
Set 4: Game-Playing

ICS 271 Fall 2012

Overview
•  Computer programs which play 2-player games

–  game-playing as search
–  with the complication of an opponent

•  General principles of game-playing and search

–  evaluation functions
–  minimax principle
–  alpha-beta-pruning
–  heuristic techniques

•  Status of Game-Playing Systems

–  in chess, checkers, backgammon, Othello, etc, computers routinely
defeat leading world players

•  Motivation: multiagent competitive environments
–  think of “nature” as an opponent
–  economics, war-gaming, medical drug treatment

Solving 2-players Games

•  Two players, perfect information
•  Examples: e.g., chess, checkers, tic-tac-toe
•  Configuration of the board = unique arrangement of “pieces”
•  Statement of Game as a Search Problem:

–  States = board configurations
–  Operators = legal moves. The transition model
–  Initial State = current configuration
–  Goal = winning configuration
–  payoff function (utility)= gives numerical value of outcome of the

game
•  A working example: Grundy's game

–  Given a set of coins, a player takes a set and divides it into two
unequal sets. The player who plays last, looses.

–  What is a state? Moves? Goal?

Grundy’s game - special case of nim

Game Trees: Tic-tac-toe

Game Trees

The Minimax Algorithm
•  Designed to find the optimal strategy for Max and find best move
•  Explores the game (and/or) search tree in a depth-first search manner
•  The search space is the game-tree.
•  We wish to find an optimal strategy, or just optimal first move.
Brute-force:

–  1. Generate the whole game tree to leaves
–  2. Apply utility (payoff) function to leaves
–  3. Back-up values from leaves toward the root:

•  a Max node computes the max of its child values
•  a Min node computes the Min of its child values

–  4. When value reaches the root: choose max value and the corresponding
move.

Minimax:
1.  Search the game-tree in a DFS manner to find the value of the root.

•  However: It is impossible to develop the whole search tree. Instead develop
part of the tree and evaluate promise of leaves using a static evaluation
function.

Applying MiniMax to tic-tac-toe

•  The static evaluation function heuristic

Backup Values

Properties of Minimax

•  Complete?
–  Yes (if tree is finite)

•  Complete for Optimality?
–  Yes (against an optimal opponent)

•  Time complexity? O(bm), b is the brunching degree, m is depth of tree.
•  Space complexity? O(bm) (depth-first exploration)

•  For chess, for "reasonable" games exact solution completely infeasible
–  Chess:

•  b ~ 35 (average branching factor)
•  d ~ 100 (depth of game tree for typical game)
•  bd ~ 35100 ~10154 nodes!!

–  Tic-Tac-Toe
•  ~5 legal moves, total of 9 moves
•  59 = 1,953,125
•  9! = 362,880 (Computer goes first)
•  8! = 40,320 (Computer goes second)

Static (Heuristic) Evaluation Functions

•  An Evaluation Function:
–  Estimates how good the current board configuration is for a player.
–  Typically, one figures how good it is for the player, and how good it

is for the opponent, and subtracts the opponents score from the
player.

–  Othello: Number of white pieces - Number of black pieces
–  Chess: Value of all white pieces - Value of all black pieces

•  Typical values from -infinity (loss) to +infinity (win) or [-1, +1].
•  If the board evaluation is X for a player, it’s -X for the opponent
•  Example:

–  Evaluating chess boards,
–  Checkers
–  Tic-tac-toe

Can we prune depth-first search?

Alpha Beta Procedure

•  Idea:
–  Do depth first search to generate partial game tree,
–  Give static evaluation function to leaves,
–  Compute bound on internal nodes.

•  Alpha, Beta bounds:
–  Alpha value for max node means that max real value is at least

alpha.
–  Beta for min node means that min can guarantee a value below

beta.
•  Computation:

–  Alpha of a max node is the maximum value of its seen children.
–  Beta of a min node is the minimum value seen of its child node .

When to Prune

•  Pruning

–  Below a Min node whose beta value is lower than or equal to the
alpha value of its ancestors.

–  Below a Max node having an alpha value greater than or equal to
the beta value of any of its Min nodes ancestors.

Can we prune depth-first search?

