
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 3, MARCH 1983

An Efficient Implementation of Batcher's Odd-
Even Merge Algorithm and Its Application in

Parallel Sorting Schemes

MANOJ KUMAR, MEMBER, IEEE, AND DANIEL S. HIRSCHBERG

Abstract-An algorithm is presented to merge two subfiles of size
n/2 each, stored in the left and the right halves of a linearly connected
processor array, in 3n /2 route steps and log n compare-exchange
steps. This algorithm is extended to merge two horizontally adjacent
subfiles of size m X n/2 each, stored in an m X n mesh-connected
processor array in row-major order, in m + 2n route steps and log mn
compare-exchange steps. These algorithms are faster than their
counterparts proposed so far.

Next, an algorithm is presented to merge two vertically aligned
subfiles, stored in a mesh-connected processor array in row-major
order. Finally, a sorting scheme is proposed that requires 11 n route
steps and 2 log2 n compare-exchange steps to sort n2 elements stored
in an n X n mesh-connected processor array. The previous best sorting
algorithm requires 14 n route steps for practical values of n, 4 < n <
512 (i.e., mesh-connected processor arrays containing 16 to 262 144
processors). The merge algorithms for the mesh-connected processor
array use wrap around connections. These connections can be avoided
at the expense of some extra hardware.

Index Terms-Linearly connected processor arrays, mesh-con-
nected processor arrays, odd-even merge algorithm, SIMD ma-
chines.

INTRODUCTION

BATCHER'S odd-even merge and bitonic merge algo-
rithms [2] have been popular among designers of parallel

sorting and merge algorithms [6], [12], [3], perhaps because
of their inherent parallelism. Sorting schemes using Batcher's
merge algorithm require n log2 nI fetch, compare and store
steps to sort an array of size n on a SISD machine [4]. On an
SIMD machine [4], if all processors are allowed to share a
common memory (shared memory model), an array of size n
can be sorted in log2 n time using n processors [5], [1].
A commonly used interconnection pattern for SIMD ma-

chines is the mesh connection [1], [8]-[10]. In this model, the
processors are arranged in a two-dimensional array A [0:n -
1; 0:n - 1]. The processor at location A [i, j] is connected to
the processors at locations A [i, j -], A [i - 1, j], A [i + 1,
j] and A [i, j + 1], provided they exist. Data may be trans-

Manuscript received November 21, 1980; revised August 17, 1982. This
work was supported by the National Science Foundation under Grants
MCS-80-0343 1 and MCS-82-00362.
M. Kumar is with the Department of Electrical Engineering, Rice Uni-

versity, Houston, TX 77001.
D. S. Hirschberg is with the Department of Information and Computer

Science, University of California, Irvine, CA 92717.
l All.logarithms in this paper are to the base 2. For all the algorithms pre-

sented in this paper, the size of the input files is an integer power of 2.

mitted from one processor to another only through this inter-
connection pattern. The processors connected directly by the
interconnection pattern will be referred as neighbors. A pro-
cessor can communicate with its neighbor with a route in-
struction which executes in t. time. The processors also have
a compare-exchange instruction which compares the contents
of any two of each processor's internal registers and places the
smaller of them in a specified register. This instruction executes
in t, time.

Illiac IV has a similar architecture [1]. The processor at
location A [i, j] in the array is connected to the processors at
locations A [WA(i,j - 1)], A [(i - 1) mod n,j], A [(i + 1) mod
n, j] and A [WA (i, j + 1)]. WA (u, v) is a two input function,
and its output is a pair of integers (x, y) defined as follows

if 0 < v < n - 1 then
x = u;y = V

else if v = n then
x = (u + 1) mod n;y = 0

else if v = -1 then
x = (u - 1) mod n;y = n - 1

Thus processors at the boundaries of the array, which pre-
viously had some neighbors missing, now have all neighbors
defined. (In the Solomon computer, the connections for the
undefined neighbors were used for input-output applica-
tions.)

There is an O(n) lower bound for sorting using the Illiac IV
interconnection pattern, because it requires at least 4n - 1
route steps to sort a file of size n X n, in which the smallest and
the largest elements are on wrong ends. Thus, mesh-connected
processors do not have the data routing capability required by
Batcher's merge algorithm to sort in sublinear time.

Linearly connected processor arrays are the building blocks
of machines with a higher dimensional interconnection pattern,
such as mesh-connected machines (two-dimensional inter-
connection pattern) [7]. In this interconnection pattern, the
processors are logically arranged in a one-dimensional array
and each processor can communicate with its two logical
neighbors (if they exist). The simplicity of this interconnection
pattern makes it easier to implement parallel algorithms which
can be later generalized to higher dimensions. This approach
has been adopted in the present paper.

