CompSci 275, CONSTRAINT Networks

Rina Dechter, Fall 2022

Directional consistency Chapter 4

Outline

- Directional Arc-consistency algorithms
- Directional Path-consistency and directional i-consistency
- Greedy algorithms for induced-width
- Width and local consistency
- Adaptive-consistency and bucket-elimination

Backtrack-free search: or What level of consistency will guarantee global-consistency

Let's explore how we can make a problem backtrack-free with a minimal amount of effort

Definition 4.1.1 (backtrack-free search) A constraint network is backtrack-free relative to a given ordering $d = (x_1, ..., x_n)$ if for every $i \leq n$, every partial solution of $(x_1, ..., x_i)$ can be consistently extended to include x_{i+1} .

Backtrack free and queries: Consistency, All solutions Counting optimization

Directional arc-consistency: another restriction on propagation

Example 4.3.2 Assume that the constraints and the domains of the problem in Figure 4.5 are specified below.

$$D_{1} = \{red, white, black\}$$

$$D_{2} = \{green, white, black\}$$

$$D_{3} = \{red, white, blue\}$$

$$D_{4} = \{white, blue, black\}$$

$$R_{12} : x_{1} = x_{2}$$

$$R_{13} : x_{1} = x_{3}$$

$$R_{34} : x_{3} = x_{4}$$

$$x_{1}$$

Definition 4.3.1 (directional arc-consistency) A network is directional-arc-consistent relative to order $d = (x_1, ..., x_n)$ iff every variable x_i is arc-consistent relative to every variable x_j such that $i \leq j$.

Algorithm for directional arc-consistency (DAC)

$\mathrm{DAC}(\mathcal{R})$

3.

Input: A network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, its constraint graph G, and an ordering $d = (x_1, ..., x_n)$. **Output**: A directional arc-consistent network.

- 1. for i = n to 1 by -1 do
- 2. for each j < i s.t. $R_{ji} \in \mathcal{R}$,

$$D_j \leftarrow D_j \cap \pi_j(R_{ji} \bowtie D_i), \text{ (this is revise}((x_j), x_i)).$$

4. end-for

Figure 4.6: Directional arc-consistency (DAC)

• Complexity:

Directional arc-consistency may not be enough \rightarrow Directional path-consistency

Not equal constraints 2 colors in domains Is it arc-consistent?

Definition 4.3.5 (directional path-consistency) A network \mathcal{R} is directional pathconsistent relative to order $d = (x_1, ..., x_n)$ iff for every $k \ge i, j$, the pair $\{x_i, x_j\}$ is path-consistent relative to x_k .

Algorithm directional path consistency (DPC)

 $DPC(\mathcal{R})$

Input: A binary network $\mathcal{R} = (X, D, C)$ and its constraint graph G = (V, E), $d = (x_1, ..., x_n)$. **Output**: A strong directional path-consistent network and its graph G' = (V, E'). **Initialize:** $E' \leftarrow E$.

1. for k = n to 1 by -1 do 2. (a) $\forall i \leq k$ such that x_i is connected to x_k in the graph, do 3. $D_i \leftarrow D_i \cap \pi_i(R_{ik} \bowtie D_k) \ (Revise((x_i), x_k)))$ 4. (b) $\forall i, j \leq k$ s.t. $(x_i, x_k), (x_j, x_k) \in E'$ do 5. $R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj}) \ (Revise-3((x_i, x_j), x_k)))$ 6. $E' \leftarrow E' \cup (x_i, x_j)$ 7. endfor

8. **return** The revised constraint network \mathcal{R} and G' = (V, E').

Figure 4.8: Directional path-consistency (DPC)

Theorem 4.3.7 Given a binary network \mathcal{R} and an ordering d, algorithm DPC generates a largest equivalent, strong, directional-path-consistent network relative to d. The time and space complexity of DPC is $O(n^3k^3)$, where n is the number of variables and k bounds the domain sizes.

Last slide in class

Example of DPC

• d=A,B,C,D,E

$$\begin{split} R_{CB} &= \{ \, (1,3)(2,3) \} \\ R_{DB} &= \{ ((1,1)(2,2) \} \\ R_{CD} &= \{ (1,1)(2,2)(1,3)(2,3) \} \end{split}$$

Directional i-consistency

Definition 4.3.8 (directional i-consistency) A network is directional *i*-consistent relative to order $d = (x_1, ..., x_n)$ iff every i - 1 variables are *i*-consistent relative to every variable that succeeds them in the ordering. A network is strong directional *i*-consistent if it is directional *j*-consistent for every j < i.

