
CP'07 1

How I entered Constraints:
Some of the Early Milestones

Rina Dechter

UC-Irvine

2

Mechanical Heuristic generation

Observation: People generate heuristics by consulting simplified/relaxed models.

Context: Heuristic search (A*) of state-space graph (Nillson, 1980)

Context: Weak methods vs. strong methods

Domain knowledge: Heuristic function

h(n):Heuristic underestimate

the best cost from

n to the solution

3

4

The Simplified models Paradigm

Pearl 1983 (On the discovery and generation of certain Heuristics, 1983, AI

Magazine, 22-23) : “knowledge about easy problems could serve as a heuristic in

the solution of difficult problems, i.e., that it should be possible to manipulate the

representation of a difficult problem until it is approximated by an easy one, solve

the easy problem, and then use the solution to guide the search process in the

original problem.”

The implementation of this scheme requires three major steps:

a) simplification,

b) solution, and

c) advice generation.

Simplified = relaxed is appealing because:

1. implies admissibility, monotonicity,

2. explains many human-generated heuristics (15-puzzle, traveling salesperson)

“We must have a simple a-priori criterion for deciding when a problem lends itself

to easy solution.”

5

Systematic relaxation of STRIPS

STRIPS (Stanford Research Institute

Problem Solver, Nillson and Fikes 1971)

action representation:

Move(x,c1,c2)

Precond list: on(x1,c1), clear(c2), adj(c1,c2)

Add-list: on(x1,c2), clear(c1)

Delete-list: on(x1,c1), clear(c2)

Relaxation (Sacerdoti, 1974): Remove literals from the precondition-list:

1. clear(c2), adj(c2,c3) � #misplaced tiles

2. Remove clear(c2) � manhatten distance

3. Remove adj(c2,c3) � h3, a new procedure that transfer to the empty

location a tile appearing there in the goal

But the main question remained:

“Can a program tell an easy problem from a hard one without actually

solving?” (Pearl 1984, Heuristics)

6

Easy = Greedily solved?

Pearl, 84: Most easy problems we encounter are solved by

“greedy” hill-climbing methods without backtracking” and that

the features that make them amenable to such methods is their

“decomposability”

The question now:

Can we recognize a greedily solved STRIPS problem?”

7

On the greedy solution of

ordering/scheduling problems

∑∑
=

=
=

i

j

ji i pqnC
1

1
),...2,1(

Job-shop: minimizing weighted average flow-time on a single processor

Spanish treasure problem: An unknown number of chests of Spanish treasure have been

buried on a random basis in n sites. For each site there is a probability p_i that the chest is

there and the cost of excavating a site is q_i. Find a sequence of excavations that will

minimize the average cost of finding the first chest.

Greedy strategy:

So, the question now: Can we characterize when does an ordering problem has a ranking

function, or a greedy rule, (not necessarily using the cost function) that yields an optimal

solution?

i

i

p

q

The result is in my thesis (1985) and later in a paper (1989) “On the greedy solution of

ordering problems” ORSA Journal of Computing, Vol 1, No. 3, 1989. A paper which is

largely un-cited and unknown

8

On the greedy solution…

(continued)
Theorem: If P is any greedily optimized problem then an optimizing

ranking function f has to agree with the ordering dictated by the cost

function on pairs of elements.

Namely for every two elements a and b

C(a,b) > C(b,a) iff f(a) > f(b).

The theory explained all known greedy rules for ordering problems.

Conclusion: “The paper provides necessary and sufficient

conditions for a problem to be greedily optimized by a uniform

ranking function. The virtue of these conditions is that they are easy

to test and thus may be useful in mechanizing the process of

generating greedy strategies by computers.”

9

(new paper in

EJOR, 2001 “Greedy

Solutions of selection

and ordering

Problems”)

10

Whow! Backtrack-free is greedy!

