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Outline

e Arc-consistency algorithms

e Path-consistency and i-consistency

e Arc-consistency, Generalized arc-consistency, relation arc-consistency
 Global and bound consistency

e Distributed (generalized) arc-consistency

« Consistency operators: join, resolution, Gausian elimination
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Consistency methods

« Approximation of inference:
e Arc, path and i-consistecy

« Methods that transform the original network into tighter and tighter
representations

Inference Algorithms
will help search

Definition 3.1.1 (partial solution) Given a constraint network R, we say that an as-
signment of values to a subset of the variables S = {x1,...,x;} given by a = (< x1,a; >
, < Xo, Q9 >, ..., < T;,a; >) 1S consistent relative to R iff it satisfies every constraint Ry,
such that S; C S. The assignment a is also called a partial solution of R. The set of all
partial solutions of a subset of variables S is denoted by ps or p(S).
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Arc-consistency
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Arc-consistency
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Figure 3.1: A matching diagram describing the arc-consistency of two variables x and .
In (a) the variables are not arc-consistent. In (b) the domains have been reduced, and
the variables are now arc-consistent.

Definition 3.2.2 (arc-consistency) Given a constraint network R = (X, D,C). with

R;; € C, a variable x; is arc-consistent relative to x; if and only if for every value a; € D

there exvists a value a; € D; such that (a;,a;) € R;;. The subnetwork {alternatively, the

arc) defined by {z;,z;} is arc-consistent if and only if x; is arc-consistent relative to x;

and x; is arc-conststent relative to x;. A network of constraints is called arc-consistent zff

all of its arcs {e.q.. subnetworks of size 2) are arc-consistent.
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Revise for arc-consistency

REVISE((z;), ;)

input: a subnetwork defined by two variables X = {x;,z;}, a distinguished variable z;,
domains: D; and D;, and constraint R;;

output: D;, such that, z; arc-consistent relative to z;

1. for cach a; € D;

2 if there is no a; € D; such that (a;,a;) € Ry;
3. then delete a; from D;

4 endif

5. endfor

Figure 3.2: The Revise procedure N=®
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A matching diagram describing a network of constraints that is
not arc-consistent (b) An arc-consistent equivalent network.

(a)
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A matching diagram describing a network of constraints that is not arc-
consistent (b) An arc-consistent equivalent network.
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AC-1

AC-1(R)

input: a network of constraints R = (X, D, ()
output: R’ which is the loosest arc-consistent network equivalent to R

1. repeat

2 for every pair {z;,x;} that participates in a constraint
3. Revise((x;),z;) (or D; «— D; Nw;(R;; X D))

4. Revise((x;), z;) (or D; «+ D; Nm;(R;; X D;))

5 endfor

6. until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)
o Complexity (Mackworth and Freuder, 1986):

e e = number of arcs, n variables, k values

. (ekz, each loop, nk number of loops), best-case = ek,

« Arc-consistency is:
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AC-3

AC-3(R)
input: a network of constraints R = (X, D,C)
output: R’ which is the largest arc-consistent network equivalent to R

1. for every pair {z;,x;} that participates in a constraint R;; € R
2. queue «— queue U {(z;, z;), (;, x;)}

3. endfor

4. while queue # {}

5. select and delete (z;, ;) from queue

6. Revise((x;), x;)

7. if Revise((x;),x;) causes a change in D;

8. then queue «+ queue U {(zy,x;),i # k}

9. endif

10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)
» Complexity: since each arc may be processed in O(2k)
« Best case O(ek),
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Example: a 3 variables network with 2 constraints: z divides
x and z divides y
(a) before and (b) after AC-3 is applied.
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Example: A 3 variables network with 2 constraints: z divides
x and z divides y
(a) before and (b) after AC-3 is applied.
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AC-4 Z

AC-4(R)

input: a network of constraints R . ,
output: An arc-consistent network equivalent to R @ @
1. Initialization: A «— ).

2. initialize S(4, ), counter(i,a;,j) for all R;; @ ®)
3. for all counters

4. if counter(z;. a;,x;) = 0 (if < x;,a; > is unsupported by z;)
5. then add < z;.a; > to LIST

6. endif

F. endfor

8. while LIST is not empty

9. choose < z;.a; > from LIST. remove it. and add it to A

10. for each < x;,a; > in Sy, a)

11 decrement counter(z;, a;, ;)

12: if counter(z;. a;,x;) =0

13. then add < z;,a; > to LIST

14. endif

15. endfor

16. endwhile
Figure 3.7: Arc-consistency-4 (AC-4)

e Complexity:

- (Counter is the number of supports to g; in x; from x ;. S,; ,; is the set of
pairs that (x;, a;) supports) Fall 2022 y



Example applying AC-4

Example 3.2.9 Consider the problem in Figure 3.6. Initializing the S, 4 arrays (indi-
cating all the variable-value pairs that each < z,a > supports), we have :

S(zqg) = {< T2 oo di>od el >}, S(z,S) = {( z,5 >}, S(I’Q) = {< 22 >},

=4 <z;b > )85y = {<252 2}y =~_<22 }

For counters we have: counter(z,2,z) = 1, counter(z,5,z) = 1, counter(z,2,z) = 1,
counter(z,5,z) = |, counter(z,2,y) = 2, counter(z,5,y) = 0, counter(y,2,z) = 1,
counter(y,4,z) = 1. (Note that we do not need to add counters between variables that
are not directly constrained, such as z and y.) Finally, List = {< 2,5 >}, M = §). Once
< z,5 > Is removed from List and placed in M, the counter of < x,5 > is updated to
counter(z,5,z) = 0, and < z,5 > is placed in List. Then, < z,5 > is removed from
List and placed in M. Since the only value it supports Is < z,5 > and since < z,5 > I8

already in M, the List remains empty and the process stops. O
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Distributed arc-consistency
(Constraint propagation)

o Implement AC-1 distributedly.

« h;_,; node x; sends the message to

node X;

« Node Xx; updates its domain:

« Messages can be sent
asynchronously or scheduled in a
topological order

Fall 2022
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Exercise: make the following
network arc-consistent

e Draw the network’s primal and dual constraint graph

e Network =
« Domains {1,2,3,4}
e Constraints:y<x,z<y,t<z f<t, x<=t+1, Y<f+2
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Arc-consistency Algorithms

e AC-1: brute-force, distributed

« AC-3, queue-based

e AC-4, context-based, optimal

« AC-5,6,7,.... Good in special cases

- Important: applied at every node of search

e (n number of variables, e=#constraints, k=domain size)
« Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...
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Constraint tightness analysis

t = number of tuples bounding a constraint

e AC-1: brute-force,

« AC-3, queue-based

e AC-4, context-based, optimal

« AC-5,6,7,.... Good in special cases

- Important: applied at every node of search

e (n number of variables, e=#tconstraints, k=domain size)
« Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...
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Constraint checking

—>Arc-consistency

1-B:[5..14]
C: [6..15]

2-A:[2.10]
C:[6..14]

»<C- A<5\’/[ 3-B:[5..13]

6
—4——15]
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Is arc-consistency enough?

« Example: a triangle graph-coloring with 2 values.

e |s it arc-consistent?
e |s it consistent?

e It is not path, or 3-consistent.
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21



Outline

e Path-consistency and i-consistency
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