How | entered Constraints:
Some of the Early Milestones

Rina Dechter
UC-Irvine

CP'07

Mechanical Heuristic generation

Observation: People generate heuristics by consulting simplified/relaxed models.
Context: Heuristic search (A*) of state-space graph (Nillson, 1980)

Context: Weak methods vs. strong methods

Domain knowledge: Heuristic function

2[8]3
1{6]14
0+417 5
21813 813 21813
11614 1 4 11614
h(n):Heuristic underestimate ! *oWd 1+30h L+5 s
the best cost_from — X —
n to the solution 2+ 3metsl J2+300E 2+ 4R
813 21813 213 213
21114 71114 11814 118]4
3+ 3 [7]6]5 3+ 4 [els 3+27i5 3+ 4 [7]6]5
11213
R[4
4 + 1 [7]el5
Goal
11213 1 3
g| |4 7[8]4 2
5+ 0 [71el5 5+2[1sl5

THE CGPTIMALIITY OF A* REVISITELY

Himn DDechibes med Jodies Peard

l.l'l-E-
Tlmaeeer=nk ﬁ ﬂ-ﬂ.l:.l!ur:lln.. m ﬂﬂ.m

ATEET LT

This paprr mcanmicrs Lhe !:ll:lﬂlrﬂE"'-:l' ol A* in
e Emnrns O -—E;L-E- :.11& Itul. S ber of desblinst
Epcmilasn. OEEE ef alscecilhiirs which
reluarfa seioliores ool n:u-rn'p-rn'hlt el s fes blsab o
A= e Frsf =how Lhal &4« s cptimal o= Lhose=
orftsenme guarnnieaed to fmed & oo &1 lEast ms
E:l:!:l aE A*Te Tor ewery g el N
cared e cormidar & wader olass of slporilbhone
whiclk s A", &rfe gusranbesd 1o Bnd an oFlamal
sorulion (ba., efmaymaible)l B @l eyl sallootmes aro
orflemisile fhe . Ash=]. Do Lhis cless we show Lhab
A I ol oplinmeal sod fhab o e o il algordiEnom
st LLHJIE“ 5 s al=o o ocorsisientd . an whscEn chse A oas
SRl '3' shooem LSk A® b ppetlanial osssr Lhe
-ul:uz'l;‘:s ol e rel algorfiiones which sres sdooss—

e e et

. ITNTHREFLUCTION ARD PRELM DN AT ES
e ATramnd Inforemed Flesl-Bast SRreleaglos

Cf wll semir—h @lrmlL s gyaerd] D prebhleEgm o wolees
Ly o=me of Ll Brvcesl T.t-#u mamlhods of explailing
e o et e Snd oeresma] e Lo cul dessn ekl Difree e Lbes
P d Easl-firse sliralegy T gencral pbhiiocaa
ol this sirals=gy s o wss the heurssibc andorones
Rior Lo s s e K oo me=rzl"" Sabtent mm T CEndicdate
wemec i meEeTTAaE, Lheen caomlinne Lhe s mlhom alang
She Airectirn ol higheet reees | t———" s ot e
ef Lhis slralegy mroe cyaumliiy lr-'\.--. in Lhe conbowxt ol
Eatm seanrchisyg probls=mme FeFirnidmios= which
e e nils ITiany 5-|:iI1|L-_I|I:-I.|:||.IIJ Hrodem =ne mush &bk
roerling. g b o oliNUE - [= = R B S i
analyemm. ard oLhers. Gieen o weighled Sireclinnml
] Domnlh o= o dislnpulEtyet starl mreSe = ariad a sel
=f gonl fesdes T, Lhe opdeomal bl kB Lo e
B Aol il [EeatlEn Proo s e womere L= ooml ol Lthe
path hedy. L B
l.'hlul melghts Lo ke modes mod hrasc e
mlong thel path

