Consistency algorithms

Arc-consistency

1<X,Y,Z, T<L3
X<Y
Y=Z
T<Z
X<ZT

SQ 2010

X Y
@D——@
A —

@2d—@z
T Z

Arc-consistency

1<X,Y,Z, T<L3
X<Y
Y=Z
T<Z
X<ZT

SQ 2010

X Y
OO
A —

@©—O
T Z

Sound
Incomplete

Always converges
(polynomial)

Arc-consistency

W(IN = |D>

WIN| =D

WIN = W

W(IN| = |

WIN = 0O

Arc-consistency

Definition: Given a constraint graph G,

* Avariable V, is arc-consistent relative to V; iff for every value aeD,,
there exists a value beD,; | (a, b)eRy, ;.

Vi Vi Vi Vj

\\) \
* The constraint RM is arc-consistent iff
— V,is arc-consistent relative to V; and

— V,is arc-consistent relative to V;.

A binary CSP is arc-consistent iff every constraint (or sub-graph of size
2) is arc-consistent

™

Revise for arc-consistency

REVISE((z;), z;)

input: a subnetwork defined by two variables X = {z;,z;}, a distinguished variable z;,
domains: D; and D;, and constraint R;;

output: D;, such that, x; arc-consistent relative to z;

1. for each a; € D;

2. if there is no a; € D; such that (a;,a;) € R;;
3. then delete a; from D;

4, endif

5. endfor

Figure 3.2: The Revise procedure

D. < D, mﬂi(Rij ®Dj)

SQ 2010 6

A matching diagram describing a network of constraints that is not arc-
consistent (b) An arc-consistent equivalent network.

(a) (b)

SQ 2010

AC-1

AC-1(R)

input: a network of constraints R = (X, D, C)

output: R’ which is the loosest arc-consistent network equivalent to R

1. repeat

2. for every pair {z;,z;} that participates in a constraint
Revise((x;), x;) (or D; «+— D, Nm;(R;; X D;))
Revise((z;), z;) (or D; «— D; Nm;(R;; X D))

endfor
until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)

Complexity (Mackworth and Freuder, 1986):

e = number of arcs, n variables, k values

(ek”2, each loop, nk number of loops), best-case = ek,
Arc-consistency is: Q(ek?)

Complexity of AC-1: O(enk”3)

SQ 20109

Arc consistency

1. AC may discover the solution

Arc consistency

2. AC may discover inconsistency

X
({123}]

X<Y/ \kx

Y ({123} | ({123}]z
<z

AC-3
AC-3(R)

input: a network of constraints R = (X, D, ()
output: R’ which is the largest arc-consistent network equivalent to K
for every pair {x;, x;} that participates in a constraint R;; € R
queue «— queue U {(z;, x;), (z;, x;)}
endfor
while queue # {}
select and delete (z;, ;) from queue
Revise((x;), z;)
if Revise((x;),x;) causes a change in D
then queue « queue U {(xy, x;),1 # k}
endif

1
2
3
4
5.
6.
7
8
0.
10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)

« Complexity: O(ek?)
* Best case O(ek), since each arc may be processed in O(2k)

SQ 2010 11

Example: A 3 variables network with 2 constraints: z divides
x and z divides y (a) before and (b) after AC-3 is applied.

(@ (b)

Constraint checking

— Arc-consistency

1-B:[5..14]
C:[6..15]

2-A:[2..10]
C:[6..14]

2<C- A<5K’/[3-B:[5..13]

13

AC-4(R)

AC-4 ,;

P
input: a network of constraints R \;> <ﬁ L 2
output: An arc-consistent network equivalent to R

(@) ()

1. Initialization: M « 0,

2. initialize S, ., counter(i, a;, j) for all R;;

3. for all counters

4. if counter(z;,a;,x;) = 0 (if < z;,a; > is unsupported by z;)
5. then add < =x;,a; > to LIST

6. endif

7. endfor

8. while LIST is not empty

0. choose < z;,a; > from LIST, remove it, and add it to M
10. for each < z;,a; > in S, 4

11. decrement counter(zc;,a;, x;)

12. if counter(z;, a;,x;) = 0

13. then add < x;,a; > to LIST

14. endif

15. endfor

16. endwhile

* Compiexny.

