Consistency algorithms



Arc-consistency

1<X,Y,Z, T<L3
X<Y
Y=Z
T<Z
X<ZT
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Arc-consistency
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Sound
Incomplete

Always converges
(polynomial)

Arc-consistency
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Arc-consistency

Definition: Given a constraint graph G,

* Avariable V, is arc-consistent relative to V; iff for every value aeD,,
there exists a value beD,; | (a, b)eRy, ;.

Vi Vi Vi Vj

\\ ) \
* The constraint RM is arc-consistent iff
— V,is arc-consistent relative to V; and

— V,is arc-consistent relative to V;.

A binary CSP is arc-consistent iff every constraint (or sub-graph of size
2) is arc-consistent

™




Revise for arc-consistency

REVISE((z;), z;)

input: a subnetwork defined by two variables X = {z;,z;}, a distinguished variable z;,
domains: D; and D;, and constraint R;;

output: D;, such that, x; arc-consistent relative to z;

1. for each a; € D;

2. if there is no a; € D; such that (a;,a;) € R;;
3. then delete a; from D;

4, endif

5. endfor

Figure 3.2: The Revise procedure

D. < D, mﬂi(Rij ®Dj)
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A matching diagram describing a network of constraints that is not arc-
consistent (b) An arc-consistent equivalent network.

(a) (b)

SQ 2010



AC-1

AC-1(R)

input: a network of constraints R = (X, D, C)

output: R’ which is the loosest arc-consistent network equivalent to R

1. repeat

2. for every pair {z;,z;} that participates in a constraint
Revise((x;), x;) (or D; «+— D, Nm;(R;; X D;))
Revise((z;), z;) (or D; «— D; Nm;(R;; X D))

endfor
until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)

Complexity (Mackworth and Freuder, 1986):

e = number of arcs, n variables, k values

(ek”2, each loop, nk number of loops), best-case = ek,
Arc-consistency is: Q(ek?)

Complexity of AC-1: O(enk”3 )

SQ 20109



Arc consistency

1. AC may discover the solution




Arc consistency

2. AC may discover inconsistency

X
({123} ]

X<Y/ \kx

Y ({123} | ({123} ]z
<z




AC-3
AC-3(R)

input: a network of constraints R = (X, D, ()
output: R’ which is the largest arc-consistent network equivalent to K
for every pair {x;, x;} that participates in a constraint R;; € R
queue «— queue U {(z;, x;), (z;, x;)}
endfor
while queue # {}
select and delete (z;, ;) from queue
Revise((x;), z;)
if Revise((x;),x;) causes a change in D
then queue « queue U {(xy, x;),1 # k}
endif

1
2
3
4
5.
6.
7
8
0.
10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)

« Complexity: O(ek?)
* Best case O(ek), since each arc may be processed in O(2k)

SQ 2010 11



Example: A 3 variables network with 2 constraints: z divides
x and z divides y (a) before and (b) after AC-3 is applied.

(@ (b)



Constraint checking

— Arc-consistency

1-B:[5..14]
C:[6..15]

2-A:[2..10]
C:[6..14]

2<C- A<5K’/[ 3-B:[5..13]

13



AC-4(R)

AC-4 ,;

P
input: a network of constraints R \;> <ﬁ L 2
output: An arc-consistent network equivalent to R

(@) ()

1. Initialization: M « 0,

2. initialize S, ., counter(i, a;, j) for all R;;

3. for all counters

4. if counter(z;,a;,x;) = 0 (if < z;,a; > is unsupported by z;)
5. then add < =x;,a; > to LIST

6. endif

7. endfor

8. while LIST is not empty

0. choose < z;,a; > from LIST, remove it, and add it to M
10. for each < z;,a; > in S, 4

11. decrement counter(zc;,a;, x;)

12. if counter(z;, a;,x;) = 0

13. then add < x;,a; > to LIST

14. endif

15. endfor

16. endwhile

* Compiexny.