By far, Lhe el stocdeed persion of IBSarrese
I:.r_--r_-ﬂ.l-L 'lll-.r-L rm ir the sigporitho A% [Hearl, ®als-
B bl IGEH)] which wos deove [
:I-:I'I:FLI!I-I Eﬂ- - o wirerre Lhe ooml [= h
Ls defloned e il foenm of Lhe coefsx ol (be sres T
emtch This oSt meEsurs, A« ctmplays m mpmcoal mcd -
Lisw dnirm= ol evalunlion Func e FraaSe up From
hic surm Finlepin]j+hinl where piem}lis Lhe ol of
ihe carrently @vnalunlied sl W L= Erdd & B oA

Hogparted n et bF KEF Geesl Ne BSC G140

Earcor imlles eslirrmies o L cowi ol thae palh resnaaning
=T Bnd ST _llﬂ.] T Ce HAF Ssbnmlrecls @
Eress T of ssehecied palbhs of O wEbeyg Lhee -tl-El'llEl'lLﬂl'ir

surcrmenres . ol & given medc Etaritm wikh =,
o Do dar -:J:l-rlu:l::- fthat lonl node ol & which hn:
i mealssiaine Lhe lewest g
Lo mrnss i-.l-c-n mpewlie The sesrc® halls me oo e
B el geleclbed o erpanelaoees 58 fnond Lo sal izl Lihm
g:;hl (=fr gt JLEELE B 1% = knaowm Lhal IF Ria) i 8 leswer
e ko Uhve osoel o ey sosdinuslion palh Froan o
ko 1% Lhen AF s acbouiswibbr, Lhed s
L= Ared Lhe oplimad pslh

T2 FPrevicias Wosiox

The optenatilty =l 4=, in 1the senses of sspands
mg bLhe foos! mumnbior o) dslenaf noedes, has Sesen n
s bjerl of semie confasion The s=l-koows properiy
ol A= wrhish predecie fhed decres arrors BE—N
P :lh-:r ismprevde Le pEarliermmenes ke, LEEI,
rESall B Eea aflEsn been inlerprsisd La reflacl =ame
poprecnssy ol 4= avrer allher sracch algosilhoma ol
emml EBrdorenslion o ey ise= i SevErnl aul bhesm
heves nl-u-urr..en:l Lhs! &+ ety b A eslah s e
I'lul:'l. ETE Petle=on. LETIC marteill. LE77, MErs LEB],
Feigenkbazson., IS9EE) In Tact, all Lhas proe
E ey el moome 4% slpaorithmme Lol BellsT
tﬂ. aglher £ alparfimes Sepesaling o See bearie-
Lics wiaoh gilels Lherms JL ﬂ:—: ezl |-r-£u=||.|_r v dpr L Faer i
i1he addisiee rake F sgeds i Balbbker 15eamn- oalher r.-.;..m
of peoomibdming o o aned b e g, Fep ehTeo (oeh]] =it ey
does jL apmure oF Lhel expanshom pollobss based omly
on g mand B can do os= well s mores sopdsristiosles
Bl =-firal policies asing 1he enbire iofcremesison
Eaiteered slong =sch palh (e g - Foms= max Lri=s
i= on The path tow |]. Thesr bwo conpeolures will 'be
mmarniined in thm paper. and will Bbe given s gealnfieds
e Flr el e

ki is gusranteed

Gelpermin (18975 s coarrecilly polesed owl Thet
in mny discussion of e oplirssbly of 4F o= shoastd
tI:-z'l:u:lu.ru 1T Lo om wedier class of egusll Irl.zn-rn-_\-e-cl. l!.]-i:‘—

. mol merely Lhose i =||" F
I-'I1-I- the cormparis=sn clsee ehoold e lu -|-=-11'l
i, -JLE=||'|IJ1.rr|- & s h i.:r il USeir & in P T T
wilh & infer et oy ||ll|r-:| durt Lthes Eaarsk
His arsealyeis, .urd'-:riuﬁtw:lg.- =T ol s el r—
1:|1.n Ll snflereily of Dl = |:-|:I class, heaving Lo foi-

[-Tsl] orerr—-resirhsibe e s P Flacrs (o2 o L P B

£ Gelperean's mnlberpretalion of Lhe siatie-
el Cmn mlpgsrmtiem O e neoer ore s o l_tq.g.—\.
AT el erly resicicles & Fresoe l.I.-'_H} il oAt unar
wallemiehe Lo M. bl mlse Terlids s R T e e
ceoomimern infbormeathon Gn o8 Seedter weayr Lhan & doess

The Simplified models Paradigm

Pearl 1983 (On the discovery and generation of certain Heuristics, 1983, Al
Magazine, 22-23) . “knowledge about easy problems could serve as a heuristic in
the solution of difficult problems, i.e., that it should be possible to manipulate the
representation of a difficult problem until it is approximated by an easy one, solve
the easy problem, and then use the solution to guide the search process in the
original problem.”

