CompSci 275, CONSTRAINT Networks

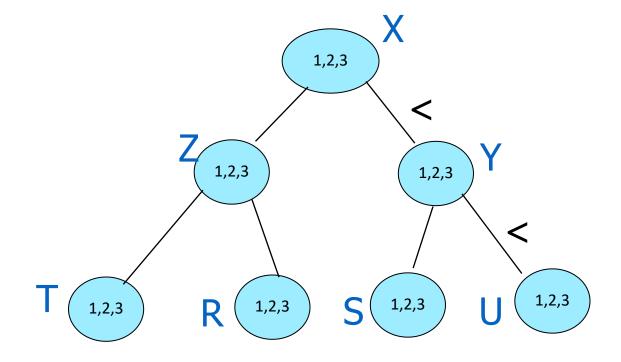
Rina Dechter, Fall 2022

Tree-decomposition methods Chapter 9

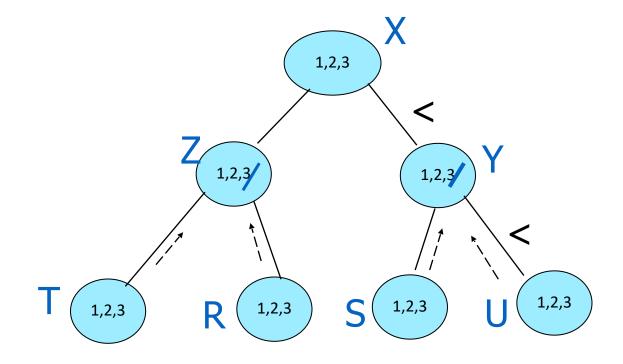
Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