Nassimi and Sahni have implemented a sorting scheme on
a mesh-connected computer [6], which makes use of Batcher's

0018-9340/83/0300-0254$01.00 ©D 1983 IEEE

254

KUMAR AND HIRSCHBERG: BATCHER'S ODD-EVEN MERGE ALGORITHM

bitonic merge algorithm. Their algorithm requires - 14 n route
steps and - 2 log2 (n) compare-exchange steps to sort a two-
dimensional array of size n X n. However, the merge algo-
rithms proposed by them require one of the input subfiles being
merged to be sorted in nondecreasing order and the other in
nonincreasing order. C. D. Thompson and H. T. Kung have
made use of Batcher's odd-even merge algorithm to implement
a sorting scheme for mesh-connected computers which requires
-6n + 0(n2/3 log n) route steps and n + 0(n2/3 log n) com-
pare-exchange steps asymptotically (optimal within a factor
of 2). Preliminary investigation by Thompson and Kung in-
dicates that this algorithm is optimal within a factor of 7 for
all n, under the assumption that tc < 2tr.

H. S. Stone has used an interconnection pattern called the
Perfect Shuffle [11]. With this interconnection pattern,
Batcher's odd-even merge algorithm can be used to sort n el-
ements in 0(log2 n) steps.
We will give an implementation of Batcher's odd-even

merge algorithm for a linearly connected processor array of
n processors. Our algorithm merges two sorted subfiles of size
n/2, placed in the left and the right halves of the processor
array, in 3n/2 route steps and log n compare-exchange steps.
Next we will generalize this algorithm to merge two sorted
subfiles of size m * n/2, which are placed in the left and right
halves of an m X n mesh-connected processor array in row-
major order. The merged output is in row-major order and the
algorithm requires m + 2n route steps and log m + log n
compare-exchange steps. Finally, we will make use of our
merge algorithm to sort a file of size m * n on the mesh-con-
nected processor array producing output in row-major
order.
The time complexity of the two-dimensional merge algo-

rithm proposed in this paper compares favorably with its
counterparts used by Nassimi and Sahni (2m + 2n route steps
and log mn compare-exchange steps) and Thompson and Kung
(-6n + 0(n2/3 log n) route steps and n + 0(n2/3 log n) com-
pare-exchange steps, for m = n). It is interesting to note that
Thompson and Kung's algorithm requires the same order of
time for merging two subfiles of size m X n/2 each, and for
sorting m * n elements organized as an m X n matrix.
The horizontal and the vertical merge algorithms, as pre:

sented in this paper, use the horizontal and vertical wrap
around connections of the mesh-connected processor arrays.
However, the use of these connections can be avoided by pro-
viding buffer memory with the processors in the last row of the
mesh-connected processor array.

Linearly Connected Processor Array

A linearly connected processor array of size n is an SIMD
machine [4] consisting of n identical processors. Each pro-
cessor has the following characteristics.

1) Each processor is connected to both of its neighbors in
the array, provided they exist.

2) Each processor has two internal registers, the A (accept)
and the R (reject) register.

3) Each processor is capable of executing the following
instructions.

i) The compare-exchange instruction compares the
contents of a processor's two internal registers and places the
smaller of them in the R-register and the other one in the A-
register. This instruction takes tc time to execute.

ii) The route instruction allows a processor to copy the
contents of a neighbor's R-register into its own R-register. All
processors executing this instruction (simultaneously) copy
the contents of either their left neighbor's or their right
neighbor's R-register (during a route instruction all data
movement is in one direction). This instruction requires tr time
to execute.

iii) The exchange instruction allows the processor to swap
the contents of its A- and R-registers. This instruction requires
te time to execute.

4) The processors execute the instructions broadcast by a
common controller. However, by using the address masking
scheme [8], a set of processors can be prevented from executing
the broadcast instruction. The address masking scheme uses
an m-position mask (m = log n) to specify which processors
are to be activated, each position in the mask corresponding
to a bit position in the address of the processors. Each position
in the mask will contain either a 0, 1, orX (DON'T CARE). The
only processors that will be activated are those whose address
matches the mask.

Mesh-Connected Processor Array

A mesh-connected processor array of sizem X n is an SIMD
machine consisting ofm * n identical processors, each of which
has the following characteristics.

1) Each processor is connected to its two horizontal and two
vertical neighbors. The wrap-around connections (described
earlier) are present for the end-processors.

2) Each processor has three internal registers referred as
A,Rand T.