The implementation of this scheme requires three major steps:
a) simplification,

b) solution, and

c) advice generation.

Simplified = relaxed is appealing because:
1. implies admissibility, monotonicity,
2. explains many human-generated heuristics (15-puzzle, traveling salesperson)

“We must have a simple a-priori criterion for deciding when a problem lends itself
to easy solution.” 4

Systematic relaxation of STRIPS

7l 21| 4 1
STRIPS (Stanford Research Institute 5 5 3 [4
Problem Solver, Nillson and Fikes 1971)

action representation: B | 3 || 1 6 1ff 7

Move(x,c1,c2)

Precond list: on(x1,c1), clear(c2), adj(c1,c2)
Add-list: on(x1,c2), clear(c1)
Delete-list: on(x1,c1), clear(c2)

Relaxation (Sacerdoti, 1974): Remove literals from the precondition-list:
1. clear(c2), adj(c2,c3) - #misplaced tiles

2. Remove clear(c2) - manhatten distance

3. Remove adj(c2,c3) = h3, a new procedure that transfer to the empty
location a tile appearing there in the goal

But the main question remained:
“Can a program tell an easy problem from a hard one without actually
solving?” (Pearl 1984, Heuristics) 5

Easy = Greedily solved?

Pearl, 84: Most easy problems we encounter are solved by
“greedy” hill-climbing methods without backtracking” and that
the features that make them amenable to such methods is their
“decomposability”

The question now:
Can we recognize a greedily solved STRIPS problem?”

On the greedy solution of
ordering/scheduling problems

Job-shop: minimizing weighted average flow-time on a single processor

C(1,2,n) = Zi:l qi Z pj
j=1

Spanish treasure problem: An unknown number of chests of Spanish treasure have been
buried on a random basis in n sites. For each site there is a probability p_i that the chest is
there and the cost of excavating a site is q_i. Find a sequence of excavations that will
minimize the average cost of finding the first chest.

Greedy strategy: ;’
So, the question now: Can we characterize when does an ordering problem has a ranking
function, or a greedy rule, (not necessarily using the cost function) that yields an optimal
solution?

The result is in my thesis (1985) and later in a paper (1989) “On the greedy solution of
ordering problems” ORSA Journal of Computing, Vol 1, No. 3, 1989. A paper which is
largely un-cited and unknown /

On the greedy solution...
(continued)

Theorem: If P is any greedily optimized problem then an optimizing
ranking function f has to agree with the ordering dictated by the cost
function on pairs of elements.
Namely for every two elements a and b
C(a,b) > C(b,a) iff f(a) > f(b).
Clo) = C(o") = (Uin1pi — Wipiv))
- (a , p_) ®)

ul' ul+l

The theory explained all known greedy rules for ordering problems.

Conclusion: “The paper provides necessary and sufficient
conditions for a problem to be greedily optimized by a uniform
ranking function. The virtue of these conditions is that they are easy
to test and thus may be useful in mechanizing the process of
generating greedy strategies by computers.”