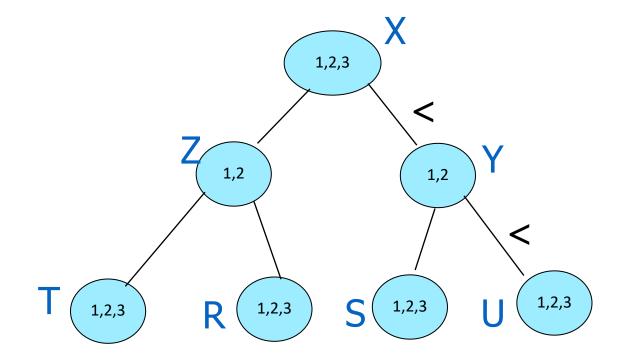
Tree Solving is Easy



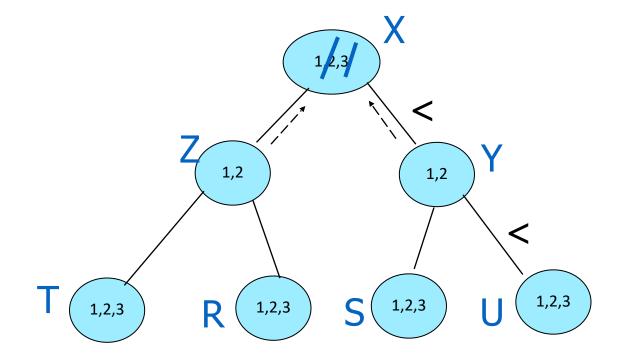
Tree Solving is Easy



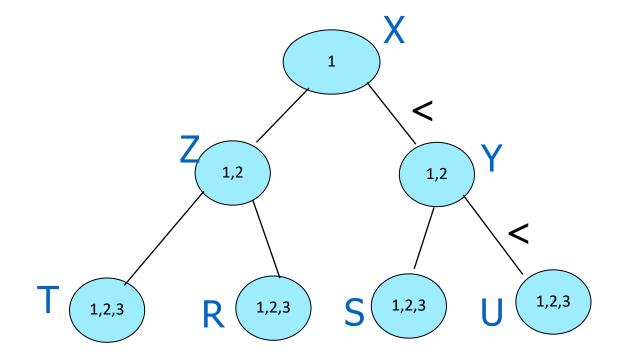
Tree Solving is Easy



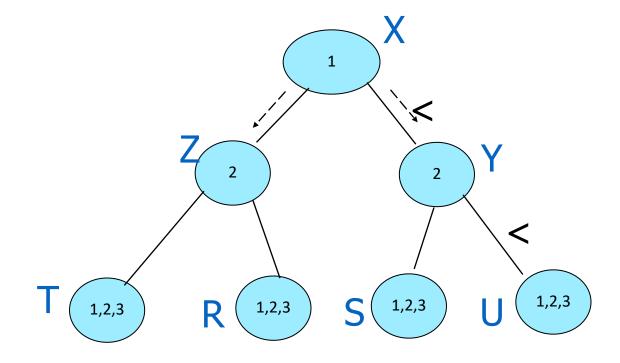
Tree Solving is Easy



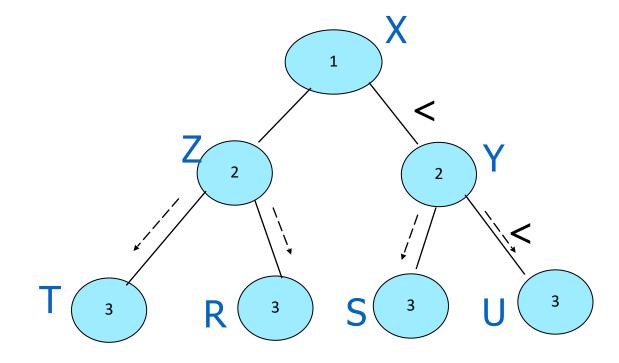
Tree Solving is Easy



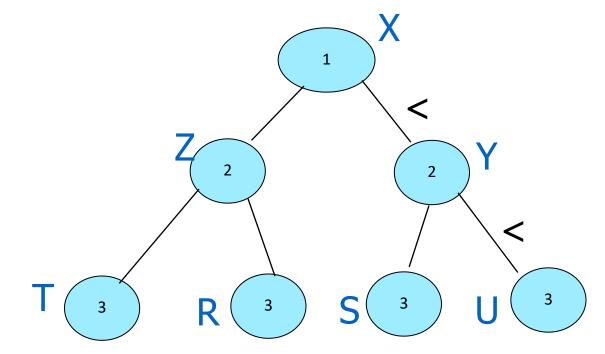
Tree Solving is Easy



Tree Solving is Easy



Tree Solving is Easy



Constraint propagation Solves trees in linear time

Tree-solving

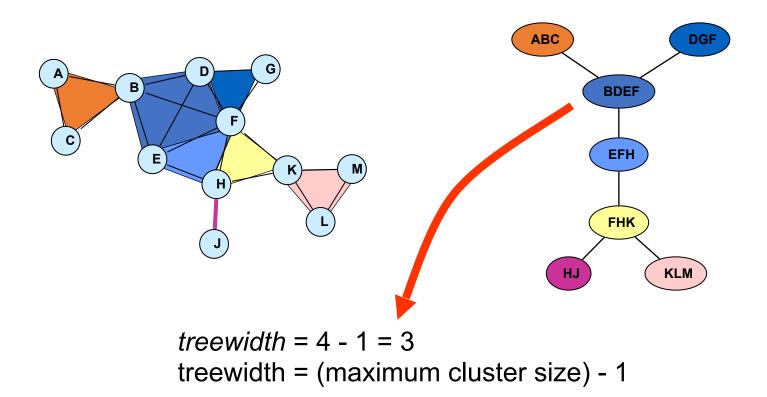
CSP – consistency (projection-join) **Belief updating** (sum-prod) **P(X)** $m_{XZ}(X)$ $m_{XY}(X)$ $m_{ZX}(X)$ $m_{YX}(X)$ P(Y|X) P(Z|X) $m_{YT}(Y)$ $m_{YR}(Y) \quad m_{ZL}(Z)$ $m_{ZM}(Z)$ $m_{RY}(Y) \quad m_{LZ}(Z)$ $m_{TY}(Y)$ $m_{MZ}(Z)$ P(R)Y) P(M)Z) P(T|Y) P(L|Z)

MPE (max-prod)

#CSP (sum-prod)

Trees are processed in linear time and memory

Inference and Treewidth



The dual problem/the acyclic problem

The dual graph of a constraint problem associates a node with each constraint scope and an arc for each two nodes sharing variables. This transforms a non-binary constraint problem into a binary one, called the *dual problem*:

Variables: constraints,

Domains: legal tuples of the relation

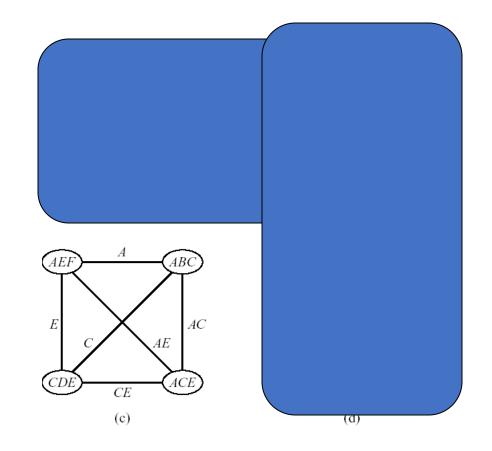
Binary constraints between any two dual variables that share original variables, enforcing equality on the values assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look like a