Figure 3.7: Arc-consistency-4 (AC-4)
U(EK )

* (Counter is the number of supports to ai in xi from xj. S_(xi,ai) is the set of
pairs that (xi,ai) supports)

SQ 2010
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Exercise: make the following network
arc-consistent

* Draw the network’s primal and dual constraint
graph

* Network =
— Domains {1,2,3,4}
— Constraints: y <x, z<y, t <z, f<t, x<=t+1, Y<f+2



Arc-consistency Algorithms

+ AC-1: brute-force, distributed ~ O(nek®)
e AC-3, queue-based O(eks)

* AC-4, context-based, optimal O(ekz)
* AC-5,6,7,.... Good in special cases

* Important: applied at every node of search

* (n number of variables, e=#fconstraints, k=domain size)
 Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...



Using constraint tightness in analysis
t = number of tuples bounding a constraint

e AC-1: brute-force,  O(nek®) O(nekt)
« AC-3, queue-based  O(ek®) O(ekt)

* AC-4, context-based, optimal O(et)
* AC-5,6,7,.... Good in special cases

* Important: applied at every node of search

* (n number of variables, e=#constraints, k=domain size)
 Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...



DRAC on the dual join-graph

RS
B

CF

18
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Distributed Relational
Arc-Consistency

 DRAC can be applied to the dual problem of
any constraint network:

h’i N Wﬂ@'j(Ri > (I><I kEne(z)h;)) (1)

Hy — R M (mkEne iy, ) (2)



lteration 1
h?  h?

hi h?
iAB iﬁ

h4 h4 h4 h4 h14

Wiiﬁm
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lteration 2
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Ry — RN (b4 pepe(iyh)
lteration ¢«

Rl
RZ

1 R,

2 / X 3

B A B C
R4 4 5 R5
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hi N Wﬁg’j(Ri > (l:x:] kefn,e(z)h@k)) (1)

Iteration 3
T T
Bl (B A |AB . R, ;
T RPUY

A B

B

R, s

4
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5 hy h he

IR WHH

s oa
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Hy — ;N (mkene iy, ) (2)
Iteration 3 |

RZ
1 R,

2 / X 3

B A B C
R, 4 S
B CF

D\6 /F
R6
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hj — (R > (I><I kEne(z)h )) (1)
Iteration 4

1 h1 h1 h1

R3 h3

h4 h4 h4

6 2 11

s 3 oA ST
D\6/F
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Ry — 1 N (>4 keney )
lteration 4

RZ
1
2 / X 3
B A B C
R4 4 5
A B D
D\6 /F
R6

SQ 2009

27



15

hg

:

SQ 2009

hj — Ty, (Rz > (I}(] kEne(a)hiﬂ))

Iteration 5
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Distributed Arc-Consistency

— Arc-consistency can be formulated as a
distributed algorithm:

D; — D; N (D':] kEne(i) D ; )

a Constraint network



Relational Arc-consistency

The message that R2 sends to R1 is

hg — ?Tgs-j(R@' (> (M kEns[i)hi))

R1 updates its relation and domains and
sends messages to neighbors

D; — D;i N (0 pene(ny D5)

SQ 2010 31



Is arc-consistency enough?

 Example: a triangle graph-coloring with 2 values.
— Is it arc-consistent?
— Is it consistent?

* |tis not path, or 3-consistent.



Path-consistency

Definition 3.3.2 (Path-consistency) Given a constraint network R = (X, D,C), a
two variable set {zi,z;} is path-consistent relative to variable zy if and only if for every
consistent assignment (< z;,a; >, < z;,0; >) there is a value ay € Dy s, the assign-
ment (< i, 0; >,< Ty, ap >) is consistent and (< zy,0 >,< T;,0; >) is consistent.
Alternatively, o binary constraint R;; 15 path-consistent velative to zy off for every par
(a;,5), € Ry, where a; and a; are from their respective domains, there is a value gy € Dy
st (0;,a,) € Ry and (a,0;) € Ry;. A subnetwork over three variables {z;,z;,z;} is
path-consistent iff for any permutation of (4,7, k), Rij is path consistent relative to zy. A
network is path-consistent iff for every By; (including universal binary relations) and for
every k # 1,7 fi; 15 path-consistent relative to .

