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Overview 
•  Computer programs which play 2-player games 

–  game-playing as search 
–  with the complication of an opponent 

 
•  General principles of game-playing and search 

–  evaluation functions 
–  minimax principle 
–  alpha-beta-pruning 
–  heuristic techniques 

 
•  Status of Game-Playing Systems 

–  in chess, checkers, backgammon, Othello, etc, computers routinely 
defeat leading world players 
 

•  Motivation: multiagent competitive environments 
–  think of “nature” as an opponent 
–  economics, war-gaming, medical drug treatment 



Solving 2-players Games 

•  Two players, perfect information 
•  Examples: e.g., chess, checkers, tic-tac-toe 
•  Configuration of the board = unique arrangement of “pieces” 
•  Statement of Game as a Search Problem: 

–  States = board configurations 
–  Operators = legal moves. The transition model 
–  Initial State = current configuration 
–  Goal  = winning configuration 
–  payoff function (utility)= gives numerical value of outcome of the 

game 
•  A working example: Grundy's game 

–  Given a set of coins, a player takes a set and divides it into two 
unequal sets. The player who plays last, looses. 

–  What is a state? Moves? Goal? 



Grundy’s game - special case of nim 





Game Trees: Tic-tac-toe 



Game Trees 



The Minimax  Algorithm 
•  Designed to find the optimal strategy for Max and find best move 
•  Explores the game (and/or) search tree in a depth-first search manner 
•  The search space is the game-tree. 
•  We wish to find an optimal strategy, or just optimal first move. 
Brute-force: 

–  1. Generate the whole game tree to leaves 
–  2. Apply utility (payoff) function to leaves 
–  3.  Back-up values from leaves toward the root: 

•  a Max node computes the max of its child values 
•  a Min node computes the Min of its child values 

–  4. When value reaches the root: choose max value and the corresponding 
move. 

Minimax:  
1.  Search the game-tree in a DFS manner to find the value of the root. 

•  However: It is impossible to develop the whole search tree. Instead develop 
part of the tree and evaluate promise of leaves using a static evaluation 
function. 

 



Applying MiniMax to tic-tac-toe 

•  The static evaluation function heuristic 
 



Backup Values 







Properties of Minimax 

•  Complete?    
–  Yes (if tree is finite) 

•  Complete for Optimality?  
–  Yes (against an optimal opponent) 

•  Time complexity? O(bm), b is the brunching degree, m is depth of tree. 
•  Space complexity? O(bm) (depth-first exploration) 

•  For chess, for "reasonable" games exact solution completely infeasible 
–  Chess: 

•  b ~ 35 (average branching factor) 
•  d ~ 100 (depth of game tree for typical game) 
•  bd ~ 35100 ~10154 nodes!! 

–  Tic-Tac-Toe 
•  ~5 legal moves, total of 9 moves 
•  59 = 1,953,125 
•  9! = 362,880  (Computer goes first) 
•  8! = 40,320 (Computer goes second) 

 



Static (Heuristic) Evaluation Functions 

•  An Evaluation Function: 
–  Estimates how good the current board configuration is for a player. 
–  Typically, one figures how good it is for the player, and how good it 

is for the opponent, and subtracts the opponents score from the 
player. 

–  Othello: Number of white pieces - Number of black pieces 
–  Chess:  Value of all white pieces - Value of all black pieces 

•  Typical values from -infinity (loss) to +infinity (win) or [-1, +1]. 
•  If the board evaluation  is X for a player, it’s -X for the opponent 
•  Example:  

–  Evaluating chess boards,  
–  Checkers 
–  Tic-tac-toe 







Can we prune depth-first search? 





Alpha Beta Procedure 

•  Idea:  
–  Do depth first search  to generate partial game tree,  
–  Give static evaluation function to leaves, 
–  Compute bound on internal nodes. 

•  Alpha, Beta bounds: 
–  Alpha value for max node means that max  real value is at least 

alpha. 
–  Beta for min node means that min can guarantee a value below 

beta. 
•  Computation: 

–  Alpha of a max node is the maximum value of its seen children.  
–  Beta of a min node is the minimum value seen of its child  node . 



When to Prune  

•  Pruning 

–  Below a Min node whose beta value is lower than or equal to the 
alpha value of its ancestors. 

–  Below a Max node having an alpha value greater than or equal to 
the beta value of any of its Min nodes ancestors. 



Can we prune depth-first search? 