3) The computational capability of each processor is similar
to that described for the linear-processor array. Additionally,
each processor can exchange the contents of any two of its
registers and copy the contents of any register into either of
the remaining ones, in te time.

4) The decoding and execution of the instruction stream
is identical to the scheme for the linear-processor array.

Similar models of computation have been used by Thompson
and Kung [12], and Nassimi and Sahni [6].

Batcher's Odd-Even Merge Algorithm
The odd-even merge algorithm to mergeS and T, two sorted

lists of sizes s and t (elements numbered 0, 1, 2, - *), to produce
a sorted list of size s + t can be defined recursively in the fol-
lowing way.

1) If s and t are both 1, then compare the two elements and
interchange their positions if they are out of order.

2) Else:
i) Split the lists S and T into their odd-indexed elements

sO, to and their even-indexed elements Se, te.
ii) Recursively, merge the sublists of odd-indexed ele-

ments (s0 and to) to obtain list mi. Recursively, merge the
even-indexed elements (Se and te) to obtain list me.

255

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 3, MARCH 1983

iii) For all i, compare the ith element of me with the
(i + 1)th element of m, (if it exists) and interchange their
positions if they are out of order.

AN EFFICIENT IMPLEMENTATION OF BATCHER'S
MERGE ALGORITHM

To implement Batcher's odd-even merge algorithm on our
model of computation we will use the operations defined below.
An argument in the form of a capital letter (X) indicates a
subset of 0:n - 1 which can be a single value (x) or one or more
ranges of values (x:y). When the argument of an operation
specifies more than one processor, all the specified processors
perform the operation simultaneously.

EXCHANGE [X]

The processors P[X] (ifX is x:y then we mean P[x], P[x
+. .,*.. , P4y]) interchange the contents of their A- and R-
registers. Since, only one exchange instruction is required to
complete this operation, it requires te time.

MOVE[j, X]

Ifj is a nonzero positive (negative) integer andX = x1:x2,
processors P[x]- i:x2 - i], for i = 1, 2, * *,j (i = -1, -2,
... , j), if they exist, copy the contents of their right (left)
neighbor's R-register into their own R-register. This step is
repeated Ij I times for the Ij1 different values of i. The net re-
sult of this operation is to move the contents of the R-registers
of P[x]:x2] to the R-registers of P[xl - j:x2 -] provided
they exist. When the second argument of the MOVE operation
(X) is unspecified, the default is the set of all processors. Since
IjI route instructions are required to complete this operation,
it will take IjI * tr time to perform this operation.

COMPARELO[X]

The processors P [X] compare the contents of their A- and
R-registers and if the contents of the A-register are greater
than the contents of the R-register, the two are interchanged.
Thus, after a COMPARELO instruction, the contents of the A-
(accepting) register are smaller than the contents of the R-
register. Only one compare-exchange instruction is needed to
perform this operation. Therefore, it requires t, time.

COMPAREHI[X]

The processors P [X] compare the contents of their A- and
R-registers and if the contents of the R-register are greater
than the contents of the A-register, the two are interchanged.
After a COMPAREHI instruction, the contents of the A-register
are greater than the contents of the R-register. This operation
also requires t, time.

UNFOLD [X]

IfX = x:y then for all w(x < w < y), the contents of the
A-register of P[w] are copied into the A-register of P[2w -

x], and the contents of the R-register of P[wJ are are copied
into the A -register ofP[2w - x + 1], if these processors exist.
This operation moves the 2(y - x + 1) elements, stored in the
A- and R-registers of processors P[XI in column-major order,

into the A-registers of processors P[x:2y - x + 1]. The unfold
operation can be completed in (y -x + 1) * tr+ (y -x+ 2)
* te time by the following algorithm:

For(w =y = 1,y,y-l, ,x + l)Do
MOVE [-1, w:2y-w + 21
EXCHANGE [w-1]

EXCHANGE [x:2y - x + 1].
Fig. 1(a) illustrates the UNFOLD [0:1] operation.

Algorithm M-An Efficient Implementation ofBatcher's
Merge Algorithm

The two sorted arrays to be merged, A [O:n/2 - 1] and
A[n/2:n - 1), are stored in the A-registers of P[O:n/2 - 1]
and P[n/2:n - 1]. The merged output will be placed in the
A-registers of P[O:n - 1].