0899-1499/89/0103-0181 $01.25

ORSA Journal on Compuung
S © 1989 Operations Rescarch Societvy of Amenca

Vol. 1. No. 3. Summer 1989

On the Greedy Solution of Ordering Problems

AVI DECHTER
RINA DECHTER

Department of Management Science. California Staie University, Northridge, CA4 91330

Cognitive Systems Laboratory, Computer Science Department, University of California,
Los Angeles. C4 90024

(new paper in
EJOR, 2001 “Greedy
Solutions of selection

({Received: January t1988: final revision received: September 1989; accepted: February 1989)

The greedy method is a well-known approach for problem solving directed mainly at the solution of optimization

problems. Leading theoretical frameworks dealing with the optimality of greedy solutions (e.g., the matroid and

greedoid theories) tacitly assume that the greedy algorithm is always guided by the cost function to be optimized.
namely, it builds a solution by adding, in each step, an element that contributes the most to the value of the cost
function. This paper studies a class of problems for which this type of a greedy algorithm does not optimize the
given cost function, but for which there exists a secondary objective function, called a greedy rule, such that
applying the greedy algorithm to the secondary objective function yields a solution which is optimal with respect

to the original cost function.

The greedy method is a well-known approach for
problem solving directed mainly at the solution of
optimization problems involving the selection and/or
the ordering of elements from a given set so as to
maximize or minimize a given objective function.
Nilsson! views the greedy algorithm as an irrevocable
(i.e., without backtracking) search strategy that uses
local knowledge to construct a solution in a “hill climb-
ing” process. The greedy control strategy selects the
next state so as to achieve the largest possible improve-
ment in the value of some measure that, as pointed out
by Horowitz and Sahni.'*! may or may not be the
objective function.

Omur interest in greedy methods originated in earlier
research in the area of heuristic problem solving.!?! The
connection between these two subjects is twofold. First,
greedy schemes are probably the closest to emulate
human problem-solving strategies because they require
only a minimum amount of memory space and because
they often produce adequate (if not optimal) results.
(Due to the small size of human short-terrmn memory, it
is very hard to conceive of a human conducting best-
first or even backtracking search, both requiring reten-
tion of some properties of previously suspended alter-
natives.) Second, greedily optimized problems (i.e., for
which a greedy algorithm produces optimal soiutions)
represent a class of relatively easy problems. Pear}!'®}
has demonstrated that many heuristics used in the
solution of hard problems are based on simplified
models of the problem domain, which admit easy so-
lutions. Therefore, the ability to characterize classes of
easy problems is important, particularly if the process
of discovering heuristics is to be mechanized.

Subyect classificarion: Analysis of algorithms: optimality of greedy algorithms.

181

and ordering
Problems”)

This paper is concerned exclusively with ordering
problems, involving a set of elements and a cost func-
tion defined on ail permutations of the elements, where
the task is to order the elements so as to maximize (or
minimize) the value of the cost function. Job sequenc-
ing on a single machine and the traveling salesman
problems are two examples of this class of problems.

A theoretical framework, called greedoid theory,
which characterizes a class of ordering problems that
can be solved optimally by greedy algorithms, is due to
Korte and Lovasz./®! The greedoid structure is a gener-
alization of the matroid structure which provides a
theoretical foundation for the optimality of the greedy
algorithm on selection problems. (In contrast with or-
dering problems. selection problems involve a set of
elements and a cost function defined on all unordered
subsets of elements, where the task is to select a subset
of elements which satisfies some property, so as to
maximize (or minimize) the value of the cost function.
The minimum weight spanning tree problem is a well
known example of this class of problems. For further
details on matroids refer, for example, to Lawler® or
Welsh!!2h),

The greedoid theory (as well as the matroid theory)
considers only greedy algorithms that use the cost func-
tion to be optimized as their selection criterion, namely,
which build the solution by adding, at each step, that
element which results in maximum improvement in
the wvalue of that cost function. The appendix to this
paper lists a number of known ordering problems for
which this greedy algorithm does not optimize the cost
function, but for which there exists a secondary objec-
tive function, which we call a greedy rule, such that

Freuder, JACM 1982 : “A sufficient condition
for backtrack-free search”

Whow! Backtrack-free is greedy!

| read Montanari (1974),l read mackworth, (1977)
Got absorbed...