Figure 3.7: Arc-consistency-4 (AC-4)
U(EK)

* (Counter is the number of supports to ai in xi from xj. S_(xi,ai) is the set of
pairs that (xi,ai) supports)

SQ 2010

14

Exercise: make the following network
arc-consistent

* Draw the network’s primal and dual constraint
graph

* Network =
— Domains {1,2,3,4}
— Constraints: y <x, z<y, t <z, f<t, x<=t+1, Y<f+2

Arc-consistency Algorithms

+ AC-1: brute-force, distributed ~ O(nek®)
e AC-3, queue-based O(eks)

* AC-4, context-based, optimal O(ekz)
* AC-5,6,7,.... Good in special cases

* Important: applied at every node of search

* (n number of variables, e=#fconstraints, k=domain size)
 Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

Using constraint tightness in analysis
t = number of tuples bounding a constraint

e AC-1: brute-force, O(nek®) O(nekt)
« AC-3, queue-based O(ek®) O(ekt)

* AC-4, context-based, optimal O(et)
* AC-5,6,7,.... Good in special cases

* Important: applied at every node of search

* (n number of variables, e=#constraints, k=domain size)
 Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

DRAC on the dual join-graph

RS
B

CF

18

SQ 2010

Distributed Relational
Arc-Consistency

 DRAC can be applied to the dual problem of
any constraint network:

h’i N Wﬂ@'j(Ri > (I><I kEne(z)h;)) (1)

Hy — R M (mkEne iy,) (2)

lteration 1
h? h?

hi h?
iAB iﬁ

h4 h4 h4 h4 h14

Wiiﬁm

SQ 2009 20

SQ 2009

Ry — RN (xd hene(i)
lteration 1

21

h"“—’m (s > (0 epeiyhy,)

lteration 2

he b

i

SQ 2009

1 1h11
i AiA
R,
i R h; hy
Aci
Xs

A B

B C

h14 R4 4 5 h 5 h 5

B C F H
: S

6 h6

= iy

22

Ry — RN (b4 pepe(iyh)
lteration ¢«

Rl
RZ

1 R,

2 / X 3

B A B C
R4 4 5 R5

D\6 /F
R6

SQ 2009

23

hi N Wﬁg’j(Ri > (l:x:] kefn,e(z)h@k)) (1)

Iteration 3
T T
Bl (B A |AB . R, ;
T RPUY

A B

B

R, s

4
FI

5 hy h he

IR WHH

s oa

SQ 2009 24

Hy — ;N (mkene iy,) (2)
Iteration 3 |

RZ
1 R,

2 / X 3

B A B C
R, 4 S
B CF

D\6 /F
R6

SQ 2009 25

hj — (R > (I><I kEne(z)h)) (1)
Iteration 4

1 h1 h1 h1

R3 h3

h4 h4 h4

6 2 11

s 3 oA ST
D\6/F

SQ 2009 26

Ry — 1 N (>4 keney)
lteration 4

RZ
1
2 / X 3
B A B C
R4 4 5
A B D
D\6 /F
R6

SQ 2009

27

15

hg

:

SQ 2009

hj — Ty, (Rz > (I}(] kEne(a)hiﬂ))

Iteration 5

h;

h, h,

1 h]_ hl hl

h R
w A B
H 1 R, h h;
2 AT N3
B A B C
R4 . 5 h5 h5
N BCF HH
D\6 /F

(1)

28

SQ 2009

R, — R;N

|terat|un J

R

[

B>

(I)Ci] k‘Ene(é)hi)

29

Distributed Arc-Consistency

— Arc-consistency can be formulated as a
distributed algorithm:

D; — D; N (D':] kEne(i) D ;)

a Constraint network

Relational Arc-consistency

The message that R2 sends to R1 is

hg — ?Tgs-j(R@' (> (M kEns[i)hi))

R1 updates its relation and domains and
sends messages to neighbors

D; — D;i N (0 pene(ny D5)

SQ 2010 31

Is arc-consistency enough?

 Example: a triangle graph-coloring with 2 values.
— Is it arc-consistent?
— Is it consistent?

* |tis not path, or 3-consistent.