SQ 2010
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Path-consistency

(a) (b)

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical
picture of path-consistency using the matching diagram.



Revise-3

REVISE-3((z,y), 2)

input: a three-variable subnetwork over (z,y, 2), Ry, R,., R...
output: revised R;, path-consistent with z.
1. for each pair (a,b) € R,

2. if no value ¢ € D, exists such that (a,¢) € Rz, and (b,¢) € Ry,
3. then delete (a,b) from R, .

4. endif

5. endfor

Figure 3.9: Revise-3
R; < R; rvrij(Rik ®D, ® Rkj)

 Complexity: O(k”3)
e Best-case: O(t)
* Worst-case O(tk)

SQ 2009
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PC-1

PC-1(R)
input: a network R = (X, D,C).
output: a path consistent network equivalent to K.

1. repeat

2. fork— 1lton

3 fori,j« 1ton

4. Ri; «— Ry Ny (R M Dy X Ry;)/* (Revise — 3((2,7), k))
5. endfor

6 endfor

7. until no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)

« Complexity: O(n’k>)
* O(n”3) triplets, each take O(k”"3) steps = O(n"3 k*3)
 Max number of loops: O(n"2 k*2) .

SQ 2009
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PC-2

PC-3(R)

input: a network R = (X, D,C).

output: R’ a path consistent network equivalent to R.

I. Q—{(i,k,j)|1<i<j<nl1<k<nk#ik#j}

2. while @ is not empty

3 select and delete a 3-tuple (i, k, j) from @

4. Ri; — Ri; Ny (R W Dy, X Ry;) /* (Revise-3((4,4), k))
5. if R;; changed then

6 Q—QU{{,i5) 1) |l<I<nl#il#]}

7. endwhile

Figure 3.11: Path-consistency-3 (PC-3)

Complexity: ~ O(n’k°)

Optimal PC-4: o(n’k®)

(each pair deleted may add: 2n-1 triplets, number of pairs: O(n*2 k*2) = size of Q
is O(n”3 k"2), processing is O(k”"3))

SQ 2009
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Example: before and after path-
consistenc

(a) (b)

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

* PC-1 requires 2 processings of each arc while PC-2 may not
* Can we do path-consistency distributedly?

SQ 2009 38



Example: before and after path-
consistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

* PC-1 requires 2 processings of each arc while PC-2 may not
* Can we do path-consistency distributedly?



Path-consistency Algorithms

Apply Revise-3 (O(k”3)) until no change
Rij “— Rij N TT; (R, ®D, &® Rkj)

e Path-consistency (3-consistency) adds binary
constraints.

O(n°k®) * PC-1:
O(n°k®) =« PC-2:
O(n’k®) + PC-4 optimal:



|-consistency

AR O NSISTENCEY

-

G2

AT IO SISTENCY

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency,
(¢) i-consistency



Higher levels of consistency, global-
consistency

Definition 3.4.1 (:-consistency, global consistency) Given a general network of con-
straints R = (X, D,C), a relation Rg € C where |S| = 1 — 1 is i-consistent relative to
a variable y not in § iff for every t € Rg, there exists a value a € Dy, st. (t,a) is
consistent. A network is t-consistent iff giwen any consistent instantiation of any 1 — 1
distinct wariables, there exists an instantiation of any ith variable such that the 1 values
taken together satisfy all of the constraints among the ¢ variables. A network is strongly
t-consistent iff it is j-consistent for all 5 < 1. A strongly n-consistent network, where n
15 the number of variables in the network, is called globally consistent.
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Revise-|

