CompSci 275, CONSTRAINT Networks

Rina Dechter, Fall 2022

Consistency algorithms, part a Chapter 3

Outline

- Arc-consistency algorithms
- Path-consistency and i-consistency
- Arc-consistency, Generalized arc-consistency, relation arc-consistency
- Global and bound consistency
- Distributed (generalized) arc-consistency
- Consistency operators: join, resolution, Gausian elimination

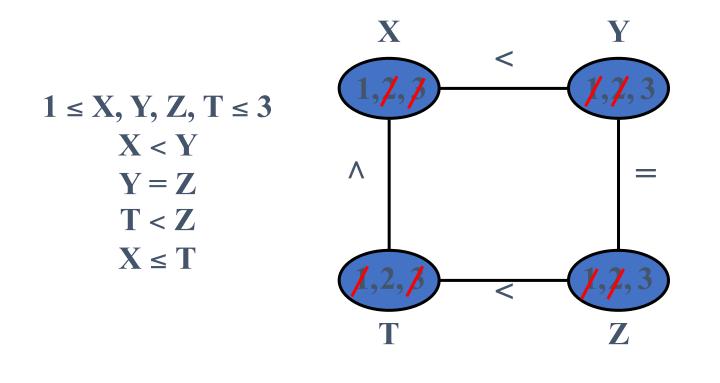
Consistency methods

- Approximation of inference:
 - Arc, path and i-consistecy
- Methods that transform the original network into tighter and tighter representations

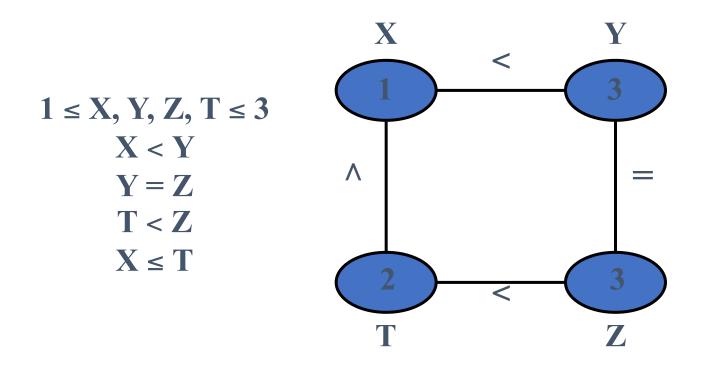
Inference Algorithms will help search

Definition 3.1.1 (partial solution) Given a constraint network \mathcal{R} , we say that an assignment of values to a subset of the variables $S = \{x_1, ..., x_j\}$ given by $\bar{a} = (\langle x_1, a_1 \rangle$, $\langle x_2, a_2 \rangle, ..., \langle x_j, a_j \rangle)$ is consistent relative to \mathcal{R} iff it satisfies every constraint R_{S_i} such that $S_i \subseteq S$. The assignment \bar{a} is also called a partial solution of \mathcal{R} . The set of all partial solutions of a subset of variables S is denoted by ρ_S or $\rho(S)$.

Arc-consistency



Arc-consistency



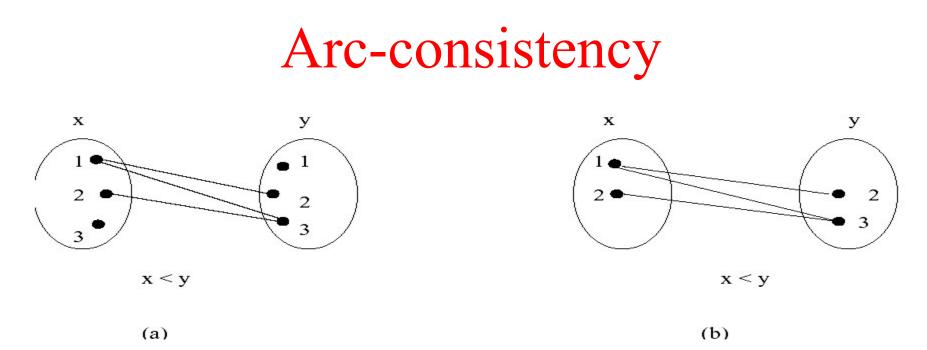


Figure 3.1: A matching diagram describing the arc-consistency of two variables x and y. In (a) the variables are not arc-consistent. In (b) the domains have been reduced, and the variables are now arc-consistent.

