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Outline

e Arc-consistency algorithms

e Path-consistency and i-consistency

e Arc-consistency, Generalized arc-consistency, relation arc-consistency
 Global and bound consistency

e Distributed (generalized) arc-consistency

« Consistency operators: join, resolution, Gausian elimination
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Exercise: make the following
network arc-consistent

e Draw the network’s primal and dual constraint graph

e Network =
« Domains {1,2,3,4}
e Constraints:y<x,z<y,t<z f<t, x<=t+1, Y<f+2
 What is the domain for X in an arc-consistent network?
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Arc-consistency Algorithms

o AC-1: brute-force, distributed

e AC-3, queue-based

« AC-4, context-based, optimal

« AC-5,6,7,.... Good in special cases

- Important: applied at every node of search

e (n number of variables, e=#constraints, k=domain size)
o Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)
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Constraint tightness analysis

t = number of tuples bounding a constraint

e AC-1: brute-force,
« AC-3, queue-based
e AC-4, context-based, optimal

« AC-5,6,7,.... Good in special cases
- Important: applied at every node of search

e (n number of variables, e=#tconstraints, k=domain size)
o Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...
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Is arc-consistency enough?

« Example: a triangle graph-coloring with 2 values.

e |s it arc-consistent?
e |s it consistent?

e It is not path, or 3-consistent.
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Outline

e Path-consistency and i-consistency
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Path-consistency

(a) (b)

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical
picture of path-consistency using the matching diagram.
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Path-consistency
(3-consistency)

Definition 3.3.2 (Path-consistency) Given a constraint network R = (X, D,C), a
two variable set {z;,z;} is path-consistent relative to variable zy if and only if for every
consistent assignment (< x;,a; >,< 2,5 >) there is a value gy € Dy s.t. the assign-
ment (< Z;,0; >, < Ty, ap >) is consistent and (< zy, @ >,< 25,04 >.) 15 consistent.
Alternatively, a binary constraint Ry; s path-consistent relative to xy off for every par
(@;,05), € Ry, where a; and ay are from their respective domains, there is a value ay € Dy,
st (a,ar) € Ry and (ag,a5) € Ryy. A subnetwork over three variables {x;, x5, 2} is
path-consistent iff for any permutation of (1,7, k), Rij is path consistent relative to zy. A
network is path-consistent iff for every Ry; (including universal binary relations) and for
every k 4,7 Ry is path-consistent relative to zy,.
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Revise-3

REVISE-3((z,¥), 2)

input: a three-variable subnetwork over (z,y, 2), R.,, Ry., R...
output: revised R, path-consistent with 2.

1. for each pair (a,b) € R,,

e if no value ¢ € D, exists such that (a,c) € R;, and (b,¢) € R,y
3 then delete (a,b) from R, .

4 endif

5. endfor

Figure 3.9: Revise-3

Rl‘,y s R.l‘.y M T‘-Iy(RI: X D: X R:y)

. Complexity: O(k>)
 Best-case: O(t)
« Worst-case O(tk)

Fall 2022
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Revise3 = join tollowed by project

Join :
X4 X Xy X3 X4 Xo X
a a [><] a a a a a
b b a b ) a a b
b b b a

RX1X3= {(ala)l(alb)l(bla)}
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PC-1

PC-1(R)

input: a network R = (X, D.C).

output: a path consistent network equivalent to R.
1. repeat

2 fork— 1lton

3. fori.j«— 1ton

4. Rij «— Ry Nm;; (R ™M Dy, X Ry;) /* (Revise — 3((2,7), k))
5 endfor

6 endfor

7. until no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)
« Complexity:
. O(n?) triplets, each take O(k>) steps > 0O(n’k?)

« Max number of loops: O(n? k?) .
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PC-2

PCEYR)

input: a network R = (X, D,C).

output: R’ a path consistent network equivalent to R.

L Qe={Lkj)|1<i<j<nl<k<nk#ik#j}
2. while () is not empty

3 select and delete a 3-tuple (i, k, j) from Q

4, Ri; — Ry N mi; (R M Dy X Ry;) [/* (Revise-3((4,4), k))
5. if R;; changed then

6 Q — QU LLa: )1 §:8) | 1 <l<n l£8,1£ )

7. endwhile

« Complexity:
e Optimal PC-4:

« (each pair of values deleted may add: 2n-1 triplets, number of pairs: O(n? k2) >

size of Q is O(n> k?), processing is O(k?) yielding the result)

Fall 2022
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Example: before and after
path-consistency

fa) (b)

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

e PC-1 requires 2 processing of each arc while PC-2 may not
« Can we do path-consistency distributedly?

