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Tree-decomposition methods
Chapter 9



Outline

 Acyclic networks
e Join-tree clustering

« Conditioning vs tree-clustering
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Tree Solving is Easy
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Tree Solving is Easy

o 6.6

Constraint propagation
Solves trees in linear time



Tree-solving

CSP — consistency (projection-join)

Belief updating
(sum-prod)

MPE (max-prod) #CSP (sum-prod)

Trees are processed in linear time and memory

Fall 2022



Inference and Treewidth

FHK

treewidth=4-1=3
treewidth = (maximum cluster size) - 1
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The dual problem/the acyclic problem

The dual graph of a constraint problem associates a node with each constraint scope and an arc for each two
nodes sharing variables. This transforms a

non-binary constraint problem into a binary one, called the dual problem:

Variables: constraints,
Domains: legal tuples of the relation

Binary constraints between any two dual variables that share original variables, enforcing equality on the values
assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look like a
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Dual constraint problems

o Constraints can be: C= AVE
e F=AVE and so on...
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Dual constraint problems

o Constraints can be: C= AVE
e F=AVE and so on...
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Graph concepts reviews:
Hyper graphs and dual graphs

A hypergraphisH=(V,S),V={v_1,..,v_n}and a
set of subsets Hyperegdes: S={S 1, ...,S | }.

Dual graphs of a hypergaph: The nodes are the
hyperedges and a pair of nodes is connected if
they share vertices in V. The arcis labeled by
the shared vertices.

A primal graph of a hypergraph H = (V,S) has V
as its nodes, and any two nodes are connected
by an arc if they appear in the same hyperedge.

if all the constraints of a network R are binary,
then its hypergraph is identical to its primal
graph.

(c) (d)
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Acyclic networks

The running intersection property
(connectedness): An arc can be removed
from the dual graph if the variables labeling
the arcs are shared along an alternative path
between the two endpoints.

Join graph: An arc subgraph of the dual
graph that satisfies the connectedness
property.

Join-tree: a join-graph with no cycles

Hypertree: A hypergraph whose dual graph
has a join-tree.

Acyclic network: is one whose hypergraph is
a hypertree.

(c) (d)
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Example

Constraints are:
Ragc = Ragr = Repe =1{(0,0,1) (0,1,0)(1,0,0)}
RACE = {(1/110) (0/1/1) (1/0/1) }

d=(Rack, Repe) Ragr, Ragc)-
* When processing Rypc its parent relation is Rycg

RACE =T 0k (RACE ® RABC) = {(0,1,1)(1,0,1)} m <;|;

* processing R,pr We generate relation
Ryce =7 405 (Rycy @R ) = {(O,L1)}

* processing R-pr We generate:
* Rycp = \pi_{ACE} (Ryce X Repe) =1{(0,1,1)}.

* A solution is generated by picking the only allowed tuple for Ry, A=0,C=1,E=1,
extending it with a value for D that satisfies Rpg, which is only D=0, and then similarly
extending the assignment to F=0 and B=0, to satisfy Rygr and Ryp¢
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Solving acyclic networks

o Algorithm acyclic-solving applies a tree algorithm to the join-
tree. It applies (a little more than) directional relational arc-
consistency from leaves to root.

« Complexity: acyclic-solving is O(r | log |) steps, where r is the
number of constraints and | bounds the number of tuples in
each constraint relation

o (It assumes that join of two relations when one’s scope is a
subset of the other can be done in linear time)
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Recognizing acyclic
networks

* Dual-based recognition:

* perform maximal spanning tree over the dual grapn ana cneck
connectedness of the resulting tree.

» Dual-acyclicity complexity is O(e?), e is the number of
constraints.
* Primal-based recognition:

* Theorem (Maier 83): A hypergraph has a join-tree iff its primal
graph is chordal and conformal.

* A chordal primal graph is conformal relative to a constraint
hypergraph iff there is a one-to-one mapping between maximal
cliques and scopes of constraints.
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Primal-based recognition

« Check cordality using max-
cardinality ordering.

o Test conformality

e Create a join-tree: connect
every clique to an earlier
cligue sharing maximal
number of variables
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Outline

 Acyclic networks
e Join-tree clustering

« Conditioning vs tree-clustering
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Tree-based clustering

* Convert a constraint problem to an acyclic-one: group subsets of
constraints to clusters until we get an acyclic problem.