Definition 3.2.2 (arc-consistency) Given a constraint network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, with $R_{ij} \in C$, a variable x_i is arc-consistent relative to x_j if and only if for every value $a_i \in D_i$ there exists a value $a_j \in D_j$ such that $(a_i, a_j) \in R_{ij}$. The subnetwork (alternatively, the arc) defined by $\{x_i, x_j\}$ is arc-consistent if and only if x_i is arc-consistent relative to x_j and x_j is arc-consistent relative to x_i . A network of constraints is called arc-consistent iff all of its arcs (e.g., subnetworks of size 2) are arc-consistent.

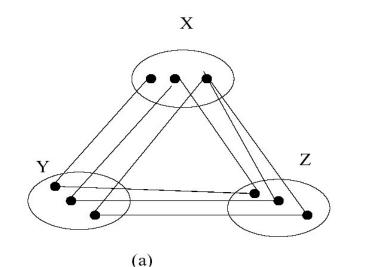
Revise for arc-consistency

 $\operatorname{REVISE}((x_i), x_j)$

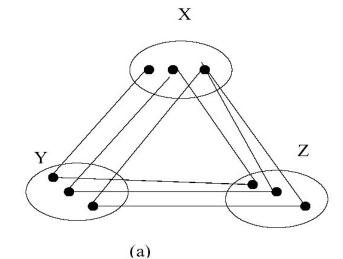
input: a subnetwork defined by two variables $X = \{x_i, x_j\}$, a distinguished variable x_i , domains: D_i and D_j , and constraint R_{ij} output: D_i , such that, x_i arc-consistent relative to x_j 1. for each $a_i \in D_i$

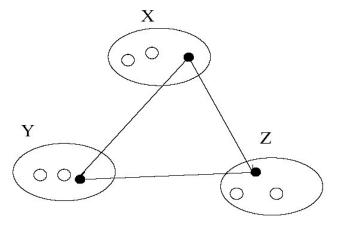
- 2. **if** there is no $a_j \in D_j$ such that $(a_i, a_j) \in R_{ij}$
- 3. **then** delete a_i from D_i
- 4. endif
- 5. endfor

A matching diagram describing a network of constraints that is not arc-consistent (b) An arc-consistent equivalent network.



A matching diagram describing a network of constraints that is not arcconsistent (b) An arc-consistent equivalent network.





(b)

AC-1

 $AC-1(\mathcal{R})$

input: a network of constraints $\mathcal{R} = (X, D, C)$ output: \mathcal{R}' which is the loosest arc-consistent network equivalent to \mathcal{R} 1. repeat

2. for every pair $\{x_i, x_j\}$ that participates in a constraint

3. Revise
$$((x_i), x_j)$$
 (or $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j)$)

4. Revise
$$((x_j), x_i)$$
 (or $D_j \leftarrow D_j \cap \pi_j(R_{ij} \bowtie D_i)$)

- 5. endfor
- 6. until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)

- Complexity (Mackworth and Freuder, 1986):
- *e* = number of arcs, *n* variables, *k* values
- $(ek^2, each loop, nk number of loops)$, best-case = ek,
- Arc-consistency is:

AC-3

 $AC-3(\mathcal{R})$

```
input: a network of constraints \mathcal{R} = (X, D, C)
output: \mathcal{R}' which is the largest arc-consistent network equivalent to \mathcal{R}
    for every pair \{x_i, x_j\} that participates in a constraint R_{ij} \in \mathcal{R}
1.
          queue \leftarrow queue \cup \{(x_i, x_j), (x_j, x_i)\}
2.
3.
    endfor
    while queue \neq {}
4.
5.
          select and delete (x_i, x_j) from queue
6.
          Revise((x_i), x_i)
7.
          if Revise((x_i), x_j) causes a change in D_i
                 then queue \leftarrow queue \cup \{(x_k, x_i), i \neq k\}
8.
          endif
9.
```

10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)

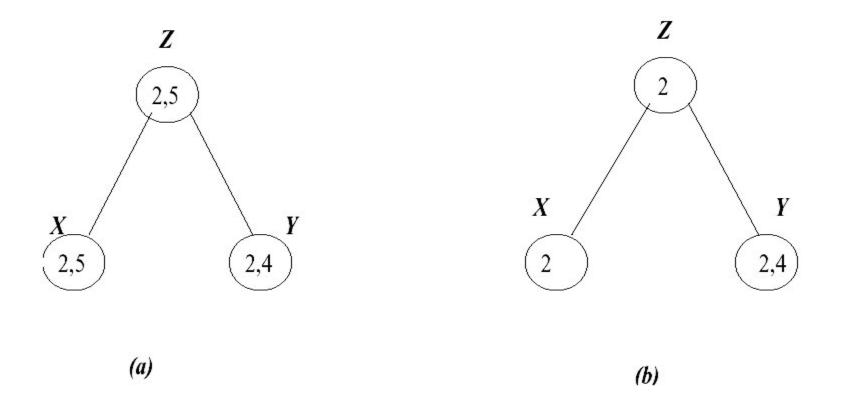
- Complexity: since each arc may be processed in O(2k)
- Best case O(ek),

Example: a 3 variables network with 2 constraints: z divides x and z divides y (a) before and (b) after AC-3 is applied.

Z (2,5) **X** (2,5) **Y** (2,4)

(a)

Example: A 3 variables network with 2 constraints: z divides x and z divides y (a) before and (b) after AC-3 is applied.



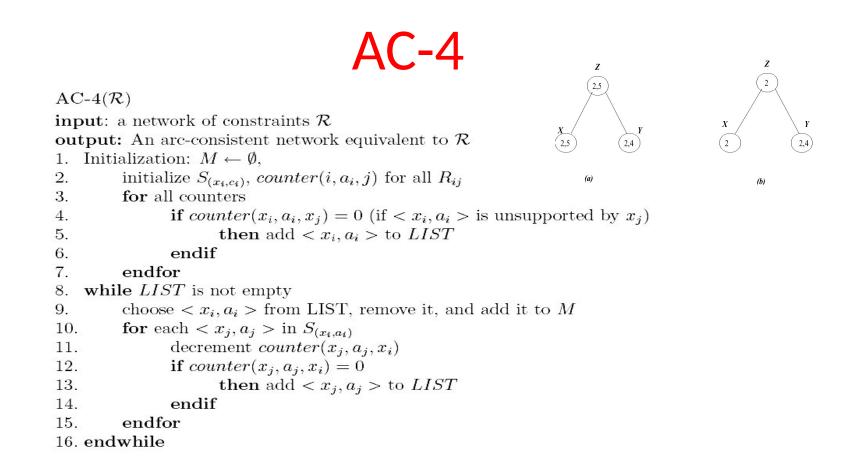


Figure 3.7: Arc-consistency-4 (AC-4)

- Complexity:
- (Counter is the number of supports to a_i in x_i from x_j . $S_{(xi,ai)}$ is the set of pairs that (x_i, a_i) supports)