Step 1:

EXCHANGE [n/2:n - 1]
MOVE [n/2]

Step 2:

COMPARELO [0:n/2 - 1]
MOVE [-n/4]

Step 3:

For (x = n/4, n/8,, 1) Do
I COMPAREHI [x:n/2 - 1]

MOVE [[x/21]

Step 4:

UNFOLD [0:n/2 - 1]

Time Complexity ofAlgorithm M

Step 1 of Algorithm M requires (n/2) * tr time for the
MOVE operation and te time for the EXCHANGE operation.
Step 2 requires (n/4) * tr time for the MOVE operation and t,
time for the COMPARE operation for a total of t, + (n/4) * tr
time. Step 3 is iterated (log n/4) + 1 = (log n) - 1 times and
in each iteration a COMPARE operation is performed. During
all the iterations of Step 3, data in the R-registers are moved
a total of n/4 positions to the left. Thus, Step 3 requires ((log
n) - 1) * t, + (n/4) * tr time to execute. Step 4 requires (n/2)
* tr + (n/2 + 1) * te time.

Therefore, the total time required by Algorithm M is

(3n/2) * tr + (log n) * t, + (n/2 + 2) * te.

Step 1 of the algorithm moves the two input subfiles to be
merged, from the first and second halves of the set of A-reg-
isters, to the A- and R-registers of the first half of the linearly
connected processor array [see Fig. 1(b) and (c)].

Steps 2 and 3 carry out the compare-exchange instructions
required by Batcher's odd-even merge algorithm. At the
conclusion of Step 3 the merged output is in the form of a 2 X
n/2 matrix where each column represents a processor, and the

256

KUMAR AND HIRSCHBERG: BATCHER'S ODD-EVEN MERGE ALGORITHM

1E1I1LI

(a)

1S 50 51 61 65 76_1 89 19
6 17 127 142 149 167 170 1-- -

(c)

| 8 1?27 42- 49 67 70 1 6- 7 -8 1 90
-

(d)

6 8 117 27 142 50 67 170 1 - I - I -l-l-l-l-l-I

6 18 117- 27 142 150 67 70 1-

6 8 17 49 51. 61. 67 76 -
__ 15 27 42 50 65 70 89 90 _ _ _ _ _ _.

I6 1 8 J 17 1 49 1- 51 1 61- 1 7j176- -I-I-I

15 27 49 51 65 70 89 90 -6 115 27 1 49 1 S1 1 65- 770 --r8-9 1- -' -l-
- 8 1 t17 42 50 61 67 76 90 |-|-|-|-|-|-|-|

6 115 1 27- 1.49j1 5 1 1 65-r0 89 I j-| - 1- -l--1 j- -tl-
8 17 42 50 61 67 76 90I =II=11111111! i

(e)

6 18 1l51 17 27 42 1 49 50 151 161 65- 167 70 76 189 190
(f)

Fig. 1. Implementation of odd-even merge algorithm on linearly connected
processor arrays. (a) UNFOLD [0:1] operation for processors P[0:3]. (b)
Initial data configuration. (c) Data configuration after Step 1. (d) Data
configuration after Step 2. (e) Data configuration during execution of Step
3. (f) Final data configuration.

contents of the A- and R-registers form the first and second
row of the matrix. The sorted file is stored in column-major
order [see Fig. 1(d) and (e)].

Step 4 arranges the sorted file in the A-registers of the
processor array [see Fig. 1(f)].
At the beginning of Step 2, the first element in one of the

input files can be n/4 positions to the left of its final position
at the conclusion of Step 3. Similarly the last element of the
other input file can be n/4 position to the right of its final po-
sition in Step 3. Hence, Steps 2 and 3 will require at least (n/4
+ n/4) route steps. Therefore, Steps 2 and 3 of the algorithm
(where the merge process is actually carried out) are optimal

in the number of route steps.
Steps 1 and 4 of the algorithm are not a part of the merge

process. They allow us to have inputs and outputs in a format
different from the one used by Steps 2 and 3. Although Step
2 is optimal, inclusion of Steps 1 and 4 increases the complexity
of the algorithm by a factor of 1.5.

In applications where the input subfiles to be merged are

originally in the format accepted by Step 2, and the output
format desired is the one produced by Step 3, Steps 1 and 4 of
Algorithm M are not required and the merge process can be
performed in time, (n/2) * tr + (log n) * tc, which is op-

timal.

257

15 50 51 61 65 76 1 89 1 90 1 6 1 8 1 17 1 27 _ 1 42 1 49 1 67 1 .I -. _JO
(b)

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 3, MARCH 1983

(a)

4

tz

tz
(b)

Y\\

Y\ \

tz

(c)

(d)
Fig. 2. Merging files of binary data. (a) Initial data configuration. (b) Data

configurations during execution of Steps 1 and 2. (c) Data configurations
during execution of Step 3. (d) Final data configuration.

Correctness ofAlgorithm M

To show the correctness of Algorithm M, we will make use
of the Zero-One Principle [5].