I read Montanari (1974),I read mackworth, (1977)

Got absorbed…

Freuder, JACM 1982 : “A sufficient condition

for backtrack-free search”

Sufficient condition (Freuder 82):

1. Trees (width-1) and arc-consistency implies backtrack-free

2. Width=i and (i+1)-consistency implies backtrack-free search

Arc-consistent

No dead-ends

Else, impose consistency, but it add arcs except for trees. So trees are easy.

If 3-consistent

no deadends

W=1
W=2

11

Whow! Backtrack-free is greedy!

I read Montanari (1974),I read mackworth, (1977)

Got absorbed

Freuder, JACM 1982 : “A sufficient condition

for backtrack-free search”

Sufficient condition (Freuder 82):

1. Trees (width-1) and arc-consistency implies backtrack-free

2. Width=i and (i+1)-sonsistency implies backtrack-free search

Arc-consistent

No dead-ends

Else, impose consistency, but it add arcs except for trees. So trees are easy.

If 3-consistent

no deadends

W=1
W=2

W=3

12

From width to induced-width

Led to:

Directional-consistency,Adaptive-consistency,

Join-tree clustering and treewidth

Optimization (dynamic programming),

Counting, all solved by a single Algorithm,

with induced-width complexity.

Later, generalized to bucket-elimination for

probablistic reasoning, Later to cycle-cutset.

It is all based on generalizing trees:

(Macworth, Freuder, 85, Pearl 83)
P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(Zm
ZM

)(Zm
ZL

)(ZmMZ)(ZmLZ

)(Xm
YX

)(XmXY

)(YmTY

)(Ym
YT

)(YmRY

)(Ym
YR

W=2

W*=3

Dechter and Pearl, 1985:

if a problem has induced-width i it can be solved by directional i-consistency

13

Back to Automatic generation of

heuristics… for CSPs

I did not abandon the general goal of heuristic generation. Just shifted to CSP

where heuristic indicate existance of a solution. Or, alternatively, how many

solutions are below a given node. Since trees are easy for counting, I relaxed

the problem into a tree and… count (Dechter, 1985).

Results in 1985

On random 15 vars, 5 vals:

We revisited this idea with Kask,

Gogate and Dechter (CP, 2004)

estimated counts using GBP/IJGP.

14

From Then On…
(just tried to understand what was going on around me)

Backjumping and no-good learning (1987-88)

(Wanted to understand TMS and Logic programming)

Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)

(answer-set programming)

(Wanted to understand default logic, logic programming)

Temporal constraint networks (with Meiri and Pearl, 1988-90)

(Understanding what Dean and Macdermoth and James Allen were doing)

Distributed constraints (with Collin and Katz, 1990)

Neural networks hyped up again.

On the expressiveness of networks with hidden variables(Dechter 1990),

from local to global consistency (Dechter 1992)

Neural networks (will explain)

Identifiability of structures (trees) from relations (with Meiri and Pearl, 1990)

Learnability / PAC learning.

Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width

to Bayesian networks)

Understanding probabilistic reasoning through VE

Mini-buckets, (with Rish 1997) finally Generating heuristics for real

(with Kask, Marinescu, 2001, 2004)

AND/OR search (with Mateescu, 2004)

15

From Then On…
(just tried to understand what was going on around me)

Backjumping and no-good learning (1987-88)

(Wanted to understand TMS and Logic programming)

Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)

(answer-set programming)

(Wanted to understand default logic, logic programming)

Temporal constraint networks (with Meiri and Pearl, 1988-90)

(Understanding what Dean and Macdermoth and James Allen were doing)

Distributed constraints (with Collin and Katz, 1990)

Neural networks hyped up again.

On the expressiveness of networks with hidden variables(Dechter 1990),

from local to global consistency (Dechter 1992)

Neural networks (will explain)

Identifiability of structures (trees) from relations (with Meiri and Pearl, 1990)

Learnability / PAC learning.

Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width

to Bayesian networks)

Understanding probabilistic reasoning through VE

Mini-buckets, (with Rish 1997) finally Generating heuristics for real

(with Kask, Marinescu, 2001, 2004)

AND/OR search (with Mateescu, 2004)

16

17

On the expressiveness of networks with

hidden variables

Can a relation be expressed by a binary constraint networks with hidden variables?