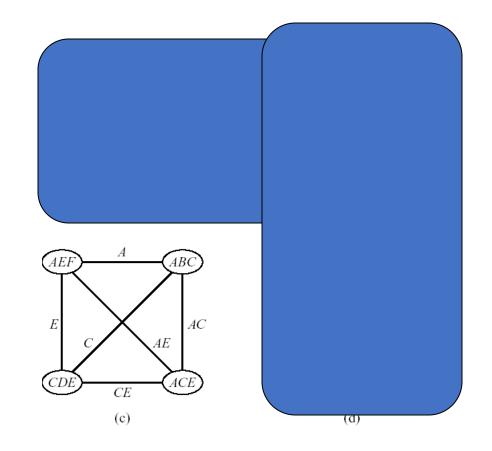
Dual constraint problems

- Constraints can be: C= AVE
- F=AVE and so on...



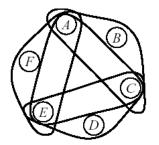
Dual constraint problems

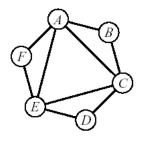
- Constraints can be: C= AVE
- F=AVE and so on...



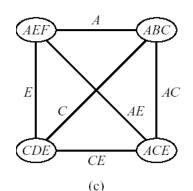
Graph concepts reviews: Hyper graphs and dual graphs

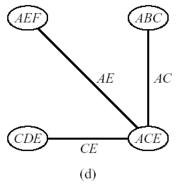
- A hypergraph is H = (V,S) , V= {v_1,..,v_n} and a set of subsets Hyperegdes: S={S_1, ..., S_I}.
- **Dual graphs** of a hypergaph: The nodes are the hyperedges and a pair of nodes is connected if they share vertices in V. The arc is labeled by the shared vertices.
- A primal graph of a hypergraph H = (V,S) has V as its nodes, and any two nodes are connected by an arc if they appear in the same hyperedge.
- if all the constraints of a network R are binary, then its hypergraph is identical to its primal graph.





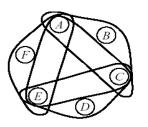
(b)

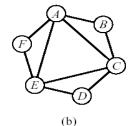


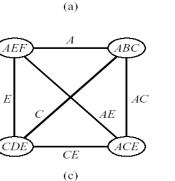


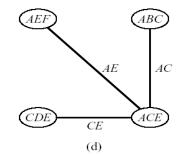
Acyclic networks

- The running intersection property (connectedness): An arc can be removed from the dual graph if the variables labeling the arcs are shared along an alternative path between the two endpoints.
- Join graph: An arc subgraph of the dual graph that satisfies the connectedness property.
- Join-tree: a join-graph with no cycles
- Hypertree: A hypergraph whose dual graph has a join-tree.
- Acyclic network: is one whose hypergraph is a hypertree.









Example

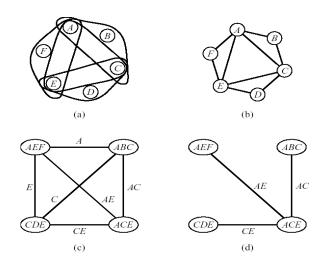
- Constraints are:
- $R_{ABC} = R_{AEF} = R_{CDE} = \{(0,0,1), (0,1,0), (1,0,0)\}$
- $R_{ACE} = \{ (1,1,0) (0,1,1) (1,0,1) \}.$
- d= (R_{ACE} , R_{CDE} , R_{AEF} , R_{ABC}).
 - When processing R_{ABC} its parent relation is R_{ACE}

$$R_{ACE} = \pi_{ACE} (R_{ACE} \otimes R_{ABC}) = \{(0,1,1)(1,0,1)\}$$

• processing R_{AEF} we generate relation

 $R_{ACE} = \pi_{ACE} (R_{ACE} \otimes R_{AEF}) = \{(0,1,1)\}$

- processing R_{CDE} we generate:
- $R_{ACE} = \{ACE\} (R_{ACE} \times R_{CDE}) = \{(0,1,1)\}.$
- A solution is generated by picking the only allowed tuple for R_{ACE} , A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE} , which is only D=0, and then similarly extending the assignment to F=0 and B=0, to satisfy R_{AEF} and R_{ABC}

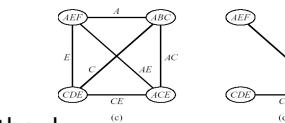


Solving acyclic networks

- Algorithm <u>acyclic-solving</u> applies a tree algorithm to the jointree. It applies (a little more than) directional relational arcconsistency from leaves to root.
- **Complexity**: acyclic-solving is O(r | log |) steps, where r is the number of constraints and | bounds the number of tuples in each constraint relation
- (It assumes that join of two relations when one's scope is a subset of the other can be done in linear time)

Recognizing acyclic networks

• Dual-based recognition:



AE

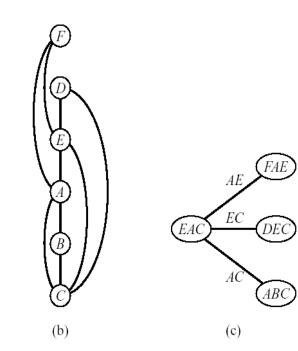
AC

- perform maximal spanning tree over the dual graph and cneck connectedness of the resulting tree.
- Dual-acyclicity complexity is O(e³), e is the number of constraints.