Theorem (Zero-One Principle): If an algorithm sorts all
sequences of zeros and ones into nondecreasing order, it will
sort any arbitrary -sequence -of :integers-l into-- nondecreasing-
order.-

Since the two input files to be merged are already sorted,
if the elements in them are from the set 10, 1 I only, then each
of them must be a sequence of zeros followed by a sequence of
ones [see Fig. 2(a)]. Throughout the algorithm, temporary files
in the A- and R-registers will consist of a string of zeros fol-
lowed by a string of ones.

In Step I the two files are placed in the A- and R-registers
of the first n/2 processors. During Steps 2 and 3, let us denote
the first processor position which has a 1 in its A-register by
y and the first processor position which has a I in its R-register
by z. After the COMPARELO operation in Step 2 has been
performed, y will be at most n/2 positions to the left of z. Later
in Step 2, the contents of the R-registers are moved n/4 posi-
tions to the left. Now y will be at most n/4 positions to the left
or right of z [see Fig. 2(b)].
When the For loop in Step 3 is entered, x denotes the max-

imum difference possible between y and z, which in the first
iteration is n/4. After the execution of the COMPAREHI op-

eration, y will be at most x positions to the left of z, and never
to the right of z [see Fig. 2(c)].

Later in Step 3, the contents of the R-registers are moved
towards the left by a distance x/2 and the For loop condition
is tested again with the value of x replaced by x/2. The last
iteration of the For loop is executed for the value of x = 1.
After the COMPAREHI operation in this last iteration, either
y and z will both refer to the same processor location or y will
be one position to the left of z. So when the MOVE[1] operation
in Step 3 is performed, either y will be one position to the right
of z or both y and z will point to the same processor location.
Both of these cases correspond to a sorted sequence of binary
digits represented in column-major order.

Step 4 takes the sorted file represented in column-major
order in the A- and R-registers of the first n/2 processors and
moves it to the A-registers of all the n processors in the array
maintaining the sorted order [see Fig. 2(d)].

EXTENSION OF ALGORITHM M TO Two DIMENSIONS

The algorithm developed in the previous section required
0(n) time to merge two subfiles of n/2 records. Linear time
was required because of the limited data routing capacity of
linearly connected processor arrays.
An obvious way to improve the merge time is to enhance the

data routing capability of the processors. However, attaching
an arbitrarily large number of input/output lines-to a processor
is unfeasible.

In this section we will give two merge algorithms, Horizontal
Merge (Algorithm HM) and Vertical Merge (Algorithm
VM), for mesh-connected processor arrays. The input to the
horizontal merge algorithm consists of two sorted subfiles
placed side by side [see Fig. 3(a)]. The input to the vertical
merge algorithm consists of two sorted subfiles which are or-
ganized as a pile [see Fig. 5(a)]. Both of these algorithms are
extensions of Algorithm M, developed in the previous sec-
tion.
The operations EXCHANGE, UNFOLD and COMPAREHI

are redefined for mesh-connected computers-and two new
operations, MOVEVERT and MOVEHORZ, are defined below.
In the following definitions P[r, c] refers to the processor in
row r and column c.

COMPAREHI[R, C]

When R = r1:r2 and C = cpc2, the processors in the set JP(r,
cl IrI < r < r2 and clI c < c2} compare the contents of their
A- and R-registers and if the contents of the R-register are
greater than the contents of the A-register, the two are inter-
changed. This operation requires tc time.

MOVEVERTU, R, C]

This operation moves the contents of the R-registers of P[r,
c], where r e R and c e C, to the R-registers of P[r -j, c],
provided they exist. Since ji] route instuctions are required
to complete this operation, it will take Ij I * tr time to perform
this operation.

258

KUMAR AND HIRSCHBERG: BATCHER'S ODD-EVEN MERGE ALGORITHM

MOVEHORZU, R, C]

Each row in the subset R of the rows and of the mesh-con-
nected processor array (of size m X n) acts like a linearly
connected processor array of size n and performs the operation
MOVE [, C]. If the second and third arguments (R and C) are
dropped, the default is the set of all processors. A total of ii I
route steps and therefore Ijl * t, time is required to complete
this operation.

UNFOLD[R, C]

Each row in the subset R of the rows of the mesh-connected
processor array (of size m X n) acts like a linearly connected
processor array of size n and performs the operation UN-
FOLD[C]. The time required to complete this operation is I Cl
* tr + te(Cl is the number of columns in the subset C).

COPY[i,j, R, C]

In this operation, i and j specify the source and destination
registers (one of A, R and T) for the copy instruction, which
is executed by each process in the set {P[r, c] Ic E C and r E
RI. This operation requires te time.

