CompSci 275, CONSTRAINT Networks

Rina Dechter, Fall 2022

Tree-decomposition methods Chapter 9

Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

Tree Solving is Easy

Tree Solving is Easy

Constraint propagation Solves trees in linear time

Tree-solving

MPE (max-prod)

#CSP (sum-prod)

Trees are processed in linear time and memory

Inference and Treewidth

The dual problem/the acyclic problem

The dual graph of a constraint problem associates a node with each constraint scope and an arc for each two nodes sharing variables. This transforms a non-binary constraint problem into a binary one, called the *dual problem:*

Variables: constraints,

Domains: legal tuples of the relation

Binary constraints between any two dual variables that share original variables, enforcing equality on the values assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look like a

Dual constraint problems

- Constraints can be: C= AVE
- F=AVE and so on…

Dual constraint problems

- Constraints can be: C= AVE
- F=AVE and so on…

Graph concepts reviews: Hyper graphs and dual graphs

- **A hypergraph** is $H = (V, S)$, $V = \{v_1, \ldots, v_n\}$ and a set of subsets **Hyperegdes**: S={S_1, ..., S_l }.
- **Dual graphs** of a hypergaph: The nodes are the hyperedges and a pair of nodes is connected if they share vertices in V. The arc is labeled by the shared vertices.
- **A primal graph** of a hypergraph H = (V,S) has V as its nodes, and any two nodes are connected by an arc if they appear in the same hyperedge.
- if all the constraints of a network R are binary, then its hypergraph is identical to its primal graph.

 (b)

Acyclic networks

- **The running intersection property (connectedness):** An arc can be removed from the dual graph if the variables labeling the arcs are shared along an alternative path between the two endpoints.
- **Join graph**: An arc subgraph of the dual graph that satisfies the connectedness property.
- **Join-tree:** a join-graph with no cycles
- **Hypertree:** A hypergraph whose dual graph has a join-tree.
- **Acyclic network:** is one whose hypergraph is a hypertree.

 (a)

Example

- Constraints are:
- $R_{ABC} = R_{AFF} = R_{CDF} = \{(0,0,1), (0,1,0), (1,0,0)\}\$
- $R_{ACE} = \{(1,1,0), (0,1,1), (1,0,1)\}.$
- d= $(R_{ACE}$, R_{CDE} , R_{AEF} , R_{ABC}).
	- When processing R_{ABC} its parent relation is R_{ACE}

$$
R_{ACE} = \pi_{ACE}(R_{ACE} \otimes R_{ABC}) = \{(0,1,1)(1,0,1)\}
$$

• processing R_{AEF} we generate relation $R_{ACE} = \pi_{ACE} (R_{ACE} \otimes R_{AEF}) = \{ (0,1,1) \}$

• processing R_{CDE} we generate:

- $R_{ACF} = \pi {\text{ACE}} (R_{ACF} \times R_{CDF}) = {(0,1,1)}.$
- A solution is generated by picking the only allowed tuple for R_{ACE} , A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE} , which is only D=0, and then similarly extending the assignment to F=0 and B=0, to satisfy R_{AEF} and R_{ABC}

Solving acyclic networks

- Algorithm *acyclic-solving* applies a tree algorithm to the jointree. It applies (a little more than) directional relational arcconsistency from leaves to root.
- **Complexity**: acyclic-solving is O(r l log l) steps, where r is the number of constraints and l bounds the number of tuples in each constraint relation
- (It assumes that join of two relations when one's scope is a subset of the other can be done in linear time)

Recognizing acyclic networks

• Dual-based recognition:

4E

 AC

- perform maximal spanning tree over the dual graph and check connectedness of the resulting tree.
- Dual-acyclicity complexity is $O(e^3)$, e is the number of constraints.

• Primal-based recognition:

- Theorem (Maier 83): A hypergraph has a join-tree iff its primal graph is chordal and conformal.
- A chordal primal graph is conformal relative to a constraint hypergraph iff there is a one-to-one mapping between maximal cliques and scopes of constraints.

