Set 9: Planning;
STRIPs Planning Systems



Outline: Planning

Classical Planning:
— Situation calculus
— PDDL: Planning domain definition language

STRIPS Planning
Planning graphs

Readings: Russel and Norvig chapter 10



The Situation Calculus

* A goal can be described by a sentence:

if we want to have a block on B (Ix)On(x, B)
* Planning: finding a set of actions to achieve a goal
sentence.

¢ Situal'iOn Ca ICU I us (McCarthy, Hayes, 1969, Green 1969)

— A Predicate Calculus formalization of states, actions, and
their effects.

— §, state in the figure can be described by:

On(B, A) A On(A,C) A On(C, Fy) A Clear(B) A clear(F,) On (B, A)

we reify the state and On (A, C)
include them as arguments On (C,F1l)

Clear (B)
Clear (F1l)

Q> ™




The Situation Calculus (continued)

The atoms denotes relations over states called fluents.

We can’%ﬁsoﬁlavé))/\() (4,C,50) A O, (C, F,,5) A clear(B, 5,)

(an y,S)[On(x,y,S) A _'(y = Fi) — —-Clear(y,s)]
(Vs)Clear(F;,s)

Knowledge about state and actions = predicate calculus theory.
Inferene can be used to answer:
— Is there a state satisfying a goal?

— How can the present state be transformed into that state by actions?
The answer is a plan



Representing Actions

Reify the actions: denote an action by a symbol
actions are functions

move(B,A,F1): move block A from block B to F1
move (x,y,z) - action schema

do: A function constant, do denotes a function that maps
actions and states into states

—  do(a,0)— 0,
AN

action
state



Representing Actions (continued)

* Express the effects of actions.

— Example: (on, move) (expresses the effect of move on
“On”)

FO(sttive effacbean(x, s) A Clear(z,s) A (x = z)
— On(x, z,do(move(x, y,z2),s))]

negative :

[On(x, y,s) A Clear(x,s) A Clear(z,s) A (X = z)
— = 0On(x, y,do(move(x, y, z),s))]

= Positive: describes how action makes a fluent true

= Negative : describes how action makes a fluent false
= Antecedent: pre-condition for actions

= Consequent: how the fluent is changed



Frame Axioms

* Not everything true can be inferred
On(C,F1) remains true but cannot be inferred

e Actions have local effect

— We need frame axioms for each action and each
fluent that does not change as a result of the action

— example: frame axioms for (move, on)

— If a block is on another block and move is not relevant,
it will stay the same.

e Positive:
[On(x,y,s) A (x = u)]— On(x, y,do(move(u,v,z),s))
* negative

(=On(x,y,s)A[(x =u) v (y = z)]) = -On(x, y,do(move(u,v,z),s)



STRIPS Planning systems
PDDL: Planning Domain Definition
Language



Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:
Talk to Parrot

Go To Pet Store Buy a Dog

s
Go To School Go To Class

- -
Go To Supermarket

Buy Tuna Fish
Start o y -

\Go To Sleep
o

Read A Book

Sit in Chair Sit Some More
- o

Efc. Etc. ... o \Read A Book
-

After-the-fact heuristic/goal test inadequate

»

Finish

Chapter 11
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That transform into a state description that entails the goal wff.

STRIPS: describing goals and state

Factored representation of states

On(B,A)
On(A,C)
On(C,F1)
Clear(B)
Clear(F1)

B

A

C

The formula describes a set of world states

Planning search for a formula satisfying a goal description
State descriptions: conjunctions of ground literals.
Also universal formulas: On(x,y) =2 (y=F1) or ~Clear(y)

Goal wff: dx.g(x) A f(»)

On (B, A)
On (A, C)
On(C,F1l)
Clear (B)
Clear (F1)

Given a goal wff, the search algorithm looks for a sequence of actions




STRIPS Description of Operators

* A STRIPS operator has 3 parts:
— A set, PC (preconditions) of ground literals
— A set D, of ground literals called the delete list
— A set A, of ground literals called add list

e Usually described by Schema: Move(x,y,z)
— PC: On(x,y) and Clear(x) and Clear(z)
— D: Clear(z), On(x,y)
— A: On(x,z), Clear(y), Clear(F1)

 Astate S1 is created applying operator O by
adding A and deleting D from S1.