The induced-width

DPC recursively connects parents in the ordered graph, yielding Induced-ordered graph:

- Width along ordering *d*, w(d):
 - max # of previous parents in the Original graph
- Induced width w*(d):
 - The width in the ordered *induced* graph: defined by recursively connecting the parents from last to first
- Induced-width w*:
 - Smallest induced-width over all orderings
- Finding w*
 - NP-complete (Arnborg, 1985) but greedy heuristics (min-fill).

Induced-width (continued)

Induced-width and DPC

- •The induced graph of (G,d) is denoted (G*,d)
- The induced graph (G*,d) contains the graph generated by DPC along d, and the graph generated by directional i-consistency along d.

Refined complexity using induced-width

Theorem 4.3.11 Given a binary network \mathcal{R} and an ordering d, the complexity of DPC along d is $O((w^*(d))^2 \cdot n \cdot k^3)$, where $w^*(d)$ is the induced width of the ordered constraint graph along d.

Theorem 4.3.13 Given a general constraint network \mathcal{R} whose constraints' arity is bounded by *i*, and an ordering *d*, the complexity of DIC_i along *d* is $O(n(w^*(d))^i \cdot (2k)^i)$. \Box

- Consequently we wish to have ordering with minimal induced-width
- Induced-width is equal to tree-width to be defined later.
- Finding min induced-width ordering is NP-complete

Outline

- Directional Arc-consistency algorithms
- Directional Path-consistency and directional i-consistency
- Greedy algorithms for induced-width
- Width and local consistency
- Adaptive-consistency and bucket-elimination

How to find a good induced-width greedily

The effect of the ordering:

Primal (moraal) graph

Greedy algorithms for induced-width

- Min-width ordering
- Min-induced-width ordering
- Max-cardinality ordering
- Min-fill ordering
- Chordal graphs

Primal (moraal) graph

Min-induced-width

MIN-INDUCED-WIDTH (MIW) input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: An ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow$ a node in V with smallest degree. 3. put r in position j. 4. connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\},$ 5. remove r from the resulting graph: $V \leftarrow V - \{r\}$.

Figure 4.3: The min-induced-width (MIW) procedure

Min-width ordering

MIN-WIDTH (MW) input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow$ a node in G with smallest degree. 3. put r in position j and $G \leftarrow G - r$. (Delete from V node r and from E all its adjacent edges) 4. endfor

Figure 4.2: The min-width (MW) ordering procedure

Min-fill algorithm

- Prefers a node who adds the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)

Chordal graphs and maxcardinality ordering

- A graph is chordal if every cycle of length at least 4 has a chord
- Finding w* over chordal graph is easy using the maxcardinality ordering
- If G* is an induced graph it is chordal
- K-trees are special chordal graphs.
- Finding the max-clique in chordal graphs is easy (just enumerate all cliques in a max-cardinality ordering

Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ **output:** An ordering of the nodes $d = (v_1, ..., v_n)$.

1. Place an arbitrary node in position 0.

2. for
$$j = 1$$
 to n do

3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to j - 1, breaking ties arbitrarily.

4. endfor

Figure 4.5 The max-cardinality (MC) ordering procedure.

Example

We see again that *G* in Figure 4.1(a) is not chordal since the parents of *A* are not connected in the max-cardinality ordering in Figure 4.1(d). If we connect *B* and *C*, the resulting induced graph is chordal.

Outline

- Directional Arc-consistency algorithms
- Directional Path-consistency and directional i-consistency
- Greedy algorithms for induced-width
- Width and local consistency
- Adaptive-consistency and bucket-elimination

Width vs local consistency: solving trees

Figure 4.10: A tree network

Theorem 4.4.1 If a binary constraint network has a width of 1 and if it is arc-consistent, then it is backtrack-free along any width-1 ordering.

Tree-solving

Tree-solving

Input: A tree network T = (X, D, C).Output: A backtrack-free network along an ordering d.1.generate a width-1 ordering, $d = x_1, \ldots, x_n$.2.let $x_{p(i)}$ denote the parent of x_i in the rooted ordered tree.3.for i = n to 1 do4.Revise $((x_{p(i)}), x_i)$;5.if the domain of $x_{p(i)}$ is empty, exit. (no solution exists).