Primal-based recognition

 (a)

- Check cordality using maxcardinality ordering.
- Test conformality
- Create a join-tree: connect every clique to an earlier clique sharing maximal number of variables

Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

Tree-based clustering

- Convert a constraint problem to an acyclic-one: group subsets of constraints to clusters until we get an acyclic problem.
- Tree-decomposition: Hypertree embedding of a hypergraph $H = (X,H)$ is a hypertree $S = (X, S)$ s.t., for every $h \in H$ there is h_1 in S and h is included in h_1 .

JOIN-TREE CLUSTERING (TTC)

Input: A constraint problem $\mathcal{R} = (X, D, C)$ and its primal graph $G = (X, E)$.

Output: An equivalent acyclic constraint problem and its join-tree: $\mathcal{T} = (X, D, C)$

- 1. Select a variable ordering, $d = (x_1, ..., x_n)$.
- 2. **Triangulation** (create the induced graph along d and call it G^*):

for $j = n$ to 1 by -1 do

 $E \leftarrow E \cup \{(i,k) | (i,j) \in E, (k,j) \in E\}$

- 3. Create a join-tree of the induced graph G^* :
	- Identify all maximal cliques in the chordal graph (each variable and its parents is a clique). $a.$ Let $C_1, ..., C_t$ be all such cliques, created going from last variable to first in the ordering.
	- Create a tree-structure T over the cliques: b. Connect each C_i to a C_j $(j < i)$ with whom it shares largest subset of variables.
- 4. Place each input constraint in one clique containing its scope, and let

 P_i be the constraint subproblem associated with C_i .

- 5. Solve P_i and let R'_i be its set of solutions.
- 6. Return $C' = \{R'_1, ..., R'_t\}$, the new set of constraints and their join-tree, T.

Figure 9.6: Join-tree clustering

Example of tree-clustering

Complexity of JTC

- complexity of JTC: join-tree clustering is
- O(r $k^{w*(d)+1}$) time and space, where k is the maximum domain size and $w^*(d)$ is the induced width of the ordered graph.
- The complexity of acyclic-solving is $O(n w*(d)$ (log k) $k^{W*(d)+1}$

Unifying tree-decompositions

Let R=<X,D,C> be a CSP problem. A tree decomposition for R is $\langle \tau, \chi, \psi \rangle$, such that

 $-T=(V,E)$ is a tree $-\chi$ associates a set of variables $\chi(v) \subseteq X$ with each node v ψ associates a set of functions $\psi(v) \subseteq C$ with each node v

such that

-1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(\nu)$ and scope $(R_i) \subseteq \chi(\nu)$.

■2. ∀x∈X, the set $\{v \in V | x \subseteq \chi(v)\}$ induces a connected subtree.

HyperTree Decomposition

Let $R = \langle X,D,C \rangle$ be CSP problem. A tree decomposition is $\langle T,\chi,\psi \rangle$, such that

 $-T=(V,E)$ is a tree $-\chi$ associates a set of variables $\chi(\nu) \subseteq X$ with each node ψ associates a set of functions $\psi(v) \subseteq C$ with each node

such that

-1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(\nu)$ and scope $(R_i) \subseteq \chi(\nu)$.

 \blacksquare 1a. ∀ν, χ (v) \subseteq scope(ψ (v)).