Alpha Beta Procedure

•  Idea:
–  Do depth first search to generate partial game tree,
–  Give static evaluation function to leaves,
–  Compute bound on internal nodes.

•  Alpha, Beta bounds:
–  Alpha value for max node means that max real value is at least

alpha.
–  Beta for min node means that min can guarantee a value below

beta.
•  Computation:

–  Alpha of a max node is the maximum value of its seen children.
–  Beta of a min node is the minimum value seen of its child node .

•  Graph-search using Transposition tables:
–  Even in depth-first search we can store the result of an evaluation

in a hash table of previously seen positions. Like the notion of
“explored” list in graph-search.

Effectiveness of Alpha-Beta Search

•  Worst-Case
–  Branches are ordered so that no pruning takes place. In this case

alpha-beta gives no improvement over exhaustive search

•  Best-Case
–  Each player’s best move is the left-most alternative (i.e., evaluated

first)
–  Assume we have an optimal strategy and we order it with best move

for max is first to the left.
–  In practice, performance is closer to best rather than worst-case

•  Alpha/beta best case is O(b(d/2)) rather than O(bd)

–  This is the same as having a branching factor of sqrt(b),
•  since (sqrt(b))d = b(d/2) (i.e., we have effectively gone from b to

square root of b)
–  In chess go from b ~ 35 to b ~ 6

•  permiting much deeper search in the same amount of time
–  IN practice it is often b(d3/2)

Iterative (Progressive) Deepening

•  In real games, there is usually a time limit T on making a move

•  How do we take this into account?
•  Using alpha-beta we cannot use “partial” results with any

confidence unless the full breadth of the tree has been searched
–  So, we could be conservative and set a conservative depth-limit

which guarantees that we will find a move in time < T
•  disadvantage is that we may finish early, could do more search

•  In practice, iterative deepening search (IDS) is used

–  IDS runs depth-first search with an increasing depth-limit
–  when the clock runs out we use the solution found at the previous

depth limit

Heuristics and Game Tree Search: limited horizon

•  The Horizon Effect
–  sometimes there’s a major “effect” (such as a piece being

captured) which is just “below” the depth to which the tree has been
expanded.

–  the computer cannot see that this major event could happen
because it has a “limited horizon”.

–  there are heuristics to try to follow certain branches more deeply to
detect such important events

–  this helps to avoid catastrophic losses due to “short-sightedness”

•  Heuristics for Tree Exploration
–  it may be better to explore some branches more deeply in the

allotted time
–  various heuristics exist to identify “promising” branches

•  Search versus lookup tables
–  (e.g., chess endgames)

Multiplayer Games

•  Multiplayer games often involve alliances: If A and B are in a weak position they can
 collaborateAnd act against C

•  If games are not zero-sum, collaboration can also occur in two-game plays: if (1000,1000_
 Is a best payoff for both, then they will cooperate towards getting there and not towards minimax value.

In real life there are
many unpredictable
external events

A game tree in Backgammon
must include chance nodes

Schematic Game Tree for Backgammon Position

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

•  How do we evaluate good move?
•  By expected utility leading to

expected minimax
•  Utility for max is highest expected

value of child nodes
•  Utility of min-nodes is the lowest

expected value of child nodes
•  Chance node take the expected

value of their child nodes.

Evaluation functions for stochastic games

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

•  Sensitivity to the absolute values
•  The evaluation function should related to the probability of
 winning from a position, or to the expected utility from the position
•  Complexity: O((bn)^m) where m is the depth and n is branching of chance nodes

An alternative: Monte Carlo simulations:
Play thousands of games of the program against itself
Using random dice rolls. Record the percentage of win
From a position.

Summary
•  Game playing is best modeled as a search problem

•  Game trees represent alternate computer/opponent moves

•  Evaluation functions estimate the quality of a given board configuration

for the Max player.

•  Minimax is a procedure which chooses moves by assuming that the
opponent will always choose the move which is best for them

•  Alpha-Beta is a procedure which can prune large parts of the search
tree and allow search to go deeper

•  For many well-known games, computer algorithms based on heuristic
search match or out-perform human world experts.

•  Stochastic games
•  Partially observable games

•  Reading:R&N Chapter 5.