STRIPS operators

Tidily arranged actions descriptions, restricted language

ACTION: Buy(x)
PRECONDITION: At(p), Sells(p, x)
EFreECT: Have(x)

[Note: this abstracts away many important details!]

Restricted language = efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

At(p) Sells(p,x)

Buy(x)

Have(x)

Chapter 11




Example: the move operator

move (B,A,F1)

B >
A A
C B C
Precondition:
On(B,A)
Clear (B)
Clear (F1l)
Delete list
On (B, F1)
On(B,A) | Add list— Clear (A)
Clear (F1l) Clear (F1)
On (A, C) Unchanged On (A, C)
Oon(C,F1) » 0On (C,Fl)
Clear (B) Clear (B)




PDDL

A language that yields a search problem

A state is a set of ground literals

Closed world assumption:fluent that are not mentioned are false.

Action schema:

Action(Fly(p,from,to),

Precond: At(p,from) & Plane(p) & Airport(from) & Airport(to)
Effect: not At(p,from) & At(p,to))

The schema consists of precondition and effect lists

PDDL is very close to STRIP language

A set of action schemas is a definition of a planning domain.

A specific problem is defined by an initial state ( a set of ground literals) and a goal:
conjunction of literals, some not grounded (At(p,SFO), Plane(p))



The block world

Q= |»>

C
A B

It {Onf A, Table) A On[ B, Toble) A On[C, Table)
A Block{A) A Block{B) A Block{C)
A Clenr{4) A Clear{B) A Clear{C))
Goal{OnfA, B) A On[B, C))
Aetionf Movelb, 2, 4),
PRECOND: Onfb,2) A Clear{b) A Clear{y) A Block{b) A
(b£a) A (bt 9) A fo# 9),
EFFECT: On{b, o) A Clear{z) A - On{b,x) A - Clear{y))
Actionf MoveTo Table(b, ),
PRECOND: Onfb, ) A Clear{b) A Block{d) A {b # =),
EFFECT: Onfb, Table) A Clear{z) A - Onfb, 2))

Figure 11.4 A planning problem in the bloclks world: building a three-blocl tower, One
solution is the sequence [Move{ B, Table, C), Move{ 4, Table, B)|.




A STRIP/PDDL description of an aircargo
transportation problem

Problem: flying cargo in planes from one location to another

It {A{Cy, SFOY A At{Cy, JFE) A AL{Py, SFO) A APy, JFE)
A Cargo{Cy) A Cargo{Cy) A Plane{Py) A Plane{F;)
A Avrport{JFE) A Airport{SFO))
Goal{ At{Cy, JFE) A At{Cy, SFO))
Acetionf Load{c, p, a),
PRECOND: Ai{e, a) A At{p, a) A Cargo{e) A Flane{p) A Airpori{a)
EFFECT: = At{c, a) A In{e, p))
Aetionf Unload{e, p, a),
PRECOND: In{e, p) A At{p, a) A Cargo{c) A Plane(p) A Airport{a)
EFFECT: At{e, a) A - Infe, p))
Actionf Fly{p, from, to),
PRECOND: Ai{p, from) A FPlane{p) A Airport{from) A Airpori{ic)
EFFECT: = At{p, from) A Ai{p, to))

Figure 11.2 4 STRIPS problem inwvolving transportation of air cargo between airports.