Fall 2022 14



Example: before and after
path-consistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

« PC-1 requires 2 processings of each arc while PC-2 may not
« Can we do path-consistency distributedly?

Fall 2022 15



Path-consistency Algorithms

» Apply Revise-3 O(k>) until no change

« Path-consistency (3-consistency) adds binary
constraints.

o PC-1:
o PC-2:
e PC-4 optimal:



|-consistency

ARC-CONSISTENCY

-~

GEo—— =

PATH-CONSISTENCY

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency,
(¢) I-consistency

Fall 2022

17



Higher levels of consistency,
global-consistency

t. A network is t-consistent iff given any consistent instantiation of any 1 — 1
distinct variables, there exists an instantiation of any ith variable such that the @ values
taken together satisfy all of the constraints among the © variables. A netweork s strongly
i-consistent #ff it s j-consistent for all 3 < 2. A strongly n-consistent network, where n
is the number of variables in the network, is called globally consistent,

A Globally consistent network is backtrack-free
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Revise-i

REVISE-i({x1, 29, ..., ®i_1}, T;)
input: a network R = (X, D,C)
output: a constraint Rg, S = {1, ...., x;_1} i-consistent relative to x;.
1. for each instantiation @;_1 = (< x1,a1 >, < T9,a2 >,...,< T;_1,a;—1 >) do,
2. if no value of q; € D; exists s.t. (@;_1,a;) is consistent
then delete a@;_; from Rg
(Alternatively, let S be the set of all subsets of {zy,...,2;} that contain z;
and appear as scopes of constraints of R, then
Rg «+ RgNmg(Xgrcs Ryr))
3. endfor

Figure 3.14: Revise-i

« Complexity: for binary constraints O(k')
e For arbitrary constraints:

o (because there may be O(2) constraints to test per tuple)

Fall 2022
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4-queen example

Q

Q
(a) (b)

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent
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I-consistency

I-CONSISTENCY(R)

input: a network R.

output: an i-consistent network equivalent to R.
1. repeat

2. for every subset S C X of size i — 1, and for every z;. do

3. let S be the set of all subsets in of {2y, ..., 2;} scheme(R)
that contain z;

4. Rs «— RgnN TL'S(NSIGS RS/) ( this is Revise—i(S, CII,))

6. endfor

7. until no constraint is changed.

This S is different it is all subsets of size |

That includes xi
Figure 3.15: i-consistency-1

Theorem 3.4.3 (complexity of i-consistency) The time and space complexity of brute
force i-consistency O(2(nk)%) and O(n'k?). respectively. A lower bound for fnfozung
i-consistency is Q(n'k?). O
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Path-consistency vs 3-consistency

Example 3.4.4 Suppose a constraint network involves three variables z, ¥, z having do-
mains {0, 1} and a single ternary constraint R, = {(0,0,0)}. Application of the path-
consistency algorithm will produce nothing since there are no binary constraints to test;
the network 1s already path-consistent. However, the network is not 3-consistent. While
we can assign the values ({z, 1}, (y, 1}) (since there is no constraint), we cannot extend
this assignment to z in a way that satisfies the given ternary constraints. Indeed. if we

apply 3-consistency to this network we will add the constraint Ry, — {(< 2,0 >< y,0 >
in addition to the constraint Ry, — {({< x.0 >)}.

Fall 2022
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I-consistency

ARC-CONSISTENCY

-

EeD—— =2 D

PATH-CONSISTENCY

Figure 3.17: The scope of consistency enforcing: {a) arc-consistency, (b) path-consistency,
(c) i-consistency

Fall 2022
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Outline

» Generalized arc-consistency, relational arc-consistency
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Generalized arc-consistency (GAC)
for non-binary constraints

Definition 3.5.1 (generalized arc-consistency) Given a constraint network R = (X, D, C),
with Rs € C. a variable x is arc-consistent relative to Rs if and only if for every value
a € D, there exists a tuple t € Rg such that t|lx| = a. t can be called a support for a.
The constraint Rg is called arc-consistent iff it is arc-consistent relative to each of the

variables in its scope and a constraint network is arc-consistent if all its constraints are
arc-consistent.