REVISE-i({z1, %2, ..., Ti_1}, Z3)
input: a network R = (X, D,C)
output: a constraint Rg, S = {z1, ...., ;_1} i-consistent relative to x;.
1. for each instantiation a;_; = (< z1,a1 >, < Xa,09 >,...,< T;i_1,0;_1 >) do,
2. if no value of a; € D; exists s.t. (@;_1,a;) is consistent
then delete a; ; from Rg

(Alternatively, let & be the set of all subsets of {zy, ..., z;} that contain z;
and appear as scopes of constraints of R, then
RS — RS M ?TS(MS’ES RS”))

3. endfor

Figure 3.14: Revise-i
 Complexity: for binary constraints

e For arbitrary constraints: O((2k)')
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4-queen example

Q

Q
(2) (b)

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent




I-consistency

I-CONSISTENCY(R)

input: a network K.

output: an i-consistent network equivalent to K.

1. repeat

2. for every subset S C X of size i — 1, and for every z;, do

3. let & be the set of all subsets in of {z, ..., z;} scheme(R)
that contain x;

4, Rs «— RgNwg(Ngres Rsr) ( this is Revise-i(S, z;))

6. endfor

7. until no constraint is changed.

Figure 3.15: i-consistency-1

Theorem 3.4.3 (complexity of i-consistency) The time and space complezity of brute-
force t-consistency O(2'(nk)¥) and O(n'k?), respectively. A lower bound for enforcing
eonsistency is (n'k'). O

SQ 2010



Arc-consistency for non-binary constraints:
Generalized arc-consistency

Definition 3.5.1 (generalized arc-consistency) Given a constraint network R = (X, D,C),
with Hg € C, a variable x s arc-consistent relative to Rs if and only if for every value
a € D, there exists a tuple t € Rg such that t{z] = a. t can be called a support for a.
The constraint Rg s called arc-consistent iff it is arc-consistent relative to each of the

variables in its scope and a constraint nefwork s arc-consistent if all its constraints are
arc-consistent.

D, <D, "7, (Rs ® Dg_)

Complexity: O(t k), t bounds number of tuples.
Relational arc-consistency:

RS{X} < 775{x}(Rs ®D,)
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Examples of generalized arc-consistency

e Xx+y+z<=15and z>=13 implies
X<=2, y<=2

 Example of relational arc-consistency

AAB —)G,—lG,:>—|A\/—|B

* X+y <=2



What is SAT?

Given a sentence:
— Sentence: conjunction of clauses

(c,v—c,vec,veg)a(c, v—c,)A(—c,)

— Clause: disjunction of literals (02 V —|C3)
— Literal: aterm or its negation Cl, _IC(;
— Term: Boolean variable C, = 1< —C, = 0]

Question: Find an assignment of truth values to the Boolean
variables such the sentence is satisfied.



Boolean constraint propagation

Example: party problem

* |f Alex goes, then Becky goes: A—B (or,—-AvB)
* |If Chris goes, then Alex goes: C—>A (or,—-CVvA)
* Query:
Is it possible that Chris goes to the party
but Becky does not?
I

Is propositional theory
@ = {_IA V B, —C v A, —lB, C} Sa.tiSﬁable?



CSP is NP-Complete

* Verifying that an assignment for all variables is
a solution

— Provided constraints can be checked in polynomial
time
* Reduction from 3SAT to CSP

— Many such reductions exist in the literature
(perhaps 7 of them)



Problem reduction

Example: CSP into SAT (proves nothing, just an exercise)
Notation: variable-value pair = vvp

. vvp—> term
={a, b, ¢, d}yields x; = (V, a), x, =(V,, b), x3=(V,, ¢), x, = (V,, d),
= {a, b, c}yields x5 = (V,, a), x5 = (V, b), x; =(V,,c).
. The vvp ’s of a variable — disjunction of terms
={a, b, ¢, d} yields
* (Optional) At most one VVP per variable X,V Xy VX VX,

(X, A =Xy A =Xy A =X )V (X A Xy A =Xy A=K, )V
(X, A =Xy A Xy A =X )V (=X A =Xy A—Xg AX,)