Sufficient condition (Freuder 82):

1. Trees (width-1) and arc-consistency implies backtrack-free
2. Width=i and (i+1)-consistency implies backtrack-free search

If 3-consistent W=2
no deadends

Arc-consistent
No dead-ends

Figure 4.10: A tree network

Else, impose consistency, but it add arcs except for trees. So trees are easy. 10

Freuder, JACM 1982 : “A sufficient condition
for backtrack-free search”

Whow! Backtrack-free is greedy!

| read Montanari (1974),l read mackworth, (1977)
Got absorbed

Sufficient condition (Freuder 82):

1. Trees (width-1) and arc-consistency implies backtrack-free
2. Width=i and (i+1)-sonsistency implies backtrack-free search

If 3-consistent W=2
no deadends

Arc-consistent
No dead-ends

Figure 4.10: A tree network

Else, impose consistency, but it add arcs except for trees. So trees are easy. 11

From width to induced-width

Dechter and Pearl, 1985:

if a problem has induced-width i it can be solved by directional i-c

Led to:
Directional-consistency,Adaptive-consistency,
Join-tree clustering and treewidth
Optimization (dynamic programming),
Counting, all solved by a single Algorithm,
with induced-width complexity.

Later, generalized to bucket-elimination for
probablistic reasoning, Later to cycle-cutset.

It is all based on generalizing trees:
(Macworth, Freuder, 85, Pearl 83)

My (Z)
m,,(Z)

nl}'}?(y)

My, (Y)

Back to Automatic generation of
heuristics... for CSPs

| did not abandon the general goal of heuristic generation. Just shifted to CSP

where heuristic indicate existance of a solution. Or, alternatively, how many

solutions are below a given node. Since trees are easy for counting, | relaxed
the problem into a tree and... count (Dechter, 1985).

Results in 1985
On random 15 vars, 5 vals:

We revisited this idea with Kask,
Gogate and Dechter (CP, 2004)

estimated counts using GBP/IJGP.

SECOND CLASS

#0r=0 QF BACKTRACKINGS
@ OF CONSISTENCY CHECKS

-
- S

450

- &0

- 70

Fio. 16. The number of consistency checks and the number of backtrackings with pararnete

advice (second class of problems).

nzed

13

From Then On...

(just tried to understand what was going on around me)

Backjumping and no-good learning (1987-88)
(Wanted to understand TMS and Logic programming)
Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)
(answer-set programming)
(Wanted to understand default logic, logic programming)
Temporal constraint networks (with Meiri and Pearl, 1988-90)
(Understanding what Dean and Macdermoth and James Allen were doing)
Distributed constraints (with Collin and Katz, 1990)
Neural networks hyped up again.
On the expressiveness of networks with hidden variables(Dechter 1990),
from local to global consistency (Dechter 1992)
Neural networks (will explain)
Identifiability of structures (trees) from relations (with Meiri and Pearl, 1990)
Learnability / PAC learning.
Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width
to Bayesian networks)
Understanding probabilistic reasoning through VE
Mini-buckets, (with Rish 1997) finally Generating heuristics for real
(with Kask, Marinescu, 2001, 2004) 14
AND/OR search (with Mateescu, 2004)

From Then On...

(just tried to understand what was going on around me)

Backjumping and no-good learning (1987-88)
(Wanted to understand TMS and Logic programming)
Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)
(answer-set programming)
(Wanted to understand default logic, logic programming)
Temporal constraint networks (with Meiri and Pearl, 1988-90)
(Understanding what Dean and Macdermoth and James Allen were doing)
Distributed constraints (with Collin and Katz, 1990)
Neural networks hyped up again.
On the expressiveness of networks with hidden variables(Dechter 1990),
from local to global consistency (Dechter 1992)
Neural networks (will explain)
Identifiability of structures (trees) from relations (with Meiri and Pearl, 1990)
Learnability / PAC learning.
Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width
to Bayesian networks)
Understanding probabilistic reasoning through VE
Mini-buckets, (with Rish 1997) finally Generating heuristics for real
(with Kask, Marinescu, 2001, 2004) 15
AND/OR search (with Mateescu, 2004)

ON THE EXPRESSIVENESS OF NETWORKS WITH HIDDEN VARIABILES

Rina Dechter

Computer Science Department
Technion -- Israel Institute of Technology
Haifa, Israel, 32000
e-mail: dechter@techsel.bitnet

Abstract

This paper investigates design issues associated
with representing relations in binary networks
augmented with hidden wvariables. The trade-off
berween the number of variables required and the
size of their domains is discussed. We show that
if the number of values awvailable to each wvariable
is just two, then hidden variables cannot improve
the expressional power of the network, regardless
of their number. Howewver, for £=3, we can
always find a layered network using k-valued hid-
den wariables that represent an arbilrary relation.
We then provide a scheme for decomposing an

arbitrary relation, p, using —l—%— hidden wari-
ables, each having & values (k>2).