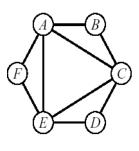
• Primal-based recognition:

- **Theorem** (Maier 83): A hypergraph has a join-tree iff its primal graph is chordal and conformal.
- A chordal primal graph is conformal relative to a constraint hypergraph iff there is a one-to-one mapping between maximal cliques and scopes of constraints.

Primal-based recognition



- Check cordality using maxcardinality ordering.
- Test conformality
- Create a join-tree: connect every clique to an earlier clique sharing maximal number of variables



Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

Tree-based clustering

- Convert a constraint problem to an acyclic-one: group subsets of constraints to clusters until we get an acyclic problem.
- **Tree-decomposition**: Hypertree embedding of a hypergraph H = (X,H) is a hypertree S = (X, S) s.t., for every $h \in H$ there is h_1 in S and h is included in h_1 .

JOIN-TREE CLUSTERING (JTC)

Input: A constraint problem $\mathcal{R} = (X, D, C)$ and its primal graph G = (X, E).

Output: An equivalent acyclic constraint problem and its join-tree: $\mathcal{T} = (X, D, C')$

- 1. Select a variable ordering, $d = (x_1, ..., x_n)$.
- 2. Triangulation (create the induced graph along d and call it G^*):

for j = n to 1 by -1 do

 $E \leftarrow E \cup \{(i,k) | \ (i,j) \in E, (k,j) \in E\}$

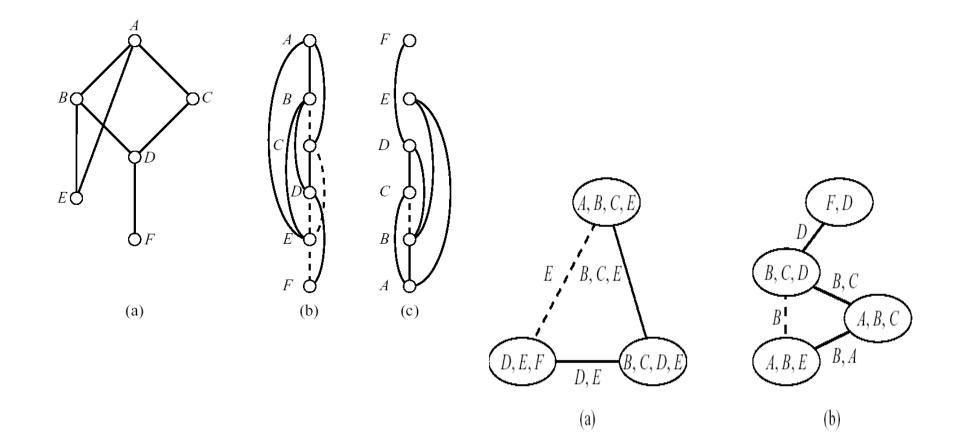
- 3. Create a join-tree of the induced graph G^* :
 - a. Identify all maximal cliques in the chordal graph (each variable and its parents is a clique). Let $C_1, ..., C_t$ be all such cliques, created going from last variable to first in the ordering.
 - b. Create a tree-structure T over the cliques: Connect each C_i to a C_j (j < i) with whom it shares largest subset of variables.
- 4. Place each input constraint in one clique containing its scope, and let

 P_i be the constraint subproblem associated with C_i .

- 5. Solve P_i and let R'_i be its set of solutions.
- 6. Return $C' = \{R'_1, ..., R'_t\}$, the new set of constraints and their join-tree, T.

Figure 9.6: Join-tree clustering

Example of tree-clustering



Complexity of JTC

- **complexity of** JTC: *join-tree clustering is*
- O(r k^{w*(d)+1}) time and space, where k is the maximum domain size and w*(d) is the induced width of the ordered graph.
- The complexity of acyclic-solving is $O(n w^{*}(d) (\log k) k^{w^{*}(d)+1})$

Unifying tree-decompositions

Let R=<X,D,C> be a CSP problem. A tree decomposition for R is $<T,\chi,\psi>$, such that

•T=(V,E) is a tree • χ associates a set of variables $\chi(v)\subseteq X$ with each node v • ψ associates a set of functions $\psi(v)\subseteq C$ with each node v

such that

■1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(v)$ and scope(R_i) $\subseteq \chi(v)$. ■2. $\forall x \in X$, the set { $v \in V | x \subseteq \chi(v)$ } induces a connected subtree.