* Tree-decomposition: Hypertree embedding of a hypergraph H = (X,H) is
a hypertree S=(X, S) s.t., foreveryh € H thereis hy inSand his
includedin h; .
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JOIN-TREE CLUSTERING (JTC)

Input: A constraint problem R = (X, D,C) and its primal graph G = (X, F).
Output: An equivalent acyclic constraint problem and its join-tree: 7 = (X, D, C/)
1. Select a variable ordering, d = (xy, ..., ;).
2. Triangulation (create the induced graph along d and call it G*):
for j =n to 1 by -1 do
E—EUJU{(i,k)| (i,5) € E,(k,j) € E}
3. Create a join-tree of the induced graph G*:
a. Identify all maximal cliques in the chordal graph (each variable and its parents is a clique).
Let (1, ..., C} be all such cliques, created going from last variable to first in the ordering.
b. Create a tree-structure 1" over the cliques:
Connect each C; to a C; (j < i) with whom it shares largest subset of variables.
4. Place each input constraint in one clique containing its scope, and let
P; be the constraint subproblem associated with C}.
5. Solve P; and let R’; be its set of solutions.
6. Return ¢’ = { Ry, ..., R;}, the new set of constraints and their join-tree, 7.

Figure 9.6: Join-tree clustering
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(a)

Example of tree-clustering

()
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Complexity of JTC

* complexity of JTC: join-tree clustering is

e O(r kW*@D+1) time and space, where k is the maximum
domain size and w*(d) is the induced width of the ordered
graph.

* The complexity of acyclic-solving is O(n w*(d) (log k)
kW*(d)+1)
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Unifying tree-decompositions

Let R=<X,D,C> be a CSP problem. A tree decomposition for R is
<T,x,>, such that

“-T=(V,E) is a tree
-y associates a set of variables y(v)CX with each node v
-p associates a set of functions y(v)CC with each node v

such that

-1. VREC, there is exactly one v such that R&y(v) and scope(R,)Cyx(v).
2. VxEX, the set {veV|xCy(v)} induces a connected subtree.
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HyperTree Decomposition

Let R=<X,D,C> be CSP problem. A tree decomposition is <T,y,y>,
such that

“T=(V,E) is a tree
-~y associates a set of variables y(v)CX with each node
-«p associates a set of functions y(v)CC with each node

such that
-1. VREC, there is exactly one v such that R&y(v) and scope(R.)Cy(v).

=1a. wy, v(V) C scope(y(v)).
2. YxEX, the set {veV|xCy(v)} induces a connected subtree.

w (tree-width) = max,., | x(v)|
hw (hypertree width) = maxvcV | y(v)|
sep (max separator size) = max,,, |sep(u,v)|
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Example of two join-trees again

Tree
decomposition

hyperTree-
decomposition
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Cluster Tree Elimination

e Cluster Tree Elimination (CTE) works by passing messages
along a tree-decomposition

e Basic idea:
« Each node sends one message to each of its neighbors

« Node u sends a message to its neighbor v only when u received
messages from all its other neighbors
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Constraint propagation

cluster(u) = (u) J {m(x,,u),m(x,,u),...m(x, ,u),m(v,u)}

Compute the message :

m( uy) o n seplu,v) (®R,G‘lmw'4 u) Rn’ )
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Join-Tree Decomposition

(Dechter and Pearl 1989)

1 ABC « Each function in a cluster
R(a), R(b,a), R(c,a,b)
BC « Satisfy running
intersection property
BCDF

2 R(d,b), R(f,c,d) o Tree-width: number of

variables in a cluster-1

E
BF
e Equals induced-width
3 BEF
R(e,b.f)
G EF
EFG
4

R(g,e.f)
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Cluster Tree Elimination

1 ABC . o
R(a), R(b,a), R(c,a,b) pl’?/JeCt Jolm
BC l hy . (b,c)=|, R(a)®R(b,a)® R(c,a,b)

o) BCDF
R(d’b)) R(I;c)d))h(]’z)(b,C)

sep(2,3)={B,F}

BF
elim(2,3)={C,D} M
3 BEF
R(e,b,f), h; 3 (b.f)
EF
EFG
4

R(g,e.f)
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CTE: Cluster Tree Elimination