1. Introduction —

Hidden units play a central role in connectionist
model, without which the model would not represent many
useful funcuons and relations. In the early days of the Per-
cepoons [MMinsky 1969] it was norted that even simple
functions like the XOR were not expressible in a single
laver perceptron; a realizadon that slowed research in the
area until the notion of hidden wuanits had emerged
[Rumelhart 1988a, Hinton 1988]. MNewvertheless, a formal
treatment of the expressiveness gained by hidden units, and
systematic schemes for designing systems with hidden
units within the neural network paradigm are still not avail-
able.

Our intendon is to investigate formally the role of
hidden units and devise systematic schemes for designing
systems incorporating hidden units. Specifically, we
address the following task: given a relation on » variables,
called wisible, we wish to design a network having n-+A

{1} This research was supported in part by INSF grant #IRIT-
8821444 and by an Air Force grant #AFOSR 88 0177 while the
author was visiting the cognitive systems lab at UCL.A

units whose stable patterns, (relative to the wisible units)

coincide with the original relation. This task is cenual to
most applications of connectionist networks, in pardcular
to its Tole as associative memory. The task will be investi-
gated for a connectonist architecture which is different
from classic connectionist networks in that it is based on
constraint networks. The sequential constraint network
model is defined next.

A WNetwork of binary constraints involves a set
of n variables X,,...,X,,, each represented by its domain
values, D,,...,D,, and a set of consoraints. A binary
constraint R; between two variables X; and X; is a subset
of the cartesian product D; > D, that specifies which wvalues
of the variables are compatible with each other. A soluton
is an assignment of values to all the variables which satsfy
all the constraints, and the constraint satisfaction prob-
lems {CSP) associated with these networks is o find one
or all soludons. A binary CSFP can be associated with a
constraint-graph in which nodes represent wvariables and
arcs connect pairs of variables which are constrained expli-
citly. Figure la presents a constraint nerwork where each
node represents a wvariable having walues {[a, &, ¢} and
each link is associated with a strict lexicographic order
(where X; < X; iff / < j). (The domains and the constraints
explicitly indicated on some of the links.)

X P oy b Ca,b,c)
& & £¥ i
Ca,b Ca,b)
(b (b,c)
= Ca,c)
&> '
X x4 =g

-Figure 1: An example of a binary CIN

Our constaint-based connectionist architecture
assumes that each unit plays the role of a variable having &
states, and that the links, representing the constraints, are
quantified by compatibility relations between states of
adjacent units. Each unit asynchronously updates its state

P

e

On the expressiveness of networks with
hidden variables

Can a relation be expressed by a binary constraint networks with hidden variables?

Yes. If no limit on number of values : "x‘
R O
- f":"':' Y

j x{ ;15...,:,’ =

And, with limit?

,
X! X:X3X.;X5
10000 With 2 values?
Us =+ 01000 , With 3 values?
00100 How many hidden
0001 0] Variables?
L0 0 00 1)

17

On the expressiveness of networks with
hidden variables

Theorem: Relations which are not binary network decomposable cannot
be binary network decomposable by adding any number of bi-valued

Hidden variables.
Proof: We want to exclude (x1,x2,x3)=(0,0,0) using a variable Y={0,1}. ...

X, X1 X3 X4 Xl @ @
U = 81 ;1) § § § r So, it is not possible that Y allows
any pair but not triplets.
00010
00001] ('D Y
Reason: 3-consistent bi-valued binary networks are globally consistent

Theorem (Dechter, 1992): k-valued binary networks which are strong
(k+1)-consistent are globally consistent.