CSP into SAT (cont.)
Constraint: - C,,,, ={(a,a),(a,b), (b,C), (¢, b),(d, )}

1. Way 1: Each inconsistent tuple — one disjunctive clause

For example: —X, V=X, how many:
2. Way2:
a) Consistent tuple — conjunction of terms Xl /\ X5

b) Each constraint — disjunction of these conjunctions
(X1 A XS)V (Xl N\ XG)V (Xz A\ X?)
V(X A X )V (X, A X))

— transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the
sentence is satisfied



Constraint propagation for Boolean constraints: Unit
propagation

Procedure UNIT-PROPAGATION

Input: A cnf theory, @, d = @4, ..., @x.

Output: An equivalent theory such that every unit clause
does not appear in any non-unit clause.

1. queue = all unit clauses.

2. while queue is not empty, do.

3. T «+ next unit clause from Queue.

4. for every clause G containing 7" or =T
5. if 4 contains 7" delete 3 (subsumption elimination)
6. else, For each clause v = resolve(3,T).
if ~. the resolvent, is empty, the theory is unsatisfiable.
7. else, add the resolvent ~ to the theory and delete 5.
if ~ is a unit clause, add to Queue.
8. endfor.
9. endwhile.

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.
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Consistency for numeric constraints

X €[110],y €[5,15],

X+y=10

arc —consistency = x €[15],y €[5,9]
by —adding —x+y=10,—y<-5

2 €[-10,10],

y+2<3

path —consistency = x—z>7

obtained —by —adding,x+y=10,—-y—z > -3



More arc-based consistency

* Global constraints: e.g., all-different
constraints

— Special semantic constraints that appears often in
practice and a specialized constraint propagation.
Used in constraint programming.

* Bounds-consistency: pruning the boundaries
of domains



Bounds consistency

Definition 3.5.4 (bounds consistency) Given a constraint C over a scope S and do-
main constraints, a variable £ € S is bounds-consistent relative to C' if the value min{D,}
(respectively, maz{D;}) can be extended to a full tuple t of C. We say that t sup-

ports min{D,}. A constraint C is bounds-consistent if each of its variables is bounds-
consistent.
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Constraint checking

— Arc-consistency

1-B:[5..14]
C:[6..15]
2-A:[2..10]
[—1— 10] C:[6..14]
2<C- A<5\’/[ 3-B:[5..13]
[‘4— ‘15]

Overview 1 57



Bounds consistency for Alldifferent constraints

Example 3.5.5 Consider the constraint problem with variables zq,...xg, each with do-
mains 1,...,6, and constraints:

Ciixgzai+3, Chiza=zxa+3, Cyiaxsgzxa+3, Cyqixg>=xy+1,

Cs : alldif ferent{z,, T3, T3, T4, T5}

The constraints are not bounds consistent. For example, the minimum wvalue 1 in the
domain of z; does not have support in constraint €4 as there is no corresponding value
for z; that satisfies the constraint. Enforcing bounds consistency using constraints €y
through Cj reduces the domains of the variables as follows: Dy = {1,2}, Dy = {1,2},
Dy = {1,2,3} Dy = {4,5} and Ds = {5,6}. Subsequently, enforcing bounds consistency
using constraints Cys further reduces the domain of C to Dy = {3}.Now constraint Cj is
no longer bound consistent. Reestablishing bounds consistency causes the domain of zy
to be reduced to {6}. Is the resulting problem already arc-consistent? O

For alldiff bounds consistency can be enforced in O(nlog n)
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Tractable classes

Theorem 3.7.1 1. The consistency binary constraint networks having no cycles can
be decided by arc-consistent

2. The consistency of binary constraint networks unith bi-valued domains can be decided
by path-consistency,

3. The consistency of Horn cnf theories can be decided by unit propagation.
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Changes in the network graph as a result of
arc-consistency, path-consistency and 4-consistency.

arc-consistency
—t~
@HHL&V
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path-consistency
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