In(c,p)- cargo c is inside plane p
At(x,a) — object x is at airport a




STRIP for spare tire problem

Problem: Changing a flat tire

It { At{ Flat, Awle) A At{Spare, Trunk))
Goal{ At{ Spare, Axle))
Action{ Remove{ Spare, Trunk),

PRECOND: Ai{ Spare, Traunk)

EFFECT: - At{ Spare, Trunk) A At{Spare, Ground))
Actionf Removel{ Flat, Axle),

PRECOND: At{ Flat, dwle)

EFFECT: — At{ Flat, dwle) A At{ Flat, Ground))
Actionf Pu2Onf Spare, Aule),

PRECOND: At{Spare, Ground) A — At{Flat, dule)

EFFECT: - At{ Spare, Ground) A At{Spare, Azle))
Acetionf LeaveOverright,

PRECOND:

EFFECT: = At{ Spare, Ground) A — At{Spare, Aule) A — A Spare, Trunk)

A AL Flat, Ground) A - At{ Flat, Axle))

Figure 11.3  The simple spare tire problem.




Algorithms for Planning as State-space

* Forward (progression) state-space
 Backward (regression) state-space search
* Heuristic search

* Planning graphs



Planning forward and backwords

At Py, B)
Fiy(P,, 4, 8) At{F,, A)
Af( Py, A)
At Py, A)
Fly(Pz, A 8) Aty A)
At(P,, B) K

At(Py, A)
At(P,, B) Fiv(P,, A, 8) P
t
®) (P4, B)
At(P,, B)
At(P,, B) FIy(P, A, 8)
At(Py, A)

Figurell.5 Two approaches to searching for aplan. (a) Forward (progression) state-space
search, starting in the initial state and using the problem’s actions to search forward for the

ioal state, ‘il Baclcwrard ‘reie.s.sionl .state«siace search: a belief-state search ‘.see iaie 84|




Forward Search Methods:
can use A* with somehand g

move (A, C,F1l)

Oon (C,F1)
Clear (B)
Clear (A)
Oon (B, TA)
Oon (A, C)

Clear (F1l)

move (A, C, B)

move (B,A,F1l)

on (C,F1)
Clear (B)
On (A, C)
Oon (B, A)
Cleaxr (F1l)

But, we need good heuristics



Backward: Recursive STRIPS

Forward search with islands:

Achieve one subgoal at a time. Achieve a new
conjunct without ever violating already achieved
conjuncts or maybe temporarily violating
previous subgoals.

General Problem Solver (GPS) by Newell Shaw
and Simon (1959) uses Means-Ends analysis.

Each subgoal is achieved via a matched rule, then
its preconditions are subgoals and so on. This
leads to a planner called STRIPS(gamma) when
gamma is a goal formula.



STRIPS algorithm

Given a goal stack:
1. Consider the top goal

2. Find a sequence of actions satisfying the goal from
the current state and apply them.

3. The next goal is considered from the new state.
4. Temination: stack empty
5. Check goals again.



The Sussman annomaly

* RSTRIPS cannot achieve shortest plan

 Two possible orderings of subgoals:
— On(A,B) and On(B,C) or On(B,C) and On(A,B)

C
A

P

A

B
C




Backward search methods:

—>

Q= >

* Regressing a ground operator

Goal

move (B, F1,C)

move (A, F1l, B)

On(C,F1l)
On (B, C)

Clear (B)
Clear (A)
On(A,F1l)

Subgoal—the regression of
On(C,Fl) AOn(B,C) AOn(A,B)
through move (A, F1,B)

Continue until a subgoal is produced
that is satisfied by current world state



Regressing an ungrounded operator

Goal

move (B, z, C)

move (A, x,B)

On(C,F1)
On (B, C)
Clear (B)
Clear (A)
On (A, x)

Because we are moving 4
from somewhere else to B

ﬂ(X
ﬂ(X

/

Because 4 cannot Because On (B,C) and On (A, C)
be on itself cannot both be true



Example of Backward Searc

On(C,F1l)
Oon (B, C)
On (A, B)

Q move (B, z,C)

move (A,x,B)

OoOn(C,F1l)

on(c,Fl) on (B, C)