Alpha Beta Procedure 

•  Idea:  
–  Do depth first search  to generate partial game tree,  
–  Give static evaluation function to leaves, 
–  Compute bound on internal nodes. 

•  Alpha, Beta bounds: 
–  Alpha value for max node means that max  real value is at least 

alpha. 
–  Beta for min node means that min can guarantee a value below 

beta. 
•  Computation: 

–  Alpha of a max node is the maximum value of its seen children.  
–  Beta of a min node is the minimum value seen of its child  node . 

•  Graph-search using Transposition tables: 
–  Even in depth-first search we can  store the result of an evaluation 

in a hash table of previously seen positions. Like the notion of 
“explored” list in graph-search. 



Effectiveness of Alpha-Beta Search 

•  Worst-Case 
–  Branches are ordered so that no pruning takes place. In this case 

alpha-beta gives no improvement over exhaustive search 
 

•  Best-Case 
–  Each player’s best move is the left-most alternative (i.e., evaluated 

first) 
–  Assume we have an optimal strategy and we order it with best move 

for max is first to the left. 
–  In practice, performance is closer to best rather than worst-case 

 
•  Alpha/beta best case is O(b(d/2)) rather than O(bd)  

–  This is the same as having a branching factor of sqrt(b),  
•  since (sqrt(b))d =  b(d/2) (i.e., we have effectively gone from b to 

square root of b) 
–  In chess go from b ~ 35  to  b ~ 6 

•  permiting much deeper search in the same amount of time 
–   IN practice it is often b(d3/2) 



Iterative (Progressive) Deepening 

•  In real games, there is usually a time limit T on making a move 
 

•  How do we take this into account?  
•  Using alpha-beta we cannot use “partial” results with any 

confidence unless the full breadth of the tree has been searched 
–   So, we could be conservative and set a conservative depth-limit 

which guarantees that we will find a move in time < T 
•  disadvantage is that we may finish early, could do more search 

 
•  In practice, iterative deepening search (IDS) is used 

–  IDS runs depth-first search with an increasing depth-limit 
–  when the clock runs out we use the solution found at the previous 

depth limit  



Heuristics and Game Tree Search: limited  horizon 

•  The Horizon Effect 
–  sometimes there’s a major “effect” (such as a piece being 

captured) which is just “below” the depth to which the tree has been 
expanded. 

–  the computer cannot see that this major event could happen 
because it has a “limited horizon”. 

–  there are heuristics to try to follow certain branches more deeply to 
detect such important events 

–  this helps to avoid catastrophic losses due to “short-sightedness” 
 

•  Heuristics for Tree Exploration 
–  it may be better to explore some branches more deeply in the 

allotted time 
–  various heuristics exist to identify “promising” branches 

•  Search versus lookup tables  
–  (e.g., chess endgames) 



Multiplayer Games 
 

•  Multiplayer games often involve alliances: If A and B are in a weak position they can  
       collaborateAnd act against C 

•  If games are not zero-sum, collaboration can also occur in two-game plays: if (1000,1000_ 
       Is a best payoff for both, then they will cooperate towards getting there and not towards minimax value. 



In real life there are  
many unpredictable  
external events 

A game tree in Backgammon 
must include chance nodes 



Schematic Game Tree for Backgammon Position 
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•  How do we evaluate  good move? 
•  By expected utility leading to 

expected minimax 
•  Utility for max is highest expected 

value of child nodes 
•  Utility of min-nodes is the lowest 

expected value of child nodes 
•  Chance node take the expected 

value of their child nodes. 





Evaluation functions for stochastic games 
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•  Sensitivity to the absolute values 
•  The evaluation function should related to the probability of 
     winning from a position, or to the expected utility from the position 
•  Complexity:  O((bn)^m) where m is the depth and n is branching of chance nodes 

















An alternative: Monte Carlo simulations:  
Play thousands of games of the program against itself  
Using random dice rolls. Record the percentage of win  
From a position. 



Summary 
•  Game playing is best modeled as a search problem 

 
•  Game trees represent alternate computer/opponent moves 

 
•  Evaluation functions estimate the quality of a given board configuration 

for the Max player.  
 

•  Minimax is a procedure which chooses moves by assuming that the 
opponent will always choose the move which is best for them 
 

•  Alpha-Beta is a procedure which can prune large parts of the search 
tree and allow search to go deeper  
 

•  For many well-known games, computer algorithms based on heuristic 
search match or out-perform human world experts. 

•  Stochastic games 
•  Partially observable games 

 
•  Reading:R&N Chapter 5. 