Example applying AC-4

Example 3.2.9 Consider the problem in Figure 3.6. Initializing the $S_{(x,a)}$ arrays (indicating all the variable-value pairs that each $\langle x, a \rangle$ supports), we have : $S_{(z,2)} = \{ \langle x, 2 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle \}, S_{(z,5)} = \{ \langle x, 5 \rangle \}, S_{(x,2)} = \{ \langle z, 2 \rangle \},$ $S_{(x,5)} = \{\langle z, 5 \rangle\}, S_{(y,2)} = \{\langle z, 2 \rangle\}, S_{(y,4)} = \{\langle z, 2 \rangle\}.$ For counters we have: counter(x, 2, z) = 1, counter(x, 5, z) = 1, counter(z, 2, x) = 1, counter(z,5,x) = 1, counter(z,2,y) = 2, counter(z,5,y) = 0, counter(y,2,z) = 1, counter(y, 4, z) = 1. (Note that we do not need to add counters between variables that are not directly constrained, such as x and y.) Finally, $List = \{\langle z, 5 \rangle\}, M = \emptyset$. Once $\langle z, 5 \rangle$ is removed from *List* and placed in *M*, the counter of $\langle x, 5 \rangle$ is updated to counter(x, 5, z) = 0, and $\langle x, 5 \rangle$ is placed in *List*. Then, $\langle x, 5 \rangle$ is removed from List and placed in M. Since the only value it supports is $\langle z, 5 \rangle$ and since $\langle z, 5 \rangle$ is already in M, the *List* remains empty and the process stops.

Distributed arc-consistency (Constraint propagation)

- Implement AC-1 distributedly.
- $h_{j \rightarrow i}$ node x_j sends the message to node x_i

• Node x_i updates its domain:

 Messages can be sent asynchronously or scheduled in a topological order

Exercise: make the following network arc-consistent

- Draw the network's primal and dual constraint graph
- Network =
 - Domains {1,2,3,4}
 - Constraints: y < x, z < y, t < z, f<t, x<=t+1, Y<f+2

Arc-consistency Algorithms

- AC-1: brute-force, distributed
- AC-3, queue-based
- AC-4, context-based, optimal
- AC-5,6,7,.... Good in special cases
- Important: applied at every node of search
- (*n* number of variables, *e*=#constraints, *k*=domain size)
- Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

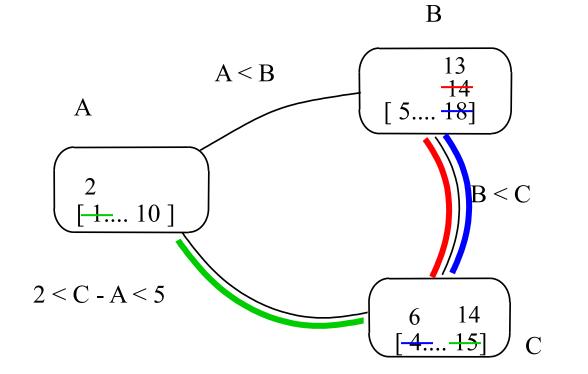
Constraint tightness analysis

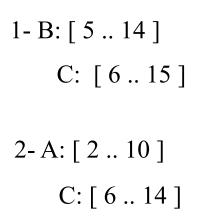
t = number of tuples bounding a constraint

- AC-1: brute-force,
- AC-3, queue-based
- AC-4, context-based, optimal
- AC-5,6,7,.... Good in special cases
- Important: applied at every node of search
- (n number of variables, e=#constraints, k=domain size)
- Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

Constraint checking

→Arc-consistency





3-B:[5..13]

Is arc-consistency enough?

- Example: a triangle graph-coloring with 2 values.
 - Is it arc-consistent?
 - Is it consistent?
- It is not path, or 3-consistent.

Outline

- Arc-consistency algorithms
- Path-consistency and i-consistency
- Arc-consistency, Generalized arc-consistency, relation arc-consistency
- Global and bound consistency
- Distributed (generalized) arc-consistency
- Consistency operators: join, resolution, Gausian elimination