Path-consistency

Definition 3.3.2 (Path-consistency) Given a constraint network R = (X, D,C), a
two variable set {zi,z;} is path-consistent relative to variable zy if and only if for every
consistent assignment (< z;,a; >, < z;,0; >) there is a value ay € Dy s, the assign-
ment (< i, 0; >,< Ty, ap >) is consistent and (< zy,0 >,< T;,0; >) is consistent.
Alternatively, o binary constraint R;; 15 path-consistent velative to zy off for every par
(a;,5), € Ry, where a; and a; are from their respective domains, there is a value gy € Dy
st (0;,a,) € Ry and (a,0;) € Ry;. A subnetwork over three variables {z;,z;,z;} is
path-consistent iff for any permutation of (4,7, k), Rij is path consistent relative to zy. A
network is path-consistent iff for every By; (including universal binary relations) and for
every k # 1,7 fi; 15 path-consistent relative to .

SQ 2010

33

Path-consistency

(a) (b)

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical
picture of path-consistency using the matching diagram.

Revise-3

REVISE-3((z,y), 2)

input: a three-variable subnetwork over (z,y, 2), Ry, R,., R...
output: revised R;, path-consistent with z.
1. for each pair (a,b) € R,

2. if no value ¢ € D, exists such that (a,¢) € Rz, and (b,¢) € Ry,
3. then delete (a,b) from R, .

4. endif

5. endfor

Figure 3.9: Revise-3
R; < R; rvrij(Rik ®D, ® Rkj)

 Complexity: O(k”3)
e Best-case: O(t)
* Worst-case O(tk)

SQ 2009

35

PC-1

PC-1(R)
input: a network R = (X, D,C).
output: a path consistent network equivalent to K.

1. repeat

2. fork— 1lton

3 fori,j« 1ton

4. Ri; «— Ry Ny (R M Dy X Ry;)/* (Revise — 3((2,7), k))
5. endfor

6 endfor

7. until no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)

« Complexity: O(n’k>)
* O(n”3) triplets, each take O(k”"3) steps = O(n"3 k*3)
 Max number of loops: O(n"2 k*2) .

SQ 2009

36

PC-2

PC-3(R)

input: a network R = (X, D,C).

output: R’ a path consistent network equivalent to R.

I. Q—{(i,k,j)|1<i<j<nl1<k<nk#ik#j}

2. while @ is not empty

3 select and delete a 3-tuple (i, k, j) from @

4. Ri; — Ri; Ny (R W Dy, X Ry;) /* (Revise-3((4,4), k))
5. if R;; changed then

6 Q—QU{{,i5) 1) |l<I<nl#il#]}

7. endwhile

Figure 3.11: Path-consistency-3 (PC-3)

Complexity: ~ O(n’k°)

Optimal PC-4: o(n’k®)

(each pair deleted may add: 2n-1 triplets, number of pairs: O(n*2 k*2) = size of Q
is O(n”3 k"2), processing is O(k”"3))

SQ 2009

37

Example: before and after path-
consistenc

(a) (b)

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

* PC-1 requires 2 processings of each arc while PC-2 may not
* Can we do path-consistency distributedly?

SQ 2009 38

Example: before and after path-
consistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

* PC-1 requires 2 processings of each arc while PC-2 may not
* Can we do path-consistency distributedly?

Path-consistency Algorithms

Apply Revise-3 (O(k”3)) until no change
Rij “— Rij N TT; (R, ®D, &® Rkj)

e Path-consistency (3-consistency) adds binary
constraints.

O(n°k®) * PC-1:
O(n°k®) =« PC-2:
O(n’k®) + PC-4 optimal:

|-consistency

AR O NSISTENCEY

-

G2

AT IO SISTENCY

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency,
(¢) i-consistency

Higher levels of consistency, global-
consistency

Definition 3.4.1 (:-consistency, global consistency) Given a general network of con-
straints R = (X, D,C), a relation Rg € C where |S| = 1 — 1 is i-consistent relative to
a variable y not in § iff for every t € Rg, there exists a value a € Dy, st. (t,a) is
consistent. A network is t-consistent iff giwen any consistent instantiation of any 1 — 1
distinct wariables, there exists an instantiation of any ith variable such that the 1 values
taken together satisfy all of the constraints among the ¢ variables. A network is strongly
t-consistent iff it is j-consistent for all 5 < 1. A strongly n-consistent network, where n
15 the number of variables in the network, is called globally consistent.