Clear (B) Clear (B)
Clear (A) move (B, vy, C) Clear ()
_|(y = B) Oon (A, x)

—(y = A) —(x = B)
—(y = Q) —(x = A)
Oon (A, x) —(x C)
on(B,v)

ﬂ(X = B)

—|(X = A)

Instantiate rules:
Fl/x, Fl/v

—({x = C)

On(C,F1l)
Clear (B)
Clear (A)
Oon (A,F1l)

on (B, Fl) move (A,C,F1l)

on{(C,Fl)
Clear (B)
Clear (A)
on(A,C)

Oon(B,Fl)

move (B,A,F1)

Oon(C,F1l)
Clear (B)
Oon(A,C)
Oon(B,A)

This goal is satisfied by
current state description



Heuristics for planning

Use relax problem idea to get lower bounds on
least number of actions to the goal.

— Remove all or some preconditions
Sub-goal independence: the cost of solving a set

of subgoals equals the sum cost of solving each
one independently, or max cost

— Can be pessimistic (interacting sub-plans)
— Can be optimistic (negative effects)

Simple: number of unsatisfied sub-goals.

Various ideas related to removing negative
effects or positive effects.



More on heuristic generation

lgnore pre-conditions
lgnore delete list: allow making monotone progress
toward the goal.

— Still NP-hard for optimal solution, but hill-climbing
algorithms using an approximate solution that is
polynomial. (example, 15 puzzle)

Abstraction: Combines many states into a single one:

Pattern databases

FF : Fast-forward planner (Hoffman 2005), a forward
state-space planner with delete-list based heuristic



Partial order planning

Least commitment planning

Nonlinear planning

Search in the space of partial plans

A state is a partial incomplete partially ordered plan
Operators transform plans to other plans by:

— Adding steps

— Reordering

— Grounding variables

SNLP: Systematic Nonlinear Planning (McAllester and
Rosenblitt 1991)

NONLIN (Tate 1977)



A partial order plan for putting shoes and socks

Partial-Order Plan:

N

Left Right
Sock Sock
LeftSockOn RightSockOn
Left Right
Shoe Shoe

\ /

LertShoeOn, RightShoeOn

Finish

Total-Order Plans:

Start Start Start Start Start Start
Y ' ' Y ' '
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Y i i Y Y y
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
¥ ¥ ' ' ' '
Right Left Right Left Left Right
Shoe Shoe Shoe Shoe Sock Sock
1 ! Y { { {
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
Y Y Y ' '
Finish Finish Finish Finish Finish Finish

Figurell.6 A partial-order plan for putting on shoes and socks, and the six corresponding
linearizations into total-order plans.




Planning Graphs

A planning graph consists of a sequence of levels
that correspond to time-steps in the plan

Level O is the initial state.

Each level contains a set of literals and a set of
actions

Literals are those that could be true at the time
step.

Actions are those that their preconditions could
be satisfied at the time step.

Works only for propositional planning.



Example:Have cake and eat it too

Init{ Hove{ Coke))
Goal{ Hove{ Cake) A FatenfCake))
Aetionf Fat{ Cake)

PRECOND: Have{Coke)

EFFECT: = Hove{ Cake) A Eatenf Cake))
Action| Boke{ Coke)

PRECOND: - Have{ Cake)

EFFECT: Have{ Coke)

Figure 11.11  The “have cake and eat calte too™ problem.




The Planning graphs for “have cake”

V4
« Persistence actions: Represent “inactions” by boxes: frame axiom
*  Mutual exclusions (mutex) are represented between literals and actions.
* S1represents multiple states
* Continue until two levels are identical. The graph levels off.
* The graph records the impossibility of certain choices using mutex links.
Complexity of graph generation: polynomial in number of literals.
So Ao S Ay Sy
Bake(Cake)
Have(Cake) {} Have(Cake) {} Have(Cake)
\' — Have(Cake) {] — Have(Cake)
Eat(Cake) Eat(Cake)
< Eaten(Cake) {1 Eaten(Cake)
— Eaten{Cake) {1 — Eaten(Cake) {1 — Eaten(Cake)

Figure 11.12  The planning graph for the “have cale and eat calte too™ problem up to level
&s. Rectangles indicate actions (small squares indicate persistence actions) and straight lines
indicate preconditions and effects. Mutex linls are showmn as curved gray lines.