However, No simple criterion for tractability emerged;
Semantic based tractability: row-convex constraints (van Beek 1995)
A whole major line of work by Jeavons and Cohen (1995-2007)

(Constraint book, chapter 10, 2003)

18

On the expressiveness of networks with

hidden variables

1 X2

i %2 X5 X, xscxf L, X5 X XgX,

-~ ~

e = I NN IO OO
-

-

NOoOoOOoOOoOoOOOO ——~cicl
NOODO~—~NNOoOOoOoO

et —_ IO O OO0 O
fh_ — -
—s —
N OO OO O —
N OO0 OD ~MNOO
M OO~ NOOO O
OO~ MNOOOOO O
JToo~mocoococococoo

ufﬂllzoooouooonﬂu

~ -,
-~

1 .J
e

~FOO0OO0OOOOOOOO —
OO0 O —~O
OO0 —~OO
VM,ODDAUOOOOIGOAU
Y ooooococo—~ocooco
Hoocoocoo—~—ocoooo
JUOUGGIOOUOOU
VA OO0 O— O OO0 OO O
&000100000000
loo—~oocoooocooo
OO0 D000 O

~

e TOODOOOoCOOOO
N .

T

*
12

Figure 6: A layered decomposition of U

19

From Then On

(just tried to understand what was going on around me)

Backjumping and no-good learning (Dechter, 1987-88)
(Wanted to understand TMS and Logic programming)
Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)
(answer-set programming)
(Wanted to understand default logic, logic programming)
Temporal constraint networks (with Meiri and Pearl, 1988-90)
(Understanding what Dean and Macdermoth and Allen James were doing)
Distributed constraints (with Collin and Katz, 1990)
Neural networks hyped up again.
On the expressiveness of networks with hidden variables(Dechter 1990),
from local to global consistency (Dechter 1992)
Neural networks (will explain)
Identifiability of structures (trees) from relations (Dechter, Meiri and Pearl, 1990)
Learnability / PAC learning.
Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width
to Bayesian networks)
Understanding probabilistic reasoning through VE
Mini-buckets, (Dechter and Rish 1997) finally Generating heuristics for real
(Kask, Marinescu, 2001, 2004) 20
AND/OR search (Dechter and Mateescu, 2004)

Structure Identification in
Relational Data ~

Rina Dechter, UC-Irvine
Judea Pearl, UCLA

*Supported in part by Air Force Office of Scientific
Research, AFOSR 400136 and by NSF grant IRI-
Q157936

21

Another Example

,‘? —

""QQDBUQ}

B
<
=
—
=
i
()
f
|
!

~00=~0-0-0[
.__C'-(:.-*-Uub

Identifying Tree Structures in

Categorical Relations
(Dechter, 1990, Meiri, Dechter, Pearl,

1991)
Al Bl D] & o| = a8 | = Al = B | e
i 7] T Tl 1 = o 3 1 Q o o L
ol ol . I i A i] o o 1 1] E
[d 2 I I | = 1 o 1 L o
o J_! 'y 7y
Iy I |] I
G| 1| o] 3 |¢ o
i ™)] [l
(i Tl o] ol 2
= E
E]
4 =

- A tree T represents a relation o ifF

2 == ar A yer P

e Convenience: storage, auery processing,

P2ar-
2llelism.

3 ol ﬁ:ji:,.:-a Cm i Pr—s " ay o T .
f"""-'f""l- Lehermer Pla .r.r‘}

Problem
Given a relation p (e.g.. as a table)

e

- If p has a tree decomposition, find one

- If it does nort. n-::lﬂ:n:}“"-ledﬂf and find a best
e —

Approximation.
Theorem 8 (Dechter, 1987): Let

1y) = e number of a-tuples 1n P for which
x:' = Kj
Ly . ;)= number of n-tuples in p for which
Xr' =_'|:‘- and E_.I' =I.||;"

The MWST algorithm using the arc-weights:

> {x, Hog ok 's St
[20
N e’ 2 L hrw ()

i
pa s

is guaranteed o produce n rree-decomposition to
P if such a decomposition exists.

