Consistency algorithms

Chapter 3

- Sound
- Incomplete
- Always converges (polynomial)

Definition: Given a constraint graph **G**,

• A <u>variable V_i is arc-consistent relative to</u> V_j iff for every value $a \in D_{V_i}$, there exists a value $b \in D_{V_i} \mid (a, b) \in R_{V_i, V_j}$.

- The constraint R_{Vi,Vi} is arc-consistent iff
 - V_i is arc-consistent relative to V_i and
 - V_i is arc-consistent relative to V_i.
- A binary CSP is arc-consistent iff every constraint (or sub-graph of size
 2) is arc-consistent

Revise for arc-consistency

```
REVISE((x_i), x_j)
input: a subnetwork defined by two variables X = \{x_i, x_j\}, a distinguished variable x_i, domains: D_i and D_j, and constraint R_{ij}
output: D_i, such that, x_i arc-consistent relative to x_j

1. for each a_i \in D_i

2. if there is no a_j \in D_j such that (a_i, a_j) \in R_{ij}

3. then delete a_i from D_i

4. endif

5. endfor
```

Figure 3.2: The Revise procedure

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_j)$$

A matching diagram describing a network of constraints that is not arcconsistent (b) An arc-consistent equivalent network.

AC-1

```
input: a network of constraints \mathcal{R} = (X, D, C)

output: \mathcal{R}' which is the loosest arc-consistent network equivalent to \mathcal{R}

1. repeat

2. for every pair \{x_i, x_j\} that participates in a constraint

3. Revise((x_i), x_j) (or D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j))

4. Revise((x_j), x_i) (or D_j \leftarrow D_j \cap \pi_j(R_{ij} \bowtie D_i))

5. endfor

6. until no domain is changed
```

Figure 3.4: Arc-consistency-1 (AC-1)

- Complexity (Mackworth and Freuder, 1986):
- *e* = number of arcs, *n* variables, *k* values
- $(ek^2$, each loop, nk number of loops), best-case = ek,
- Arc-consistency is: $\Omega(ek^2)$
- Complexity of AC-1: O(enk^3)

1. AC may discover the solution

2. AC may discover inconsistency

AC-3

```
AC-3(\mathcal{R})
input: a network of constraints \mathcal{R} = (X, D, C)
output: \mathcal{R}' which is the largest arc-consistent network equivalent to \mathcal{R}
1. for every pair \{x_i, x_j\} that participates in a constraint R_{ij} \in \mathcal{R}
          queue \leftarrow queue \cup \{(x_i, x_i), (x_i, x_i)\}
2.
    endfor
    while queue \neq \{\}
5.
          select and delete (x_i, x_j) from queue
          Revise((x_i), x_j)
          if Revise((x_i), x_j) causes a change in D_i
8.
                  then queue \leftarrow queue \cup \{(x_k, x_i), i \neq k\}
9.
          endif
10. endwhile
```

Figure 3.5: Arc-consistency-3 (AC-3)

- Complexity: $O(ek^3)$
- Best case O(ek), since each arc may be processed in O(2k)

Example: A 3 variables network with 2 constraints: z divides x and z divides y (a) before and (b) after AC-3 is applied.

Constraint checking

→ Arc-consistency

AC-4

```
AC-4(\mathcal{R})
input: a network of constraints \mathcal{R}
output: An arc-consistent network equivalent to \mathcal{R}
1. Initialization: M \leftarrow \emptyset,
2.
          initialize S_{(x_i,c_i)}, counter(i,a_i,j) for all R_{ij}
3.
          for all counters
                  if counter(x_i, a_i, x_i) = 0 (if \langle x_i, a_i \rangle is unsupported by x_i)
4.
5.
                         then add \langle x_i, a_i \rangle to LIST
6.
                  endif
7.
          endfor
    while LIST is not empty
9.
          choose \langle x_i, a_i \rangle from LIST, remove it, and add it to M
10.
          for each \langle x_i, a_i \rangle in S_{(x_i, a_i)}
                  decrement counter(x_i, a_i, x_i)
11.
12.
                  if counter(x_i, a_i, x_i) = 0
                         then add \langle x_i, a_i \rangle to LIST
13.
                  endif
14.
15.
          endfor
16. endwhile
```

Figure 3.7: Arc-consistency-4 (AC-4)

- Complexity. $O(e\kappa)$
- (Counter is the number of supports to ai in xi from xj. S_(xi,ai) is the set of pairs that (xi,ai) supports)