6. endfor

Figure 4.11: Tree-solving algorithm

Width-2 and DPC

Theorem 4.4.3 (Width-2 and directional path-consistency) If \mathcal{R} is directional arc and path-consistent along d, and if it also has width-2 along d, then it is backtrack-free along d. \Box

Width vs directional consistency (Freuder 82)

Theorem 4.4.5 (Width (i-1) and directional i-consistency) Given a general network \mathcal{R} , its ordered constraint graph along d has a width of i - 1 and if it is also strong directional *i*-consistent, then \mathcal{R} is backtrack-free along d.

Width vs i-consistency

- DAC and width-1
- DPC and width-2
- DIC_i and width-(i-1)
- \rightarrow backtrack-free representation
- If a problem has width 2, will DPC make it backtrackfree?
- Adaptive-consistency: applies i-consistency when i is adapted to the number of parents

Adaptive-consistency

ADAPTIVE-CONSISTENCY (AC1) Input: a constraint network $\mathcal{R} = (X, D, C)$, its constraint graph G = (V, E), $d = (x_1, \ldots, x_n)$. output: A backtrack-free network along dInitialize: $C' \leftarrow C$, $E' \leftarrow E$ 1. for j = n to 1 do 2. Let $S \leftarrow parents(x_j)$. 3. $R_S \leftarrow Revise(S, x_j)$ (generate all partial solutions over S that can extend to x_j). 4. $C' \leftarrow C' \cup R_S$ 5. $E' \leftarrow E' \cup \{(x_k, x_r) | x_k, x_r \in parents(x_j)\}$ (connect all parents of x_j) 5. endfor.

Figure 4.13: Algorithm adaptive-consistency-version 1

Bucket Elimination Adaptive Consistency (Dechter & Pearl, 1987)

 w^* is the induced-width along the ordering

Adaptive-consistency, bucket-elimination

Adaptive-Consistency (AC)

Input: a constraint network \mathcal{R} , an ordering $d = (x_1, \ldots, x_n)$

output: A backtrack-free network, denoted $E_d(\mathcal{R})$, along d, if the empty constraint was not generated. Else, the problem is inconsistent

- 1. Partition constraints into $bucket_1, \ldots, bucket_n$ as follows: for $i \leftarrow n$ downto 1, put in $bucket_i$ all unplaced constraints mentioning x_i .
- 2. for $p \leftarrow n$ downto 1 do
- 3. for all the constraints R_{S_1}, \ldots, R_{S_j} in bucket_p do
- 4.

$$A \leftarrow \bigcup_{i=1}^{j} S_i - \{x_p\}$$

5.
$$R_A \leftarrow \Pi_A(\bowtie_{i=1}^j R_{S_i})$$

- 6. **if** R_A is not the empty relation **then** add R_A to the bucket of the latest variable in scope A,
- 7. **else** exit and return the empty network
- 8. return $E_d(\mathcal{R}) = (X, D, bucket_1 \cup bucket_2 \cup \cdots \cup bucket_n)$

Figure 4.14: Adaptive-Consistency as a bucket-elimination algorithm

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)

The Idea of Elimination

Variable Elimination

Properties of bucket-elimination (adaptive consistency)

- Adaptive consistency generates a constraint network that is backtrack-free (can be solved without deadends).
- The time and space complexity of adaptive consistency along ordering d is respectively, or $O(r k^{w^*+1})$ when r is the number of constraints.
- Therefore, problems having bounded induced width are tractable (solved in polynomial time)
- Special cases: trees (w*=1), series-parallel networks (w*=2), and in general k-trees (w*=k).

Back to Induced width

- Finding minimum-w^{*} ordering is NP-complete (Arnborg, 1985)
- Greedy ordering heuristics: *min-width, min-degree, max-cardinality* (Bertele and Briochi, 1972; Freuder 1982), Min-fill.

Solving Trees (Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and equivalent to enforcing directional arc-consistency (recording only unary constraints)

Summary: directional i-consistency

Relational consistency (Chapter 8)

- Relational arc-consistency
- Relational path-consistency
- Relational m-consistency

Relational consistency for Boolean and linear constraints:

- Unit-resolution is relational-arc-consistency
- Pair-wise resolution is relational path-consistency

Sudoku's propagation

- <u>http://www.websudoku.com/</u>
- What kind of propagation we do?

Sudoku

•Domains = {1,2,3,4,5,6,7,8,9}

•Constraints:

• 27 not-equal

Constraint propagation

Each row, column and major block must be alldifferent

"Well posed" if it has unique solution: 27 constraints

22

Sudoku

Each row, column and major block must be all different "Well posed" if it has unique solution