Defining Mutex relations

e A mutex relation holds between two actions on the
same level iff any of the following holds:

Inconsistency effect: one action negates the effect of another.
13 . ”
Example “eat cake and persistence of have cake

Interference: One of the effect of one action is the negation of
the precondition of the other. Example: eat cake and
persistence of Have cake

Competing needs: one of the preconditions of one action is
mutually exclusive with a precondition of another.
Example: Bake(cake) and Eat(Cake).

A mutex relation holds between 2 literals at the same level iff one is
the negation of the other or if each possible pair of actions
that can achieve the 2 literals is mutually exclusive.



Planning graphs for heuristic estimation

Estimate the cost of achieving a goal by the level in the
planning graph where it appears.

To estimate the cost of a conjunction of goals use one of
the following:

Max-level: take the maximum level of any goal (admissible)
Sum-cost: Take the sum of levels (inadmissible)

Set-level: find the level where they all appear without
Mutex (admissible). Dominates max-level

Graph plans are relaxation of the problem. Representing
more than pair-wise mutex is not cost-effective



The graphplan algorithm

function GRAPHPLAN( problem) returns solution or failure

graph «— INITIAL-PLANNING-GRAPH( problem)
goals +— GOALS[ problem]
loop do
if goals all non-mutex in last level of graph then do
solubion «— EXTRACT-SOLUTION( grapk, goals, LENGTH{ graph))
if sohdion # farlure then return solhdion
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph «— EXPAND-GRAPH( graph, problem)

Figure 11,13  The GRAPHPLAN algorithm. GRAPHPLAN alternates between a solution
extraction step and a graph expansion step. EXTRACT-SOLUTION looks for whether a plan
can be found, starting at the end and searching backwards. EXPAND-GRAPH adds the actions
for the currert lewel and the state literals for the next level,




Planning graph for spare tire
goal: at(spare,axle)

e S2 has all goals and no mutex so we can try to extract solutions
e Use either CSP algorithm with actions as variables
* Or search backwards

So Ag S A So
A{Spare, Trunk) ] ASpare Trunk) 1 ASpare, Trunk)
\ \ Remows Spare, Thunk)
Rernowel Spane, Trunk) — A Spare Trunk) — 4 {Spare, Trunk)

M Reanovel Aatislg

A}(Flat, Axle) / 0

- AFlat Axle) Tad{Flat Axle)
| LeaveCvemight — Ab{Fist Axle) AtiFlat Axle)
| Leavedvemight
— 4} (Spare, Axle) — A Spare Axle) } T} Spare, Axle)
PUKDN{SERMe A At(Spare Axle)
— At {Flat Ground) — A Rt Ground) — 4} Flat, Grownd)
AFlat, Ground) 3 AHFlat Ground)
— A¥ Spare, Ground) — A} Spare Ground ) 3 A} Spare, Gro wnd)
ASpare Ground I} A{Spare,Grownd)

Figure 11.14  The planning graph for the spare tire problem after expansion to level S5,
Mutex linlce are shown as gray lines. Only some representative mutexes are shown, because
the graph would be too cluttered if we showed them all. The solution is indicated by bold

lirmae arnAd Aarlmce




Search planning-graph backwards with heuristics

How to choose an action during backwards
search:

e Use greedy algorithm based on the level cost of the
literals.

For any set of goals:
1. Pick first the literal with the highest level cost.

2. To achieve the literal, choose the action with
the easiest preconditions first (based on sum or
max level of precond literals).