SQ 2010 42

Revise-|

REVISE-i({z1, %2, ..., Ti_1}, Z3)
input: a network R = (X, D,C)
output: a constraint Rg, S = {z1,, ;_1} i-consistent relative to x;.
1. for each instantiation a;_; = (< z1,a1 >, < Xa,09 >,...,< T;i_1,0;_1 >) do,
2. if no value of a; € D; exists s.t. (@;_1,a;) is consistent
then delete a; ; from Rg

(Alternatively, let & be the set of all subsets of {zy, ..., z;} that contain z;
and appear as scopes of constraints of R, then
RS — RS M ?TS(MS’ES RS”))

3. endfor

Figure 3.14: Revise-i
 Complexity: for binary constraints

e For arbitrary constraints: O((2k)')

SQ 2010 43

4-queen example

Q

Q
(2) (b)

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent

I-consistency

I-CONSISTENCY(R)

input: a network K.

output: an i-consistent network equivalent to K.

1. repeat

2. for every subset S C X of size i — 1, and for every z;, do

3. let & be the set of all subsets in of {z, ..., z;} scheme(R)
that contain x;

4, Rs «— RgNwg(Ngres Rsr) (this is Revise-i(S, z;))

6. endfor

7. until no constraint is changed.

Figure 3.15: i-consistency-1

Theorem 3.4.3 (complexity of i-consistency) The time and space complezity of brute-
force t-consistency O(2'(nk)¥) and O(n'k?), respectively. A lower bound for enforcing
eonsistency is (n'k'). O

SQ 2010

Arc-consistency for non-binary constraints:
Generalized arc-consistency

Definition 3.5.1 (generalized arc-consistency) Given a constraint network R = (X, D,C),
with Hg € C, a variable x s arc-consistent relative to Rs if and only if for every value
a € D, there exists a tuple t € Rg such that t{z] = a. t can be called a support for a.
The constraint Rg s called arc-consistent iff it is arc-consistent relative to each of the

variables in its scope and a constraint nefwork s arc-consistent if all its constraints are
arc-consistent.

D, <D, "7, (Rs ® Dg_)

Complexity: O(t k), t bounds number of tuples.
Relational arc-consistency:

RS{X} < 775{x}(Rs ®D,)

SQ 2010 46

Examples of generalized arc-consistency

e Xx+y+z<=15and z>=13 implies
X<=2, y<=2

 Example of relational arc-consistency

AAB —)G,—lG,:>—|A\/—|B

* X+y <=2

What is SAT?

Given a sentence:
— Sentence: conjunction of clauses

(c,v—c,vec,veg)a(c, v—c,)A(—c,)

— Clause: disjunction of literals (02 V —|C3)
— Literal: aterm or its negation Cl, _IC(;
— Term: Boolean variable C, = 1< —C, = 0]

Question: Find an assignment of truth values to the Boolean
variables such the sentence is satisfied.

Boolean constraint propagation

Example: party problem

* |f Alex goes, then Becky goes: A—B (or,—-AvB)
* |If Chris goes, then Alex goes: C—>A (or,—-CVvA)
* Query:
Is it possible that Chris goes to the party
but Becky does not?
I

Is propositional theory
@ = {_IA V B, —C v A, —lB, C} Sa.tiSﬁable?

CSP is NP-Complete

* Verifying that an assignment for all variables is
a solution

— Provided constraints can be checked in polynomial
time
* Reduction from 3SAT to CSP

— Many such reductions exist in the literature
(perhaps 7 of them)

Problem reduction

Example: CSP into SAT (proves nothing, just an exercise)
Notation: variable-value pair = vvp

. vvp—> term
={a, b, ¢, d}yields x; = (V, a), x, =(V,, b), x3=(V,, ¢), x, = (V,, d),
= {a, b, c}yields x5 = (V,, a), x5 = (V, b), x; =(V,,c).
. The vvp ’s of a variable — disjunction of terms
={a, b, ¢, d} yields
* (Optional) At most one VVP per variable X,V Xy VX VX,