■2. ∀x∈X, the set $\{v \in V | x \subseteq \chi(v)\}$ induces a connected subtree.

w (tree-width) = $max_{v \in V} |\chi(v)|$ **hw (hypertree width) = maxv∈V |** ψ **(v)|** sep (max separator size) = max_(u,v) | sep(u,v) |

Example of two join-trees again

Cluster Tree Elimination

- Cluster Tree Elimination (CTE) works by passing messages along a tree-decomposition
- Basic idea:
	- Each node sends one message to each of its neighbors
	- Node *u* sends a message to its neighbor *v* only when *u* received messages from all its other neighbors

Constraint propagation

cluster(u) = ψ (u) \cup { $m(x_1, u), m(x_2, u), ..., m(x_n, u), m(v, u)$ }

Compute the message: $m_{(u,v)} = \pi_{sep(u,v)}(\otimes_{R_i \in cluster(u)} R_i)$

Join-Tree Decomposition

(Dechter and Pearl 1989)

Cluster Tree Elimination

CTE: Cluster Tree Elimination

Adaptive-consistency as treedecomposition

- Adaptive consistency is a message-passing along a bucket-tree
- **Bucket trees**: each bucket is a node and it is connected to a bucket to which its message is sent.
	- The variables are the clicue of the triangulated graph
	- The functions are those placed in the initial partition

Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

 $Bucket(C): C \neq B$ *|| R_{ACB}* **Bucket**(A): R_{A} $Bucket(B): B \neq A$ *|| R_{AB}* $Bucket(D): D \neq A$ || R_{DCB} $Bucket(E): E \neq D, E \neq C, E \neq B$

> $Bucket(E):$ *II* R_E $Bucket(B): B \neq E$ || R_{BE}^D , R_{BE}^C $Bucket(C): C \neq B, C \neq E$ $Bucket(D): D \neq E$ || R_{DB} $Bucket(A): A \neq D, A \neq B$

Complexity: $O(n \exp(w'(d)))$, $w'(d)$ - induced widthalong ordering d

From bucket-elimination to buckettree propagation

 $\left(G\right)$

 (a)

The bottom up messages

 $\rho_F^G(F)$ Bucket G: $R(G, F)$ Bucket F: $R(F,B,C)^{\rightharpoonup} \rho_G^F(F)$ $\rho_C^F(B,C)$ $\rho_B^D(A, B)$ Bucket D: $R(D, A, B)$ $\sum_{\substack{\mathcal{P}\\ \mathcal{P}_C^B(A, B)}} \int_{\mathcal{P}_A^B(A)} \rho_B^C(A, B)$ $\rho_F^C(B,C)$ Bucket C: $R(C, A)$ Bucket B: $R(B,A)$ $\rho_D^B(A,B)$ $\rho^A_B(A)$ Bucket A: $R(A)$

Adaptive-tree-consistency (ATC) as tree-decomposition

- Adaptive consistency is a message-passing along a buckettree
- **Bucket trees**: each bucket is a node and it is connected to a bucket to which its message is sent.
- Theorem: A bucket-tree is a tree-decomposition therefore, CTE adds a bottom-up message passing to bucketelimination.
- The complexity of ATC is O(r deg k^{W*+1}) time and O(n k^{W*}) space.

Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

Conditioning

Conditioning

Cycle cutset

Transforming into a tree

• **By Inference**

- Time and spacde exponential in tree-width
- **By Conditioning-search**
	- Time exponential in the cycle-cutset

Treewidth equals cycle cutset

treewidth = $cycle$ cutset = 4

Treewidth smaller than cycle cutset

treewidth $= 2$

cycle cutset $= 5$

Outline

- Acyclic networks
- Join-tree clustering
- Conditioning vs tree-clustering

Cluster Tree Elimination - properties

- Correctness and completeness: Algorithm CTE is sound and complete for generating minimal subproblems over chi(v) for every v: i.e. the solution of each subproblem is minimal.
- Time complexity: *O (deg* × *(r+N)* × *kw*+1)*
- Space complexity: *O (N* × *d sep)*

 where *deg* = the maximum degree of a node $r =$ number of of CPTs *N* = number of nodes in the tree decomposition *k*= the maximum domain size of a variable *w** = the induced width *sep* = the separator size

• JTC is *O (r* × *k w*+1) time and space*

Cluster-Tree Elimination (CTE)