HyperTree Decomposition

Let R=<X,D,C> be CSP problem. A tree decomposition is <T, χ , ψ >, such that

such that

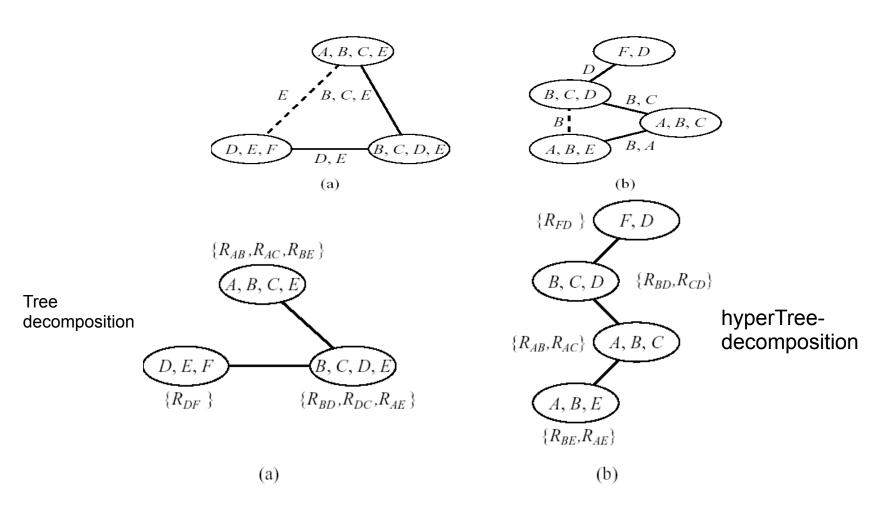
■1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(v)$ and scope(R_i) $\subseteq \chi(v)$.

■**1a** ∀v, χ(v) ⊆ scope(ψ(v)).

-2. $\forall x \in X$, the set $\{v \in V | x \subseteq \chi(v)\}$ induces a connected subtree.

w (tree-width) = $\max_{v \in V} |\chi(v)|$ hw (hypertree width) = $\max v \in V |\psi(v)|$ sep (max separator size) = $\max_{(u,v)} |sep(u,v)|$

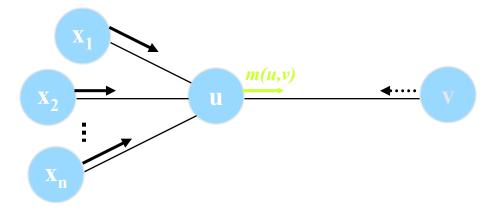
Example of two join-trees again



Cluster Tree Elimination

- Cluster Tree Elimination (CTE) works by passing messages along a tree-decomposition
- Basic idea:
 - Each node sends one message to each of its neighbors
 - Node u sends a message to its neighbor v only when u received messages from all its other neighbors