1 ABC
hll.“.)(.b’c) -Uu R(a)®R(bya)®R(C7a9b)
BC
hl.‘.ll(bvc) -Ud.I R(dvb)®R(f’cad)®h|.l,.‘)(b’f)
2 BCDF
h|2.3l(b9f) -Ur.d R(dab)®R(.fyc’d)®h(l,.‘)(b$c)
BF
| han®.) =b, Rieb, ) ®hus (e f)

3 BEF

|
EF hll.‘l)(e’.f) -le R(e’by.f)®hl.‘..l](b9f)

Time: O (exp(w*+1))
Space: O ( exp(sep)) |
Time: O(exp(hw)) (Gottlob et. Al., 2000) 4 EFG has(e, f) =4, R(g.e, f)
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Adaptive-consistency as tree-
decomposition

« Adaptive consistency is a message-passing along a bucket-tree

« Bucket trees: each bucket is a node and it is connected to a
bucket to which its message is sent.
« The variables are the clicue of the triangulated graph
« The functions are those placed in the initial partition
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Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

Bucket(E): E=D, ExC, E=B

Bucket(D): D= A 1l Ryes
Bucket(C): C=B /I Ry
Bucket(B): B= A I Ry
Bucket(A): R,

Bucket(D): D= E /I Ry
Bucket(C): C=B, C=E
Bucket(B): B=E 1l R,
Bucket(E): R,
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From bucket-elimination to bucket-
tree propagation

Bucket G: R(G,F)

DR

Bucket F: R(F.B.C) = p!.(F)

Bucket D: R(D. A B/\

v Bucket C: R(C.A4) /’!(‘( B.C)

Bucket B: R(B./) p ( 1.B)
7
Bucket A: R(A) p,,( 1)




The bottom up messages

Bucket G: R(G.F ; P2 (F)

Bucket F: R(F, B )R pl(F )/ pL(B.C)

Bucket D: R(D,A,% / P (A B)
(- Yy .

Bucket C: \R((',A)\ P (B.C L %p;) (A.B)

l\ >
Bucket B: R(B.A) p,’;(mpfm.@ ph(A)

Bucket A: R(4)  pj(A)

(R(D.A.B))

N pl(A,B)
(AR I S , \
PlAB)Y B RIB.A)

e’
P (A)

rdll ZUZs



Adaptive-tree-consistency (ATC)
as tree-decomposition

» Adaptive consistency is a message-passing along a bucket-
tree

* Bucket trees: each bucket is a node and it is connected to a
bucket to which its message is sent.

* Theorem: A bucket-tree is a tree-decomposition therefore,
CTE adds a bottom-up message passing to bucket-
elimination.

* The complexity of ATC is O(r deg k"**1) time and O(n k"*)
space.
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Outline

« Conditioning vs tree-clustering
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Conditioning

* Inference may require too much memory
Graph

Coloring
problem

» Condition on some of the variables
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Conditioning

* Inference may require too much memory
Graph

Coloring
problem

» Condition on some of the variables
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Cycle cutset

Cycle cutset = {A,B,C} I B
9 O ©
CHIC ol C
© (9
(P




Transforming into a tree

By Inference

e Time and spacde exponential in tree-width

e By Conditioning-search

« Time exponential in the cycle-cutset
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Treewidth equals cycle cutset

treewidth = cycle cutset = 4



Treewidth smaller than cycle
cutset

treewidth = 2

cycle cutset = 5
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Outline

 Acyclic networks
e Join-tree clustering

« Conditioning vs tree-clustering
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Cluster Tree Elimination - properties

« Correctness and completeness: Algorithm CTE is sound and complete for
generating minimal subproblems over chi(v) for every v: i.e. the solution
of each subproblem is minimal.

« Time complexity: O (deg x (r+N) x kw*+1 )
» Space complexity: O (N x d sep)

where deg =the maximum degree of a node
r = number of of CPTs
N = number of nodes in the tree decomposition
k= the maximum domain size of a variable
w* = the induced width
sep = the separator size

e JTCis O (r x kw*1) time and space
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My = dsepuw) [&) {m(vj,u)} ® y(u)]

m(v2,u) m(Vi,U)
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