EXCHANGE [i, j, R, C]

Here i and j specify registers (one of A, R and T) for the
exchange instruction, which is executed by each processor in
the set IP[r, c]I c e C and r E R}. If i andj are not specified,
registers A and R are used. This operation requires te time.

Algorithm HM-Horizontal Merge

The two sorted arrays to be merged, A [O:m * n/2 - 1] and
B[O:m * n/2 - 1], are stored in the processors P[O:m - 1,
O:n/2 - 1] and P[O:m - 1, n/2:n - 1] in row-major order [see
Fig. 3(a)]. The merged output of the two input arrays will be
placed in processors P[O:m - 1, O:n - 1] in row-major
order.

Step 1:

EXCHANGE [all rows, n/2:n - 1]
MOVEHORZ [n/2]

Merge the two subfiles in each column using Steps 2
and 3 of Algorithm M, considering each column as a
linearly connected processor array.

Step 2:

EXCHANGE [all rows, O:n/4 - 1]
copy [R, T, all rows, O:n/2 - 1]
MOVEHORZ [-n/4]
copy [A, R, all rows, O:n/4 - 1]
copy [R, T, all rows, n/2:3n/4 - 1]
MOVEHORZ [-n/4]
EXCHANGE [R, T, all rows, n/4:3n/4 - 1]
copy [T, A, all rows, O:n/4 - 1 and n/2:3n/4 - 1]
MOVEHORZ [n/4]
copy [T, R, all rows, n/4:n/2 - 1]
/* Execution of this step changes the data configuration
shown in Fig. 3(b) to that of Fig. 3(c). */

Step 3:

For
(x = n/4, n/89*** 1)
Do
IMOVEVERT [-1, all rows, O:x - 1 and n/2:n/2 + x -1]

COMPAREHI [all rows, all columns]
MOVEVERT [1, all rows, O:x - 1 and n/2:n/2 + x -1]
MOVEHORZ [rx/21]

I

Step 4:

UNFOLD [all rows, O:n/2 - 1]

Fig. 3(d) illustrates the Horizontal Merge algorithm for m
= 2 and n = 8.

Step 1 of Algorithm HM uses the vertical wrap around
connections while performing linear merge on contents of each
column, because the last few data elements of a column which
are shifted down from the l-ast processor are temporarily stored
in the first few processors of that column. Since these data
elements are not used in any computation by the first few
processors, the use of wrap around connections can be avoided
by providing the last processor in each column with n/2 buffer
registers.

Time Complexity ofAlgorithm HM

Step 1 of the algorithm requires n/2 route instructions and
an exchange instruction to move data to the left n/2 columns,
and m route instructions and (log m + 1) compare instructions
to merge the subfiles in each column. The total time required
by Step 1 is thus (n/2 + m) * tr + (logm + 1) * tc + te. Step
2 requires (3n/4) * tr + 7 * te time to execute.
The For loop in Step 3 is iterated (log n) - 1 times. In each

iteration of the For loop, one COMPARE and two MOVEVERT
operations are performed. The total number of horizontal route
instructions performed over all the iterations of the For loop
is n/4. Hence Step 3 requires (log n - 1) * t, + (n/4 + 2 log
n- 2) * tr time to execute. Step 4 requires (n/2) * tr + (n/2
+ 1) * te time.

Therefore the total time required by Algorithm HM is

(log m + log n) *t + (m + 2n + 2 log n - 2) *tr
+ (n/2 + 9) * te

Correctness ofAlgorithm HM
We will prove the correctness of this algorithm using the

Zero-One Principle.
If each sorted input subfile consists of integers from the set

10, 1, the difference between the number of zeros (or ones) in
any two columns can be at most 1 [see Fig. 4(a)].

Therefore, when the elements from the second file are moved
to the processors holding the correspondingly indexed elements
from the first file in Step 1, the difference between the number
of zeros (or ones) in any two columns will be at most 2. If each
file is organized as an m X n/2 matrix then the first few col-
umns on the left will have the same number of zeros (say w)

259

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 3, MARCH 1983

A A A, A B B B B0 1 2 3 0 1 2 3

A4 A5 A6 A7- a4 B5 6 7

A8 A9 A10 A11 B8 B9 B10 B11

12 A13 A14 A15 12 B13 B14 B15

(a)

C0 C1 C2 C - - | |

D1 01 D4 01 - |- | _ -

Do D1 D2 D3

C1 C1 C4 C5 -1 -1 -_

c4 c5 6 c7
D4 D5 D6 D7
8 9 10 ii.