(X, A =Xy A =Xy A =X)V (X A Xy A =Xy A=K,)V
(X, A =Xy A Xy A =X)V (=X A =Xy A—Xg AX,)

CSP into SAT (cont.)
Constraint: - C,,,, ={(a,a),(a,b), (b,C), (¢, b),(d,)}

1. Way 1: Each inconsistent tuple — one disjunctive clause

For example: —X, V=X, how many:
2. Way2:
a) Consistent tuple — conjunction of terms Xl /\ X5

b) Each constraint — disjunction of these conjunctions
(X1 A XS)V (Xl N\ XG)V (Xz A\ X?)
V(X A X)V (X, A X))

— transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the
sentence is satisfied

Constraint propagation for Boolean constraints: Unit
propagation

Procedure UNIT-PROPAGATION

Input: A cnf theory, @, d = @4, ..., @x.

Output: An equivalent theory such that every unit clause
does not appear in any non-unit clause.

1. queue = all unit clauses.

2. while queue is not empty, do.

3. T «+ next unit clause from Queue.

4. for every clause G containing 7" or =T
5. if 4 contains 7" delete 3 (subsumption elimination)
6. else, For each clause v = resolve(3,T).
if ~. the resolvent, is empty, the theory is unsatisfiable.
7. else, add the resolvent ~ to the theory and delete 5.
if ~ is a unit clause, add to Queue.
8. endfor.
9. endwhile.

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.

SQ 2010 53

Consistency for numeric constraints

X €[110],y €[5,15],

X+y=10

arc —consistency = x €[15],y €[5,9]
by —adding —x+y=10,—y<-5

2 €[-10,10],

y+2<3

path —consistency = x—z>7

obtained —by —adding,x+y=10,—-y—z > -3

More arc-based consistency

* Global constraints: e.g., all-different
constraints

— Special semantic constraints that appears often in
practice and a specialized constraint propagation.
Used in constraint programming.

* Bounds-consistency: pruning the boundaries
of domains

Bounds consistency

Definition 3.5.4 (bounds consistency) Given a constraint C over a scope S and do-
main constraints, a variable £ € S is bounds-consistent relative to C' if the value min{D,}
(respectively, maz{D;}) can be extended to a full tuple t of C. We say that t sup-

ports min{D,}. A constraint C is bounds-consistent if each of its variables is bounds-
consistent.

SQ 2010 56

Constraint checking

— Arc-consistency

1-B:[5..14]
C:[6..15]
2-A:[2..10]
[—1— 10] C:[6..14]
2<C- A<5\’/[3-B:[5..13]
[‘4— ‘15]

Overview 1 57

Bounds consistency for Alldifferent constraints

Example 3.5.5 Consider the constraint problem with variables zq,...xg, each with do-
mains 1,...,6, and constraints:

Ciixgzai+3, Chiza=zxa+3, Cyiaxsgzxa+3, Cyqixg>=xy+1,

Cs : alldif ferent{z,, T3, T3, T4, T5}

The constraints are not bounds consistent. For example, the minimum wvalue 1 in the
domain of z; does not have support in constraint €4 as there is no corresponding value
for z; that satisfies the constraint. Enforcing bounds consistency using constraints €y
through Cj reduces the domains of the variables as follows: Dy = {1,2}, Dy = {1,2},
Dy = {1,2,3} Dy = {4,5} and Ds = {5,6}. Subsequently, enforcing bounds consistency
using constraints Cys further reduces the domain of C to Dy = {3}.Now constraint Cj is
no longer bound consistent. Reestablishing bounds consistency causes the domain of zy
to be reduced to {6}. Is the resulting problem already arc-consistent? O

For alldiff bounds consistency can be enforced in O(nlog n)

SQ 2010 58

Tractable classes

Theorem 3.7.1 1. The consistency binary constraint networks having no cycles can
be decided by arc-consistent

2. The consistency of binary constraint networks unith bi-valued domains can be decided
by path-consistency,

3. The consistency of Horn cnf theories can be decided by unit propagation.

SQ 2010 59

Changes in the network graph as a result of
arc-consistency, path-consistency and 4-consistency.

arc-consistency
—t~
@HHL&V

SQ 2010

path-consistency

60