Exercise: make the following network arc-consistent

- Draw the network's primal and dual constraint graph
- Network =
 - Domains {1,2,3,4}
 - Constraints: y < x, z < y, t < z, f < t, x < = t+1, Y < f+2

Arc-consistency Algorithms

- AC-1: brute-force, distributed $O(nek^3)$
- AC-3, queue-based $O(ek^3)$
- AC-4, context-based, optimal $O(ek^2)$
- AC-5,6,7,.... Good in special cases
- Important: applied at every node of search
- (*n* number of variables, *e*=#constraints, *k*=domain size)
- Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

Using constraint tightness in analysis

t = number of tuples bounding a constraint

- AC-1: brute-force, $O(nek^3)$ O(nekt)
- AC-3, queue-based $O(ek^3)$ O(ekt)
- AC-4, context-based, optimal O(et)
- AC-5,6,7,.... Good in special cases
- Important: applied at every node of search
- (n number of variables, e=#constraints, k=domain size)
- Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

DRAC on the dual join-graph

Distributed Relational Arc-Consistency

 DRAC can be applied to the dual problem of any constraint network:

$$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$$
 (1)

$$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i) \tag{2}$$

Iteration 1

 h_{5}^{4}

В

 h_3^4

$$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i)$$

Iteration 1

$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$

Iteration 2

 R_1 h_{3}^{1} h_2^1 h_4^1

$$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$$
 (1

Iteration 3

 h_2^4

 h_1^4

 R_4

 h_6^4

D 2

$$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i)$$

Iteration 3

h₆⁴ D 2

$$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i)$$

(2)

Iteration 4

 R_1 A

Iteration 5
$$\begin{array}{c} h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)}h_k^i)) \\ R_1 & h_2^1 & h_3^1 & h_4^1 \\ \hline \textbf{A} & \textbf{A} & \textbf{A} & \textbf{A} \\ \hline \textbf{1} & \textbf{1} & \textbf{1} & \textbf{1} \end{array}$$

$$egin{array}{cccc} h_1^2 & R_2 & \\ A & A & B \\ 1 & 3 & \end{array}$$

 $\mathsf{Iteration}_{\mathsf{R}_i} \overset{R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i)}{\mathsf{R}_{\mathsf{L}}}$

(2)

 R_2 3 2 с **5** В R_5 R_4 B C F A B D
1 3 2 6 R_6

Distributed Arc-Consistency

Arc-consistency can be formulated as a distributed algorithm:

$$D_i^j \leftarrow \pi_j(R_{ij} \bowtie D_i) \tag{1}$$

$$D_i \leftarrow D_i \cap (\bowtie_{k \in ne(i)} D_k^i) \tag{2}$$

a Constraint network

Relational Arc-consistency

The message that R2 sends to R1 is

$$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$$

R1 updates its relation and domains and sends messages to neighbors

$$D_i \leftarrow D_i \cap (\bowtie_{k \in ne(i)} D_k^i)$$

Is arc-consistency enough?

- Example: a triangle graph-coloring with 2 values.
 - Is it arc-consistent?
 - Is it consistent?
- It is not path, or 3-consistent.

Path-consistency

Definition 3.3.2 (Path-consistency) Given a constraint network $\mathcal{R} = (X, D, C)$, a two variable set $\{x_i, x_j\}$ is path-consistent relative to variable x_k if and only if for every consistent assignment $(< x_i, a_i >, < x_j, a_j >)$ there is a value $a_k \in D_k$ s.t. the assignment $(< x_i, a_i >, < x_k, a_k >)$ is consistent and $(< x_k, a_k >, < x_j, a_j >)$ is consistent. Alternatively, a binary constraint R_{ij} is path-consistent relative to x_k iff for every pair $(a_i, a_j), \in R_{ij}$, where a_i and a_j are from their respective domains, there is a value $a_k \in D_k$ s.t. $(a_i, a_k) \in R_{ik}$ and $(a_k, a_j) \in R_{kj}$. A subnetwork over three variables $\{x_i, x_j, x_k\}$ is path-consistent iff for any permutation of (i, j, k), R_{ij} is path consistent relative to x_k . A network is path-consistent iff for every R_{ij} (including universal binary relations) and for every $k \neq i, j$ R_{ij} is path-consistent relative to x_k .

Path-consistency

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical picture of path-consistency using the matching diagram.