The decomposition is exact iff 1p|
Complexity: Q[(I1pl + log n)im?]

Best approximation? Open problem
Reici, Dodnter, foat [ANAT "Lﬁj

= Ipg |

ﬂ,.ll.-..t-' e f-oura]

elielielielielielieli=lPb-

oliell=

o= 1-10

= O 22O~ O|=-1Mm

Example

n(A=0)=8, n(B=1)=6, n(B=0)=2
n(B=0,C=1)=2, n(B=1,C=1)=3...

m(B,C)=-13.97
mB,D)=-15.95
m(B,E)=-16.55
m(C,D)=-16.55
(C,E)=-17.13
(D,E)=-15.50
(A,B)=m(A,C)=
(

m
m
m
m(A,E)=m(A,D)=-16.63 Ao

25

Eval: Aalive Axox p{-ﬂ_flﬂ'hflﬁ'ﬁ el e
t‘: H:-'ﬁ:i. I}*..:l.:f!-r, P-:q*r!, Aap L —-9C0 '}

..i-l,r_..f'l‘-u.aa{f &t v . A Cwn o MAEW*I-.-{ A\

1. l:-l*l-'-.-'ifif.ﬂ"g ﬂ..EIE i‘ttﬂ'ﬁnﬂl.—f:"i ﬁ{!‘f:!}r !J
- g "In"'l'!l.;-' fx.‘:..ﬂ'? & v AT s cere h

'i-""""f "I-.'IL -'E!- e - -‘:-E'.-flfa--fl'i--f - -f
wlR) s wed,) , wie,)= ws O,)

- ~ j— -, v TJJH--J.-? !*J ""FI.
L - “ﬂ# w’ €y) - il £ S

Ccallfe A Al e “HJ" Hu M- o .f-.‘-—a b

A Flo oA S e o e N n-'.-::'grkf -if*"”':f
itilﬂ—’w-w.f- W
a_.-}é*-.it-:--.t E_.. 'I'.--'."J' ﬂffﬁh‘:{ﬂ,“ f g ff: J-F.-I "F'_,__ FJ
g i <
=
l:.;j' -'r H-E"_._ = .--""I_El_ =] "'-.II_..
3 . Tlnj‘ E-E‘ LB J_q- ﬂaa-ntu..t e J'-:E'JE{J"TI

Ei— --..a.:t' i‘-‘-..l-tl.,_ . e T"-:"!‘ pl.g_r_‘; --.?#5,; ‘.h'i_

|dentifying Structure from Relational Data
(Dechter, Meiri and pearl 1988-1991)

Dechter, R., and Pearl, J., "Structure identification in relational data."”

In Artificial Intelligence, Vol. 58, 1992, pp. 237-270.

Meiri, 1., Dechter, R., and Pearl, J., "Uncovering trees in constraint networks."
(AAAI-1990), Artificial Intelligence Journal, VVolume 86, 1996, pp. 245-267.

Dechter, R., "Decomposing a relation into a tree of binary relations.”" Journal of
Computer and System Sciences, Vol. 41, 1990, pp. 2-24.

A preliminary version PODS pp. 185-189.

D| B D | E Al B B | C

L o | | 0 0 0 |

B L 1 L | o 0 1 1 |

E ol 1 o | 1 L | o

A C (a) (b} <) (d)

27

In Summary

* Uncovering structure from data and how to
exploit hidden variables are still central
scientific questions....

* As to heuristic generation nowdays...

— Simplification and solution steps combine
(e.g., mini-bucket, heuritics for planning, using
MDPs...)

28

Thanks again and
Speial thanks to all my students

Zeev Collin,

Itay Meiri,

Rachel Ben-Elyahoo,
Yousri El-Fattah

Judea Pearl

Dan Frost

Eddie Schwalb Ugo Montanari
Irina Rish Alan Mackworth
Kalev Kask Eugene Freuder
Bozhena Bidyuk

David Larkin

Robert Mateescu
Radu Marinescu
Vibhav Gogate
. . Lars Otten

W8\ Javier Larrosa

Hector Geffner