Properties of planning graphs;
termination

Literals increase monotonically
— Once a literal is in a level it will persist to the next level
Actions increase monotonically

— Since the precondition of an action was satisfied at a level
and literals persist the action’ s precond will be satisfied
from now on

Mutexes decrease monotonically:

— |If two actions are mutex at level Si, they will be mutex at
all previous levels at which they both appear

Because literals increase and mutex decrease it is
guaranteed that we will have a level where all goals
are non-mutex



Other classical planning
approaches

 The most effective approached to planning
currently are:

— Translating to Boolean Satisfiability

— Forward state-space search with carefully crafted
heuristics

— Search using planning graphs (covered already)



Planning as Satisfiability

Express propositional planning as a set of propositions.
Index propositions with time steps:
On(A,B) 0, ON(B,C) O

Goal conditions: the goal conjuncts attime T, T is
determined arbitrarily.

Unknown propositions are not stated.
Propositions known not to be true are stated negatively.
Actions: a proposition for each action for each time slot.

Succesor state axioms need to be expressed for each action
(like in the situation calculus but it is propositional)



Planning with propositional logic
(continued)

We write the formula:
— Initial state and succesor state axioms and goal

We search for a model to the formula. Those actions
that are assigned true consititute a plan.

To have a single plan we may have a mutual exclusion
for all actions in the same time slot.

We can also choose to allow partial order plans and
only write exclusions between actions that interfere
with each other.

Planning: iteratively try to find longer and longer plans.



SATplan algorithm

function SATPLAN( problem, T ....) returns solation or failure
inputs: problem, a planning problem
T inazs anupper limit for plan length

for T=0to T, do
erf , mappiing «+— TRANSLATE-TO-SAT( probilem, T)
assrgrunent «— SAT-SOLVER(enf)
if assigrumert 1s not null then
return EXTRACT-SOLUTION{ asstgrunert, mmapping)
return foilure

Figure 11.15 The SATPLAN algorithm. The plarning problem is translated into a CNF
sentence in which the goal is asserted to hold at a fixed time step T and axioms are included
for eachtime step up to 7. (Details of the translation are given inthe text.) If the satisfiability
algorithm finds amodel, then aplan is extracted by looking at those proposition symbols that
refer to actions and are assigned frue inthe model. If no model exists, then the process is
repeated with the goal moved one step later.




Complexity of satplan

The total number of action symbols is:
— | T{x[Act|x]|O]"p
— O = number of objects, p is scope of atoms.

Number of clauses is higher.

Example: 10 time steps, 12 planes, 30 airports, the complete
action exclusion axiom has 583 million clauses.



Summary: Planning

STRIPS Planning

Forward and backward planning
Partial order planning

Situation Calculus

Heirarchical planning

Graph planning

Satplan

Readings: RN chapter 10



The Situation Calculus

* A goal can be described by a sentence (WH})On(x, B)
if we want to have a block on B

* Planning: finding a set of actions to achieve a goal
wff.

¢ Situal'iOn CaICUIUS (McCarthy, Hayes, 1969, Green 1969)
— A Predicate Calculus formalization of states, actions, and

their effects.
(P, gﬁfé%ﬁ&%@%ﬂ%@%@%@ hglear(F))
On (B, A)
we reify the state and On (A, C)
include them as argumentg On (C,F1)
A Clear (B)
C Clear (F1)




The Situation Calculus (continued)

The atoms denotes relations over states called fluents.

On(Ba AaSO) A On(Aa Ca SO) A On(C9E9SO) A Cl@Cll"(B,SO)
We can also have.

(an y,S)[On(x,y,S) A _'(y = Fi) — —-Clear(y,s)]

Knowledge about state a(nvosgq?@ﬁgil ’pgr)edicate calculus
theory.

Inferene can be used to answer:
— Is there a state satisfying a goal?