Revise-3

```
REVISE-3((x,y),z)
input: a three-variable subnetwork over (x,y,z), R_{xy}, R_{yz}, R_{xz}.
output: revised R_{xy} path-consistent with z.

1. for each pair (a,b) \in R_{xy}

2. if no value c \in D_z exists such that (a,c) \in R_{xz} and (b,c) \in R_{yz}

3. then delete (a,b) from R_{xy}.

4. endif

5. endfor
```

Figure 3.9: Revise-3
$$R_{ij} \leftarrow R_{ij} \cap \pi_{ij} (R_{ik} \otimes D_k \otimes R_{kj})$$

- Complexity: O(k^3)
- Best-case: O(t)
- Worst-case O(tk)

PC-1

```
PC-1(\mathcal{R})
input: a network \mathcal{R} = (X, D, C).
output: a path consistent network equivalent to \mathcal{R}.

1. repeat
2. for k \leftarrow 1 to n
3. for i, j \leftarrow 1 to n
4. R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj})/* (Revise - 3((i, j), k))
5. endfor
6. endfor
7. until no constraint is changed.
```

Figure 3.10: Path-consistency-1 (PC-1)

- Complexity: $O(n^5k^5)$
- O(n³) triplets, each take O(k³) steps \rightarrow O(n³ k³)
- Max number of loops: O(n^2 k^2).

PC-2

```
PC-3(\mathcal{R})
input: a network \mathcal{R} = (X, D, C).
output: \mathcal{R}' a path consistent network equivalent to \mathcal{R}.

1. Q \leftarrow \{(i, k, j) \mid 1 \leq i < j \leq n, 1 \leq k \leq n, k \neq i, k \neq j \}

2. while Q is not empty

3. select and delete a 3-tuple (i, k, j) from Q

4. R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj}) /* (Revise-3((i, j), k))

5. if R_{ij} changed then

6. Q \leftarrow Q \cup \{(l, i, j)(l, j, i) \mid 1 \leq l \leq n, l \neq i, l \neq j\}

7. endwhile
```

Figure 3.11: Path-consistency-3 (PC-3)

- Complexity: $O(n^3k^5)$
- Optimal PC-4: $O(n^3k^3)$
- (each pair deleted may add: 2n-1 triplets, number of pairs: O(n^2 k^2) → size of Q
 is O(n^3 k^2), processing is O(k^3))

Example: before and after pathconsistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

- PC-1 requires 2 processings of each arc while PC-2 may not
- Can we do path-consistency distributedly?

Example: before and after pathconsistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

- PC-1 requires 2 processings of each arc while PC-2 may not
- Can we do path-consistency distributedly?

Path-consistency Algorithms

Apply Revise-3 (O(k^3)) until no change

$$R_{ij} \leftarrow R_{ij} \cap \pi_{ij} (R_{ik} \otimes D_k \otimes R_{kj})$$

• Path-consistency (3-consistency) adds binary constraints.

$$O(n^5k^5)$$
 • PC-1:

$$O(n^3k^5)$$
 • PC-2:

$$O(n^3k^3)$$
 • PC-4 optimal:

I-consistency

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency, (c) i-consistency

Higher levels of consistency, global-consistency

Definition 3.4.1 (i-consistency, global consistency) Given a general network of constraints $\mathcal{R} = (X, D, C)$, a relation $R_S \in C$ where |S| = i - 1 is i-consistent relative to a variable y not in S iff for every $t \in R_S$, there exists a value $a \in D_y$, s.t. (t, a) is consistent. A network is i-consistent iff given any consistent instantiation of any i - 1 distinct variables, there exists an instantiation of any ith variable such that the i values taken together satisfy all of the constraints among the i variables. A network is strongly i-consistent iff it is j-consistent for all $j \leq i$. A strongly n-consistent network, where n is the number of variables in the network, is called globally consistent.

Revise-i

```
REVISE-i(\{x_1, x_2, ...., x_{i-1}\}, x_i)

input: a network \mathcal{R} = (X, D, C)

output: a constraint R_S, S = \{x_1, ...., x_{i-1}\} i-consistent relative to x_i.

1. for each instantiation \bar{a}_{i-1} = (\langle x_1, a_1 \rangle, \langle x_2, a_2 \rangle, ..., \langle x_{i-1}, a_{i-1} \rangle) do,

2. if no value of a_i \in D_i exists s.t. (\bar{a}_{i-1}, a_i) is consistent

then delete \bar{a}_{i-1} from R_S

(Alternatively, let S be the set of all subsets of \{x_1, ..., x_i\} that contain x_i

and appear as scopes of constraints of R, then

R_S \leftarrow R_S \cap \pi_S(\bowtie_{S'\subseteq S} R_{S'}))

3. endfor
```