Dw — Dxﬂﬂ'x(RS X %

Complexity: O(t k), t bounds number of tuples.
Relational arc-consistency (different than GAC):

Rg 1o+ Ts_(ay(Rs X Dy).
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Algorithm 1: AC3 / GAC3

function Revise3(in z;: variable; ¢: constraint): Boolean ;

S O W N

begin
CHANGE — false;
foreach v; € D(z;) do
if A7 € cN7x(e)(D) with 7[z;] = v; then
remove v; from D(z;);
CHANGE « true;
return CHANGE ;
end

function AC3/GAC3(in X: set): Boolean ;

10
11
12

13

begin

/* initalisation */;

Q — {(zi,c) | ce Ciz; € X(c)}:
/* propagation */;
while Q # () do
select and remove (z;,¢) from Q;
if Revise(x;,c) then
if D(z;) = () then return false :
else Q — QU {(zj,c) | e CA #chayx; e X()NG#i};
return true ;
end

Fall 2022
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Generalized arc-consistency

Proposition 27 (GAC3). GAC3 is a sound and complete algorithm for
achieving arc consistency that runs in O(er3d"™1) time and O(er) space, where
r 1s the greatest arity among constraints.

Fall 2022
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Examples of generalized AC and
relational AC

e x+y+z < 15and z > 13 implies



Examples of generalized AC and
relational AC

e x+y+z < 15and z > 13 implies
x<1l,y<lI
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Examples of generalized AC and
relational AC

e x+y+z < 15and z > 13 implies
x<1l,y<lI

« Example of relational arc-consistency

Here given the 2 top Boolean constraints we infer the 3rd,

Fall 2022
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Examples: of generalized AC

e Xx+y+z < 15and z > 13 implies
x<2,y<2

e Example of relational arc-consistency

Here given the 2 top Boolean constraints we infer the 3rd,

Fall 2022
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Sudoku

\ariables: empty slots

eConstraint Propagation eDomains =
{1I213I4I5I6I7I8I9}

eInference
eConstraints: 27 all-different

] O
O O %

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints

Fall 2022 32



Outline

 Global and bound consistency

Fall 2022
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More arc-based consistency

« Global constraints: e.g., all-different constraints

« Special semantic constraints that appears often in practice and a specialized
constraint propagation. Used in constraint programming.

« Bounds-consistency: pruning the boundaries of domains

Fall 2022
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Global constraints

Constraints of arbitrary scope length defined by expression, a Boolean function

S Giobal constraints are classes of

constraints defined by a formula of arbitrary arity (see Section 9.2).

Example 2. The constraint alldifferent(r;,zo,73) = (i # v; A
vi # Uxp AUV; # ) allows the infinite set of 3-tuples in Z* such
that all values are different. The constraint e(r;.z0,73) = {(2,2,3),

(2,3.2),(2,3.3),(3,2.2).(3.2.3).(3.3.2)} allows the finite set of 3-tuples con-
taining both values 2 and 3 and only them.
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Global constraints

Example 86. The alldifferent(zy,....2,) global constraint is the class of
constraints that are defined on any sequence of n variables, n > 2, such that
r; # x; for all 1,5,1 < i,j < n,i # j. The NValue(y.|z;,...,2s]) global

/

constraint is the class of constraints that are defined on any sequence of n + 1
variables, n > 1, such that [{z; | 1 <i < n}| =y [100, 8].

We need specialized procedures for generalize Arc-consistency because
it is too expensive to try and apply the general algorithm
(see Bessiere, section 9.2)

We can decompose a global constraint, or use various specialized
representation
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Example for alldiff

« A={3,4,5,6}

e B=1{3,4}

« C={2,3,4,5}

« D={2,3,4}

« E={3,4}

« F={1,2,3,4,5,6}

o Alldiff (A,B,C,D,E)

« Arc-consistency does nothing
« Apply GAC to sol(A,B,C,D,E,F)?
« 2> A={6}, F={1}....

 Alg: bipartite matching kn*1.5

 (Lopez-Ortiz, et. Al, IJICAI-03 pp 245 (A fast and simple algorithm for
bounds consistency of alldifferent constraint)

Fall 2022
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Global constraints

« Alldifferent
e Sum constraint (variable equal the sum of others)

 Global cardinality constraint (a value can be assigned a bounded
number of times to a set of variables)

e The cummulative constraint (related to scheduling tasks)

In summary, a global constraint C = {C(7)} is a family of scope-parameterized con-
straints, (normally i > 2), where C(i) is a constraint whose relation is often defined
implicitly by either a natural language statement, or as a set of solutions to a subproblem
defined by lower arity explicit constraints (e.g., alldifferent). It is associated with one or
more specialized propagation algorithms trying to achieve generalized arc-consistency rel-

ative to C(i) (or an approximation of it) in a way that is more efficient than a brute-force
approach.