— How can the present state be transformed into that state by
actions? The answer is a plan



Representing Actions

Reify the actions: denote an action by a symbol
actions are functions

move(B,A,F1): move block A from block B to F1
move (X,y,z) - action schema

do: A function constant, do denotes a function

that 356 9LHoRs and states into states

action
state



Representing Actions (continued)

* Express the effects of actions.

— Example: (on, move) (expresses the effect of move on
“On”)

FO(sttive effacbean(x, s) A Clear(z,s) A (x = z)
— On(x, z,do(move(x, y,z2),s))]

negative :

[On(x, y,s) A Clear(x,s) A Clear(z,s) A (X = z)
— = 0On(x, y,do(move(x, y, z),s))]

= Positive: describes how action makes a fluent true

= Negative : describes how action makes a fluent false
= Antecedent: pre-condition for actions

= Consequent: how the fluent is changed



Representing Actions (continued)

e Effect axioms for (clear, move): (move(x,y,z))

* Precondition are satisfi
e B/x, Aly, SO/s, F1/z

e What was true in SO

remains true

B

A

C

Floor

A

c| [B]
Floor

on(B,A,S0)
on(Aa,C,S0)
On(C,F1l,S0)
Cleaxr (B, S0)
Cleaxr (Fl, S0)

SO

move (B,A,F1)

S1 = do(move (B,A,Fl),b,S0)

Inferred using effect axioms:
On(B,Fl,do(move(B,A,F1l),b,S0))
-On(B,A,do(move (B,A,F1l) ,S0))
Clear (A,do(move (B,A,F1l) ,S0))

Inferred using frame axioms:
On((A,C,do(move (B,A,F1l) ,S0))
On(C,Fl,do(move(B,A,F1l) ,S0))
Clear(B,do(move (B,A,F1l) ,b,S0))

True in all states:

(Vs)Clear trFrl, s)




Frame Axioms

* Not everything true can be inferred
On(C,F1) remains true but cannot be inferred

e Actions have local effect

— We need frame axioms for each action and each
fluent that does not change as a result of the action

— example: frame axioms for (move, on)

— If a block is on another block and move is not relevant,
it will stay the same.

e Positive:
[On(x,y,s) A (x = u)]— On(x, y,do(move(u,v,z),s))
* negative

(=On(x,y,s)A[(x =u) v (y = z)]) = -On(x, y,do(move(u,v,z),s)



Frame AXIOomsS (continued)

— Frame axioms for (move, clear):

Clear(u,s) A (u = z) — Clear(u,do(move(x, y,z),s))

= Clear(u,s) A (u = y) — = Clear(u,do(move(x, y,z),s))

— The frame problem: need axioms for every pair of
{action, fluent}!!!

— There are languages that embed some assumption
on frame axioms that can be derived automatically:

e Default logic

* Negation as failure

* Nonmonotonic reasoning
* Minimizing change



Other problems

* The qualification problem: qualifying the
antecedent for all possible exception. Needs to
enumerate all exceptions
— ~heavy and ~glued and ~armbroken - can-move
— ~bird and ~cast-in-concrete and ~dead... 2 flies

* Solutions: default logics, Non-monotonic logics

* The ramification problem:

— If a robot carries a package, the package will be where
the robot is. But what about the frame axiom, when
can we infer about the effect of the actions and when
we cannot.



Generating plans

To generate a plan to achieve a goal, we
attempt to prove V

dsy(s)

Example: Get®&¢R-B 1ot the floor from SO.
Prove:

By resolution refutation: addH#5HI(3 Aot)
On(B,F1,s)

(page 370 top, try it)



Proof

~On(B,F1,s) v Ans(s)
On(B,A,S0O)
On(A,C,S0)
On(C,F1,S0)
Clear(B,S0)
Clear(F1,S0)

[On(x,y,s) /\ Clear(x,s) /\ Clear(z,s)/\(x not
equal y) =2 On(x,z,do(move(x,y,z),s))]

* (inequality is negation of equality and we assume infinite supply of (A=A))