D8 D9 D10 D11. __
C12 C13 C1, C1 - -

012 013 14 15 - -

(b)

c0 c1 2 3 c0 c1
D2 D3 D0 D1 D2 D3
c4 c5 6 c7 4 c5
D6 D7 D4 D5 D6 D7
8a 9 c10 c11 c8 c9

D10 011 8 D9 D10 D11 ___

c12 13 c14 c15 12 13

D14 D15 D12 D13 D14 D15 __

(c)

00 01 05 12 14 14 34 57

15 17 24 34 61 65 70 71

Initial Data Configuration.

00 01 05 12 - -

14 14 24 34 - -

15 17 34 57 - - I -I-

61 65 70 71 - -

Data Configuration after Step 1.

00 01 05112 00 01 - -
t I tI

24 34 14 14 24 34 - -

15 17 34 I57 15 17 - I-

70 7 1 61 65 70 71 - -

Data Configuration after Step 2.

00' -01 14 14 00 - -
t t tI

17 05 12 15 17 - -

24 34 61 65 24 -
t t t i

71 34 57 70 71 -

Data Configuration after first iteration of Step 3.

00 05 14 15 - -

01 12 14 17 - -

24 34 61 70 - j-j

34 57 65 7 1 -

Data Configuration after second iteration of Step 3.

(d)

00 01 05 12 14 14 15 17

24 34 134 157 61 65 70 71

Final Data Configuration.

Fig. 3. Implementation of horizontal merge. (a) Initial data configuration.
(b) Data configuration after execution of Step 1. (c) Data configuration
after execution of Step 2. (d) Example of Horizontal Merge.

in each column, the next few columns will have w - 1 zeros and + x]. In all succeeding iterations, the data in the first x col-
the remaining columns will have w - 2 zeros in each umns are identical to the data in columns n/2 to n/2 + x - 1.
column. Thus, the need to move data from the beginning of each row

Since each processor is holding two data elements, the data to the end of the preceding row is obviated. Therefore, if we
are organized as a 2m X n/2 matrix in the m X n/2 processor consider the processor mesh as a linear array, Step 3 of this
array. When the contents of each column are sorted indepen- algorithm is identical to Step 2 of Algorithm M.
dently, at most two rows of data can contain both zeros and At the conclusion of Step 1, the position of the first 1 in the
ones. All the rows above them will contain all zeros and all the A-registers is at most n/2 position to the right of the first 1 in
rows below them will contain all ones [see Fig. 4(b)]. the R-registers. Data movement in Step 2 reduces this dif-
At this point we would like to view the m X n/2 mesh-con- ference to n/4 positions right or left.

nected processor array as a linear processor array of size m * We have shown earlier that Step 2 of Algorithm M suffices
n/2, with the exception that the connection between every (i to merge-two files placed in the A- and R-registers of a linear
* n/2)th and (i * n/2 + 1)th processor is missing. Also, it is processor array provided the variable x is initialized to at least
obvious that the position, marked as y, of the first 1 in A-reg- the difference between the position of first 1 in the A- and
isters of this linear array will be at most n/2 distance to the R-registers of the processor array. From the same argument
right of the position, marked as z, of the-first 1--in-the-R-register we conclude that-Step 3 of Algorithm HM will merge the two
[see Fig. 4(c)]. files completely.
The duplication of data in Step 2-allows us to use the-vertical At -the end of Step 3, the n data elements in each row of the

connections of the processor mesh in place of the missing final merged output are stored in a column-major order in the
horizontal connections between every (n/2)th and (n/2 + 1)th A- and R-registers of the first n/2 processors. Step 4 unfolds
processor [see Fig. 4(d)]. them, thus providing the final output in row-major order.

In the first iteration of Step 3 the computation in the first
n/4 columns of each row is duplicated at the end of the pre- Algorithm VM-Vertical Merge
ceding row. The data that had to be shifted to P[i, n/2 - x:n/2 The two sorted arrays to be merged, A [O:m * n/2 - 1] and
- 1] from P[i + 1, O:x - 1) are now available in P[i, n/2:n/2 B[O.m * n/2 - 1], are stored in the processors P[O:m/2 - 1,

260

KUMAR AND HIRSCHBERG: BATCHER'S ODD-EVEN MERGE ALGORITHM

1 0 0 0 1 1 0

o o 00 0 0 0 0

o - - - -

0a b 0c 0d
o 0f 0 0 - -

h

o0i 0 1 - k

|3 k |11
1 1. 1

q r t

o 0 0 0 0 0 -(
a b~ c d a b

o 0 0 0 0 0 -

o 0 0k 11 0 0 -

10 1 0m la I -

1 1 1 1. 1 - -
q r 1t I Iq r

.1 1

I
1 1

L 1I

(b)

| a | b °c |°d

l° |°f 19 0°hI
t

| i | i |°k I1

tz

1q IrjsIt
jjjl1

DZ

(c)

(. . __
o

d a b ij k i °i 1 r s t q r

_ f B9 h // 1p_ m 1n Io P w 1x Iu I_ Iwx

(d)
Fig. 4. Horizontal merge on files of binary data. (a) Initial data configu-

ration. (b) Data configurations after Steps I and 2. (c) Horizontal con-
nections required for linear adjacency. (d) Effective linear adjacency ob-
tained by data duplication.