Constraint propagation

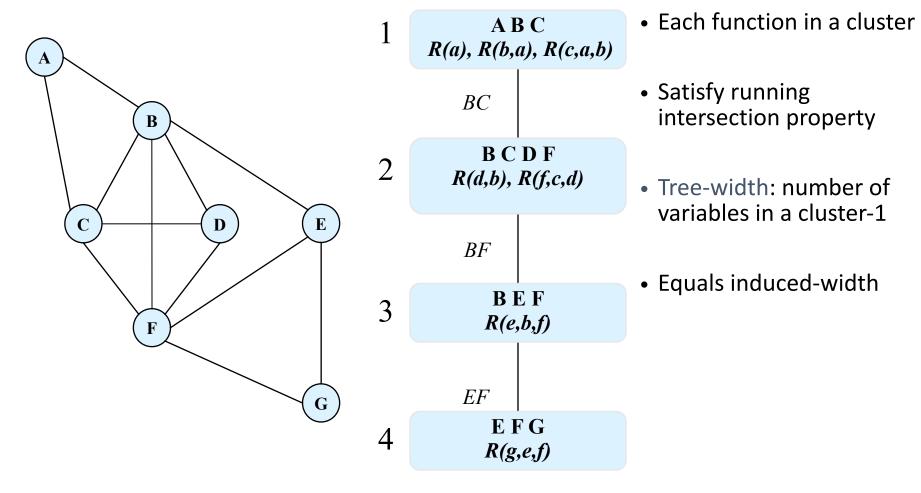


 $cluster(u) = \psi(u) \cup \{m(x_1, u), m(x_2, u), ..., m(x_n, u), m(v, u)\}$

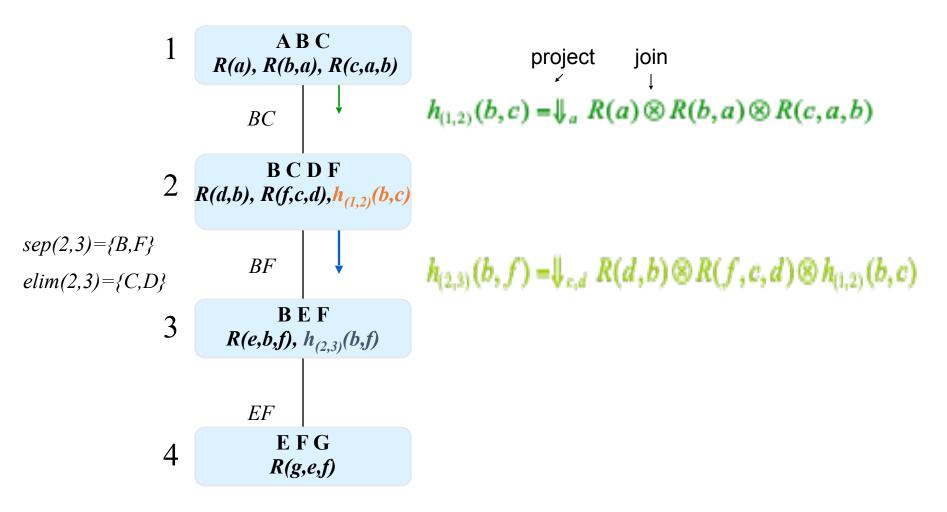
Compute the message : $m_{(u,v)} = \pi_{sep(u,v)} (\bigotimes_{R_i \in cluster(u)} R_i)$

Join-Tree Decomposition

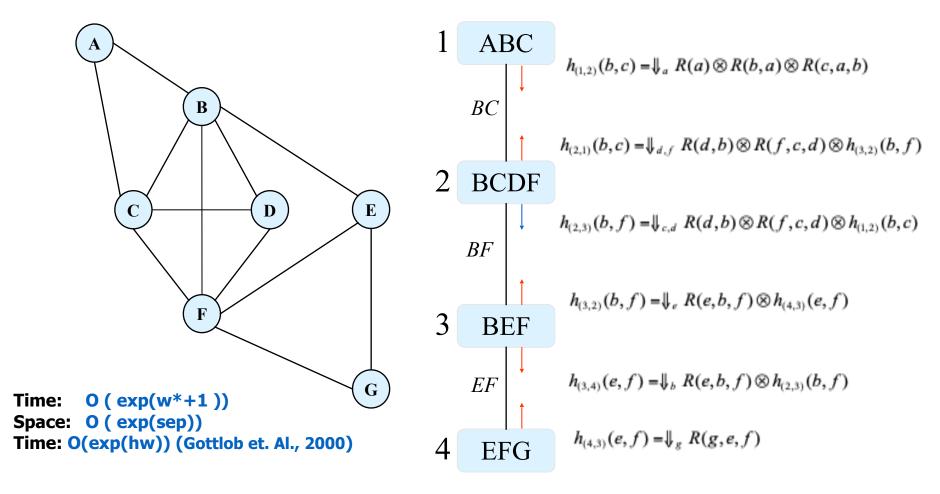
(Dechter and Pearl 1989)



Cluster Tree Elimination



CTE: Cluster Tree Elimination

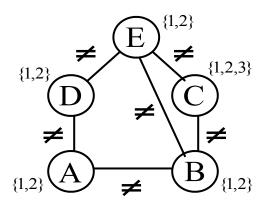


Adaptive-consistency as treedecomposition

- Adaptive consistency is a message-passing along a bucket-tree
- Bucket trees: each bucket is a node and it is connected to a bucket to which its message is sent.
 - The variables are the clicue of the triangulated graph
 - The functions are those placed in the initial partition

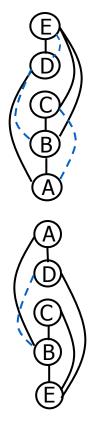
Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)



 $Bucket(E): E \neq D, E \neq C, E \neq B$ $Bucket(D): D \neq A \quad || R_{DCB}$ $Bucket(C): C \neq B \quad || R_{ACB}$ $Bucket(B): B \neq A \quad || R_{AB}$ $Bucket(A): R_{A}$