Figure 3.14: Revise-i

- Complexity: for binary constraints
- For arbitrary constraints: $O((2k)^i)$

4-queen example

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent

i-consistency

```
I-CONSISTENCY(\mathcal{R})
input: a network \mathcal{R}.
output: an i-consistent network equivalent to \mathcal{R}.

1. repeat
2. for every subset S \subseteq X of size i-1, and for every x_i, do
3. let \mathcal{S} be the set of all subsets in of \{x_1, ..., x_i\} scheme(\mathcal{R})
that contain x_i
4. R_S \leftarrow R_S \cap \pi_S(\bowtie_{S' \in \mathcal{S}} R_{S'}) (this is Revise-i(S, x_i))
6. endfor
7. until no constraint is changed.
```

Figure 3.15: i-consistency-1

Theorem 3.4.3 (complexity of i-consistency) The time and space complexity of brute-force i-consistency $O(2^i(nk)^{2i})$ and $O(n^ik^i)$, respectively. A lower bound for enforcing i-consistency is $\Omega(n^ik^i)$. \square

Arc-consistency for non-binary constraints:

Generalized arc-consistency

Definition 3.5.1 (generalized arc-consistency) Given a constraint network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, with $R_S \in \mathcal{C}$, a variable x is arc-consistent relative to R_S if and only if for every value $a \in D_x$ there exists a tuple $t \in R_S$ such that t[x] = a. t can be called a support for a. The constraint R_S is called arc-consistent iff it is arc-consistent relative to each of the variables in its scope and a constraint network is arc-consistent if all its constraints are arc-consistent.

$$D_{x} \leftarrow D_{x} \cap \pi_{x}(R_{S} \otimes D_{S-\{x\}})$$

Complexity: O(t k), t bounds number of tuples.

Relational arc-consistency:

$$R_{S-\{x\}} \leftarrow \pi_{S-\{x\}}(R_S \otimes D_x)$$

Examples of generalized arc-consistency

x+y+z <= 15 and z >= 13 implies
 x<=2, y<=2

Example of relational arc-consistency

$$A \land B \rightarrow G, \neg G, \Rightarrow \neg A \lor \neg B$$

• x+y <= 2

What is SAT?

Given a sentence:

Sentence: conjunction of clauses

$$(c_1 \vee \neg c_4 \vee c_5 \vee c_6) \wedge (c_2 \vee \neg c_3) \wedge (\neg c_4)$$

- *Clause*: disjunction of literals $(c_2 \lor \neg c_3)$
- **Literal**: a term or its negation C_1 , $\neg C_6$
- **Term**: Boolean variable $c_1 = 1 \Leftrightarrow \neg c_1 = 0$

Question: Find an assignment of truth values to the Boolean variables such the sentence is satisfied.

Boolean constraint propagation

Example: party problem

- If Alex goes, then Becky goes: $\mathbf{A} \rightarrow \mathbf{B}$ (or, $\neg \mathbf{A} \vee \mathbf{B}$)
- If Chris goes, then Alex goes: $\mathbf{C} \to \mathbf{A}$ (or, $\neg \mathbf{C} \vee \mathbf{A}$)
- Query:

Is it possible that Chris goes to the party but Becky does not?

Is propositional theory

$$\varphi = {\neg A \lor B, \neg C \lor A, \neg B, C}$$
 satisfiable?

CSP is NP-Complete

- Verifying that an assignment for all variables is a solution
 - Provided constraints can be checked in polynomial time
- Reduction from 3SAT to CSP
 - Many such reductions exist in the literature (perhaps 7 of them)

Problem reduction

Example: CSP into SAT (proves nothing, just an exercise)

Notation: variable-value pair = vvp

- $vvp \rightarrow term$
 - $-V_1 = \{a, b, c, d\}$ yields $x_1 = (V_1, a), x_2 = (V_1, b), x_3 = (V_1, c), x_4 = (V_1, d),$
 - $V_2 = \{a, b, c\}$ yields $x_5 = (V_2, a), x_6 = (V_2, b), x_7 = (V_2, c).$
- The vvp's of a variable \rightarrow disjunction of terms
 - $V_1 = \{a, b, c, d\}$ yields
- (Optional) At most one VVP per variable $x_1 \lor x_2 \lor x_3 \lor x_4$

$$(x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4)$$

CSP into SAT (cont.)