Yes. If no limit on number of values

And, with limit?

With 2 values?

With 3 values?

How many hidden

Variables?

18

On the expressiveness of networks with

hidden variables
Theorem: Relations which are not binary network decomposable cannot

be binary network decomposable by adding any number of bi-valued

Hidden variables.

Proof: We want to exclude (x1,x2,x3)=(0,0,0) using a variable Y={0,1}. …

Reason: 3-consistent bi-valued binary networks are globally consistent

Theorem (Dechter, 1992): k-valued binary networks which are strong

(k+1)-consistent are globally consistent.

However, No simple criterion for tractability emerged;

Semantic based tractability: row-convex constraints (van Beek 1995)

A whole major line of work by Jeavons and Cohen (1995-2007)

(Constraint book, chapter 10, 2003)

0 0 0

0,1 Y

So, it is not possible that Y allows

any pair but not triplets.

19

On the expressiveness of networks with

hidden variables

20

From Then On
(just tried to understand what was going on around me)

Backjumping and no-good learning (Dechter, 1987-88)

(Wanted to understand TMS and Logic programming)

Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)

(answer-set programming)

(Wanted to understand default logic, logic programming)

Temporal constraint networks (with Meiri and Pearl, 1988-90)

(Understanding what Dean and Macdermoth and Allen James were doing)

Distributed constraints (with Collin and Katz, 1990)

Neural networks hyped up again.

On the expressiveness of networks with hidden variables(Dechter 1990),

from local to global consistency (Dechter 1992)

Neural networks (will explain)

Identifiability of structures (trees) from relations (Dechter, Meiri and Pearl, 1990)

Learnability / PAC learning.

Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width

to Bayesian networks)

Understanding probabilistic reasoning through VE

Mini-buckets, (Dechter and Rish 1997) finally Generating heuristics for real

(Kask, Marinescu, 2001, 2004)

AND/OR search (Dechter and Mateescu, 2004)

21

22

23

24

25

Example

10010

01010

11010

10110

01110

11110

01100

11100

EDCBA

n(A=0)=8, n(B=1)=6, n(B=0)=2

n(B=0,C=1)=2, n(B=1,C=1)=3…

A

B
C

DE

m(B,C)=-13.97

mB,D)=-15.95

m(B,E)=-16.55

m(C,D)=-16.55

m(C,E)=-17.13

m(D,E)=-15.50

m(A,B)=m(A,C)=

m(A,E)=m(A,D)=-16.63 A

B
C

DE

26

27

Identifying Structure from Relational Data

(Dechter, Meiri and pearl 1988-1991)

Dechter, R., and Pearl, J., "Structure identification in relational data."

In Artificial Intelligence, Vol. 58, 1992, pp. 237-270.

Meiri, I., Dechter, R., and Pearl, J., "Uncovering trees in constraint networks."

(AAAI-1990), Artificial Intelligence Journal, Volume 86, 1996, pp. 245-267.

Dechter, R., "Decomposing a relation into a tree of binary relations." Journal of

Computer and System Sciences, Vol. 41, 1990, pp. 2-24.

A preliminary version PODS pp. 185-189.

28

In Summary

• Uncovering structure from data and how to

exploit hidden variables are still central

scientific questions….

• As to heuristic generation nowdays…

– Simplification and solution steps combine

(e.g., mini-bucket, heuritics for planning, using

MDPs…)

29

Thanks again and

Special thanks to all my students

Zeev Collin,

Itay Meiri,

Rachel Ben-Elyahoo,

Yousri El-Fattah

Dan Frost

Eddie Schwalb

Irina Rish

Kalev Kask

Bozhena Bidyuk

David Larkin

Robert Mateescu

Radu Marinescu

Vibhav Gogate

Lars Otten

Javier Larrosa

Judea Pearl

My family

Ugo Montanari

Alan Mackworth

Eugene Freuder

Hector Geffner