 $Bucket(A): A \neq D, A \neq B$ $Bucket(D): D \neq E \parallel R_{DB}$ $Bucket(C): C \neq B, C \neq E$ $Bucket(B): B \neq E \parallel R^{D}_{BE}, R^{C}_{BE}$ $Bucket(E): \parallel R_{E}$

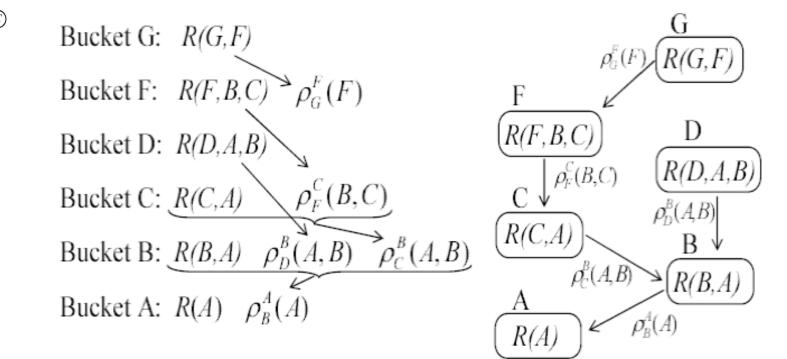


Complexity : O(n exp(w^{*}(d))), w^{*}(d) - induced widthalong ordering d

From bucket-elimination to buckettree propagation

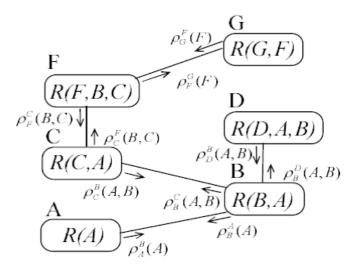
(G)

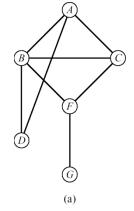
(a)



The bottom up messages

Bucket G: R(G,F)Bucket F: R(F,B,C) $\rho_{G}^{F}(F)$ Bucket D: R(D,A,B)Bucket C: R(C,A) $\rho_{F}^{C}(B,C)$ Bucket B: R(B,A) $\rho_{D}^{B}(A,B)$ $\rho_{C}^{B}(A,B)$ Bucket A: R(A) $\rho_{B}^{A}(A)$





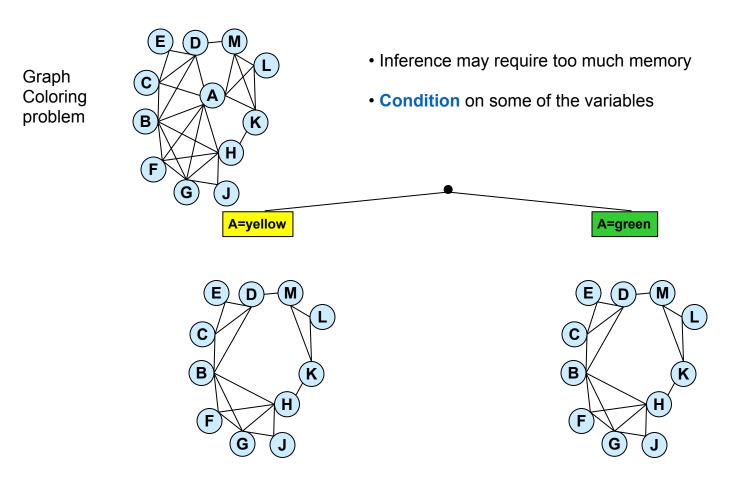
Adaptive-tree-consistency (ATC) as tree-decomposition

- Adaptive consistency is a message-passing along a buckettree
- Bucket trees: each bucket is a node and it is connected to a bucket to which its message is sent.
- Theorem: A bucket-tree is a tree-decomposition therefore, CTE adds a bottom-up message passing to bucketelimination.
- The complexity of ATC is O(r deg $k^{w^{*+1}}$) time and O(n $k^{w^{*}}$) space.