Constraint:
$$C_{V_1V_2} = \{(a,a), (a,b), (b,c), (c,b), (d,a)\}$$

- 1. Way 1: Each inconsistent tuple \rightarrow one disjunctive clause
 - For example: $-x_1 \vee -x_7$ how many?
- 2. Way 2:
 - a) Consistent tuple ightarrow conjunction of terms $\mathcal{X}_1 \wedge \mathcal{X}_5$
 - b) Each constraint \rightarrow disjunction of these conjunctions

$$(x_1 \wedge x_5) \vee (x_1 \wedge x_6) \vee (x_2 \wedge x_7)$$

$$\vee (x_3 \wedge x_6) \vee (x_4 \wedge x_5)$$

→ transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the sentence is satisfied

Constraint propagation for Boolean constraints: Unit propagation

```
Procedure Unit-Propagation
Input: A cnf theory, \varphi, d = Q_1, ..., Q_n.
Output: An equivalent theory such that every unit clause
does not appear in any non-unit clause.
1. queue = all unit clauses.
2. while queue is not empty, do.
        T \leftarrow next unit clause from Queue.
        for every clause \beta containing T or \neg T
              if \beta contains T delete \beta (subsumption elimination)
              else, For each clause \gamma = resolve(\beta, T).
              if \gamma, the resolvent, is empty, the theory is unsatisfiable.
              else, add the resolvent \gamma to the theory and delete \beta.
              if \gamma is a unit clause, add to Queue.
        endfor.
endwhile.
```

Theorem 3.6.1 Algorithm Unit-propagation has a linear time complexity.

Consistency for numeric constraints

```
x \in [1,10], y \in [5,15],
x + y = 10
arc-consistency \Rightarrow x \in [1,5], y \in [5,9]
by - adding - x + y = 10, -y \le -5
z \in [-10,10],
y + z \leq 3
path-consistency \Rightarrow x-z \ge 7
obtained -by - adding, x + y = 10, -y - z \ge -3
```

More arc-based consistency

- Global constraints: e.g., all-different constraints
 - Special semantic constraints that appears often in practice and a specialized constraint propagation.
 Used in constraint programming.
- Bounds-consistency: pruning the boundaries of domains

Bounds consistency

Definition 3.5.4 (bounds consistency) Given a constraint C over a scope S and domain constraints, a variable $x \in S$ is bounds-consistent relative to C if the value $min\{D_x\}$ (respectively, $max\{D_x\}$) can be extended to a full tuple t of C. We say that t supports $min\{D_x\}$. A constraint C is bounds-consistent if each of its variables is bounds-consistent.

Constraint checking

→ Arc-consistency

57

Overview 1

Bounds consistency for Alldifferent constraints

Example 3.5.5 Consider the constraint problem with variables $x_1, ... x_6$, each with domains 1, ..., 6, and constraints:

$$C_1: x_4 \ge x_1 + 3$$
, $C_2: x_4 \ge x_2 + 3$, $C_3: x_5 \ge x_3 + 3$, $C_4: x_5 \ge x_4 + 1$,

$$C_5$$
: $all different\{x_1, x_2, x_3, x_4, x_5\}$

The constraints are not bounds consistent. For example, the minimum value 1 in the domain of x_4 does not have support in constraint C_1 as there is no corresponding value for x_1 that satisfies the constraint. Enforcing bounds consistency using constraints C_1 through C_4 reduces the domains of the variables as follows: $D_1 = \{1, 2\}$, $D_2 = \{1, 2\}$, $D_3 = \{1, 2, 3\}$ $D_4 = \{4, 5\}$ and $D_5 = \{5, 6\}$. Subsequently, enforcing bounds consistency using constraints C_5 further reduces the domain of C to $D_3 = \{3\}$. Now constraint C_3 is no longer bound consistent. Reestablishing bounds consistency causes the domain of x_5 to be reduced to $\{6\}$. Is the resulting problem already arc-consistent?

For alldiff bounds consistency can be enforced in O(nlog n)

Tractable classes

- Theorem 3.7.1 1. The consistency binary constraint networks having no cycles can be decided by arc-consistent
 - 2. The consistency of binary constraint networks with bi-valued domains can be decided by path-consistency,
 - 3. The consistency of Horn cnf theories can be decided by unit propagation.

Changes in the network graph as a result of arc-consistency, path-consistency and 4-consistency.