Fall 2022
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Bounds consistency

Definition 3.5.4 (bounds consistency) Given a constraint C over a scope S and do-
main constraints, a variable z € S is bounds-consistent relative to C if the value min{D,}
(respectively, maz{D,}) can be extended to a full tuple t of C. We say that t sup-

ports min{D,}. A constraint C' is bounds-consistent if each of its variables is bounds-
consistent.

Fall 2022

39



Bounds consistency

Example 3.5.5 Consider the constraint problem with variables z, ...xg, cach with do-
mains 1,...,6. and constraints:

Crizy2z+3, Coizy>13+3, Ciizs>z3+3, Ciizs>z4+1,

Cy : alldi f ferent{z1, x5, x3, 24, T5}

The constraints are not bounds consistent. For example. the minimum value 1 in the
domain of z4 does not have support in constraint € as there is no corresponding value
for z; that satisfies the constraint. Enforcing bounds consistency using constraints €
through Cjy reduces the domains of the variables as follows: Dy = {1,2}, Dy = {1,2},
D3 = {1,2,3} Dy = {4,5} and Ds = {5,6}. Subsequently, enforcing bounds consistency
using constraints Cy further reduces the domain of €' to D3 = {3}.Now constraint Cjy is
no longer bound consistent. Reestablishing bounds consistency causes the domain of xy
to be reduced to {6}. Is the resulting problem already arc-consistent? O
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Outline

« Consistency operators: join, resolution, Gausian elimination

Fall 2022
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Boolean constraint propagation

« (AV —B) and (B)
e B is arc-consistent relative to A but not vice-versa

« Arc-consistency by resolution:
res((AV —B),B) = A

Given also (B V C), path-consistency:
res((AV —B),(BVC)=(AVC)

Relational arc-consistency rule = unit-resolution

Fall 2022
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Boolean constraint propagation

Procedure UNIT-PROPAGATION

Input: A cnf theory, ¢. d = @4, ..., @x.

Output: An equivalent theory such that every unit clause

does not appear in any non-unit clause.

1. quene = all unit clauses.

2. while qucue is not empty, do.

3 T — next unit clause from Queue.

for every clause 3 containing T or =7
if 3 contains T delete 8 (subsumption elimination)
else, For cach clause v = resolve(3,T).
if ~. the resolvent, is empty, the theory is unsatisfiable.
else, add the resolvent ~ to the theory and delete 3.
if v is a unit clause, add to Queue.

. endfor.

9. endwhile.

Al

_--]

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.
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Consistency for numeric constraints
(Gausian elimination)




Impact on graphs of i-consistency
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Outline

e Distributed (generalized) arc-consistency

Fall 2022
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Distributed arc-consistency
(Constraint propagation)

Implement AC-1 distributedly.

Node X; sends the message to

node Xx;

Node x; updates its domain:

Relational and generalized arc-
consistency can be implemented
distributedly: sending messages between
constraints over the dual graph

Fall 2022
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Relational Arc-consistency

The message that R2 sends to R1 is

R1 updates its relation and domains and sends
messages to neighbors

- U

N
- N
w wiN)
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Distributed Relational Arc-Consistency

« DRAC can be applied to the dual problem of any constraint network:

2

R; — R;i N (< peneih),) (2)
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DRAC on the dual join-graph

%> —
-
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Iteration 1

R; — R; N (N kefne(z’)h’ﬁg)

(2)
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Iteration 2




R; — R;i N (< jenei )
Iteration 2
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Iteration 3
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Iteration 3
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R; — Ry N (54 pepeyh})
Iteration 4
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h’i — ﬂ_lz’j(Ré = ([X] kEne(z)hZ)) (1)
Iteration 5
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Iteration 5

R; — R;i N (b4 jeneny 1))

A
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A B
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Tractable classes

Theorem 3.7.1 1. The consistency binary constraint networks having no cycles can
be decided by arc-consistent

2. The consistency of binary constraint networks with bi-valued domains can be decided
by path-consistency.

3. The consistency of Horn cnf theories can be decided by unit propagation.

Fall 2022
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Outline

e Arc-consistency algorithms

e Path-consistency and i-consistency

e Arc-consistency, Generalized arc-consistency, relation arc-consistency
 Global and bound consistency

« Consistency operators: join, resolution, Gausian elimination

e Distributed (generalized) arc-consistency
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