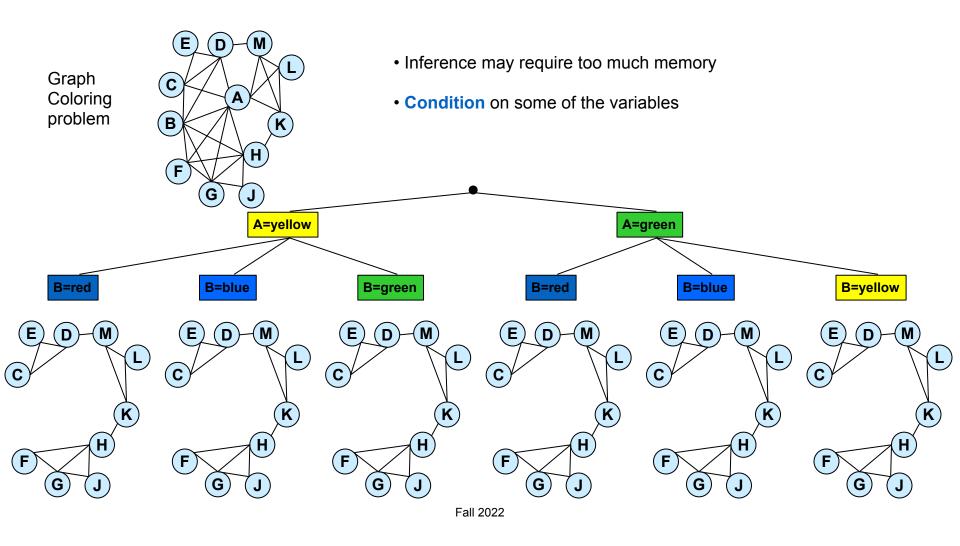
Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

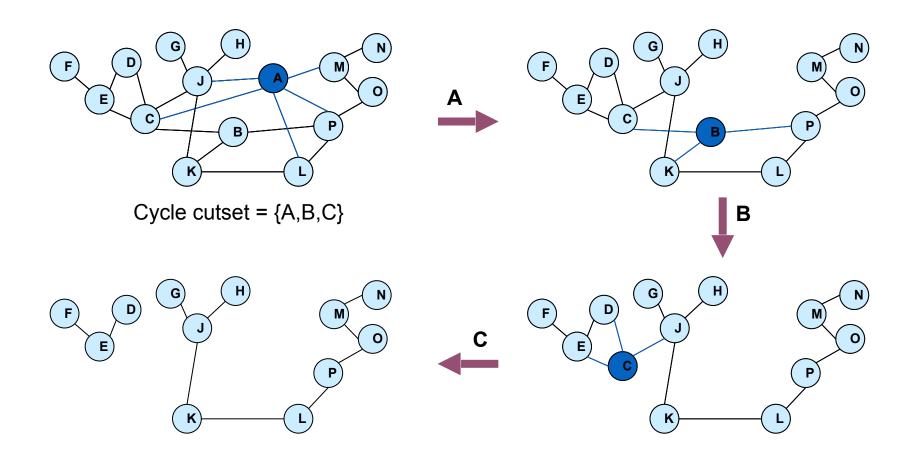
Conditioning



Conditioning



Cycle cutset

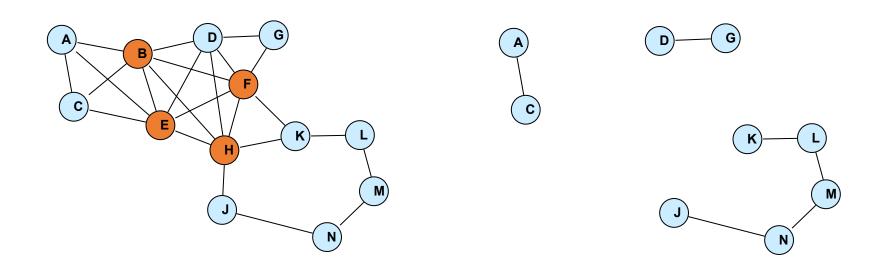


Transforming into a tree

• By Inference

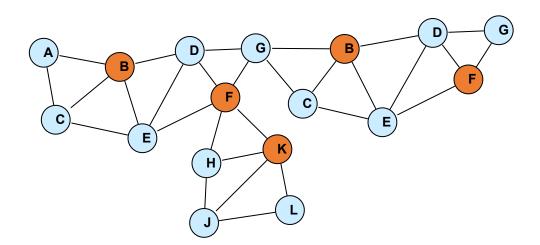
- Time and spacde exponential in tree-width
- By Conditioning-search
 - Time exponential in the cycle-cutset

Treewidth equals cycle cutset



treewidth = cycle cutset = 4

Treewidth smaller than cycle cutset



treewidth = 2

cycle cutset = 5

Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

Cluster Tree Elimination - properties

- Correctness and completeness: Algorithm CTE is sound and complete for generating minimal subproblems over chi(v) for every v: i.e. the solution of each subproblem is minimal.
- Time complexity: $O(deg \times (r+N) \times k^{w^{*+1}})$
- Space complexity: O (N × d sep)

 $O(N \times d^{sep})$ where deg = the maximum degree of a node r = number of of CPTs N = number of nodes in the tree decomposition k= the maximum domain size of a variable w^* = the induced width sep = the separator size

• JTC is O ($r \times k^{w^{*+1}}$) time and space

Cluster-Tree Elimination (CTE)

