of the nodes $d = (v_1, ..., v_n)$. 1. for $j = n$ to 1 by -1 do 2. $r \leftarrow$ a node in V with smallest degree. 3. put r in position j . connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_i, r) \in E\},\$ 4. remove r from the resulting graph: $V \leftarrow V - \{r\}.$ 5.

Figure 4.3: The min-induced-width (MIW) procedure

Min-width ordering

MIN-WIDTH (MW) **input:** a graph $G = (V, E), V = \{v_1, ..., v_n\}$ **output:** A min-width ordering of the nodes $d = (v_1, ..., v_n)$. 1. for $j = n$ to 1 by -1 do 2. $r \leftarrow$ a node in G with smallest degree. put r in position j and $G \leftarrow G - r$. 3. (Delete from V node r and from E all its adjacent edges) 4. endfor

Figure 4.2: The min-width (MW) ordering procedure

Min-fill algorithm

- •Prefers a node who adds the least number of fill-in arcs.
- •Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)

Chordal graphs and maxcardinality ordering

- •A graph is chordal if every cycle of length at least 4 has a chord
- Finding w* over chordal graph is easy using the maxcardinality ordering
- If G^{*} is an induced graph it is chordal
- K-trees are special chordal graphs.
- Finding the max-clique in chordal graphs is easy (just enumerate all cliques in a max-cardinality ordering

Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ **output:** An ordering of the nodes $d = (v_1, ..., v_n)$.

1. Place an arbitrary node in position 0.

2. for
$$
j = 1
$$
 to n do

3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to $j-1$, breaking ties arbitrarily.

4. endfor

Figure 4.5 The max-cardinality (MC) ordering procedure.

Example

We see again that *G* in Figure 4.1(a) is not chordal since the parents of *A* are not connected in the max-cardinality ordering in Figure 4.1(d). If we connect *B* and *C*, the resulting induced graph is chordal.

Outline

- Directional Arc-consistency algorithms
- Directional Path-consistency and directional i-consistency
- Greedy algorithms for induced-width
- Width and local consistency
- Adaptive-consistency and bucket-elimination

Width vs local consistency: solving trees

Figure 4.10: A tree network

Theorem 4.4.1 If a binary constraint network has a width of 1 and if it is arc-consistent. then it is backtrack-free along any width-1 ordering.

Tree-solving

Tree-solving

Input: A tree network $T = (X, D, C)$. **Output:** A backtrack-free network along an ordering d . generate a width-1 ordering, $d = x_1, \ldots, x_n$. 1. let $x_{p(i)}$ denote the parent of x_i in the rooted ordered tree. $\overline{2}$. 3. for $i = n$ to 1 do $4.$ *Revise* $((x_{p(i)}), x_i);$ if the domain of $x_{p(i)}$ is empty, exit. (no solution exists). 5.

6. endfor

Figure 4.11: Tree-solving algorithm

Width-2 and DPC

Theorem 4.4.3 (Width-2 and directional path-consistency) If R is directional arc and path-consistent along d, and if it also has width-2 along d, then it is backtrack-free along $d. \Box$

Width vs directional consistency (Freuder 82)

Theorem 4.4.5 (Width $(i-1)$ and directional i-consistency) Given a general network R, its ordered constraint graph along d has a width of $i-1$ and if it is also strong directional *i*-consistent, then R is backtrack-free along d .

Width vs i-consistency

- DAC and width-1
- •DPC and width-2
- DIC_{i} and width-(i-1)
- \rightarrow backtrack-free representation
- •If a problem has width 2, will DPC make it backtrackfree?
- •**Adaptive-consistency**: applies i-consistency when i is adapted to the number of parents

Adaptive-consistency

ADAPTIVE-CONSISTENCY (AC1) **Input:** a constraint network $\mathcal{R} = (X, D, C)$, its constraint graph $G = (V, E)$, $d = (x_1, \ldots, x_n)$. **output:** A backtrack-free network along d Initialize: $C' \leftarrow C, E' \leftarrow E$ 1. for $j = n$ to 1 do 2. Let $S \leftarrow parents(x_i)$. 3. $R_S \leftarrow Revise(S, x_j)$ (generate all partial solutions over S that can extend to x_j). 4. $C' \leftarrow C' \cup R_S$ 5. $E' \leftarrow E' \cup \{(x_k, x_r) | x_k, x_r \in parents(x_j)\}\$ (connect all parents of x_j) 5. endfor.

Figure 4.13: Algorithm adaptive-consistency-version 1

Bucket Elimination Adaptive Consistency (Dechter & Pearl, 1987)

 w^* is the induced-width along the ordering

Adaptive-consistency, bucket-elimination

ADAPTIVE-CONSISTENCY (AC)

Input: a constraint network \mathcal{R} , an ordering $d = (x_1, \ldots, x_n)$

output: A backtrack-free network, denoted $E_d(\mathcal{R})$, along d, if the empty constraint was not generated. Else, the problem is inconsistent

- Partition constraints into bucket₁, ..., bucket_n as follows: 1. for $i \leftarrow n$ downto 1, put in *bucket_i* all unplaced constraints mentioning x_i .
- $2.$ for $p \leftarrow n$ downto 1 do
- 3. for all the constraints R_{S_1}, \ldots, R_{S_j} in bucket_p do
- 4.

$$
A \leftarrow \bigcup_{i=1}^{j} S_i - \{x_p\}
$$

$$
5. \hspace{1cm} R_A \leftarrow \Pi_A(\mathbb{N}_{i=1}^j \; R_{S_i})
$$

- if R_A is not the empty relation then add R_A to the bucket of the 6. latest variable in scope A ,
- 7. else exit and return the empty network
- return $E_d(\mathcal{R}) = (X, D, bucket_1 \cup bucket_2 \cup \cdots \cup bucket_n)$ 8.

Fall 2022 32

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)

|| R^D_{BE} , R^C_{BE} $|I \ R_{DB}$ $|I \ R_{DCB}$ *|| RACB* $|| R_{AB}$ *RA*

 $|I| R_E$

The Idea of Elimination

Variable Elimination

Properties of bucket-elimination (adaptive consistency)

- Adaptive consistency generates a constraint network that is backtrack-free (can be solved without deadends).
- The time and space complexity of adaptive consistency \bullet along ordering d is respectively. or $O(r k^{w^*+1})$) when r is the number of constraints.
- Therefore, problems having bounded induced width are \bullet tractable (solved in polynomial time)
- \bullet

Back to Induced width

- Finding minimum-w^{*} ordering is NP-complete (Arnborg, 1985)
- Greedy ordering heuristics: *min-width, min-degree, max-cardinality* (Bertele and Briochi, 1972; Freuder 1982), Min-fill.

Solving Trees (Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and equivalent to enforcing directional arc-consistency (recording only unary constraints)

Summary: directional i-consistency

Relational consistency (Chapter 8)

- Relational arc-consistency
- Relational path-consistency
- Relational m-consistency

•Relational consistency for Boolean and linear constraints:

- Unit-resolution is relational-arc-consistency
- Pair-wise resolution is relational path-consistency

Sudoku's propagation

- <http://www.websudoku.com/>
- What kind of propagation we do?

Sudoku

•**Domains = {1,2,3,4,5,6,7,8,9}**

•**Constraints:**

• **27 not-equal**

Constraint propagation

Each row, column and major block must be alldifferent

"Well posed" if it has unique solution: 27 constraints

 $\frac{23}{45}$

Sudoku

Each row, column and major block must be alldifferent "Well posed" if it has unique solution