O:n - 1] and P[m/2:m - 1], O:n - 1] in row-major order [see
Fig. 5(a)]. The merged output of the two input arrays will be
placed in the processors P[O:m - 1, O:n - 1] in row-major
order.

Step 1: Merge the two subfiles in each column using Algo-
rithm M, considering each column as a linearly connected
processor array.

EXCHANGE [all rows, n/2:n - 1]
MOVEHORZ [n/2]
MOVEVERT [-1, all rows, O:n/2 -1]
COMPAREHI [all rows, O:n/2 - 1]
MOVEVERT [1, all rows, O:n/2 - 1]

Step 2: Perform Steps 2, 3 and 4 of Algorithm HM.

261

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 3, MARCH 1983

AD AI A2 A3 A4 A5 A6 A7

A8 A9 Alo All A12 A13 A14 A15

B0 B1 B B3 B4 B5 B6 B7

B8 B9 B10 B1 B 12 B13 B14 B15

(a)

00 01 05 12 15 17 24 34

14 14 34 57 61 65 70 71

(b)

00 01 05 12 - - - -

15117 f24 34 - - - -

14 14 34 57 _ _ _ _

61 65 70 71 - - - -

(c)

00 01 05 12 - - - -

14 14 24 34 - - - -

15117 34 57 - - - I-
61 65 70 71 - - -

(d)
Fig. 5. Vertical merge. (a) Initial data configuration. (b) Example of initial

data configuration. (c) Data configuration after MOVEHORZ operation
in Step 1. (d) Data configuration after completion of Step 1.

Time Complexity ofAlgorithm VM
Step 1 of this algorithm requires 3m/2 * tr + log m * tc +

(m/2 + 2) * te time to merge the contents of each column and
a total of (n/2 + 2) * tr + te + tc time for the rest of the com-
putations in that step. Step 2 requires (3n/2 + 2 log n - 2) *
tr + (n/2 + 8) * te + ((log n) - 1) * tc time (from the com-
plexity of Algorithm HM). Thus the total time required for
Algorithm VM is

(logim +logn) * tc + (2+ 2n + 21ogn) * tr

+m n)
+ t2+ 2+ 1 1 * te

Correctness ofAlgorithm VM

Initially each column j (0 < j < n/2) of the processor array

contains the two sorted subfiles A U, n]2 and BU, n] [see Fig.
5(b)]. In Step 1 the two subfiles in each column are merged
together. Next, the subfile in columnj + n/2 (for 0 < j < n/2)

is moved into column j [see Fig. 5(c)] and each element of the
subfile originally in column j (except the last one) is compared
to the next indexed element of the file coming from column j
+ n/2. The two elements being compared are interchanged
if they are out of order [see Fig. 5(d)].
The subfiles A [U, n] and B[j, n], in column j, consist of the

odd-indexed elements of the subfiles A [U, n/2] and B [U, n/2].
Similarly the subfiles AU + n/2, n] and B[U + n/2, n], in
column j + n/2, are the even-indexed elements of the subfiles
AU, n/2] and BLU, n/2]. Hence Step 1 of the vertical merge
algorithm places the subfiles A , n/2] and BLU, n/2] in col-
umn j in sorted order (for 0 < j < n/2).

In Algorithm HM, columns j and j + n/2 (O <] < nn/2)
contain the subfiles A [U, n/2] and BLU, n/2] respectively and
Step 1 merges the two subfiles and stores the sorted result in
column j.

Thus, the intermediate result obtained by applying Step 1
of Algorithm HM on two sorted subfiles stored in the right and
left halves of an m X n mesh-connected processor array is
identical to the result obtained on applying Step 1 of Algorithm
VM on two sorted subfiles stored in the lower and the upper
halves of the m X n mesh-connected processor array [compare
Fig. 5(d) with Fig. 3(d)]. Since the remainder of Algorithm
VM is the same as the remainder of Algorithm HM, the cor-
rectness of Algorithm VM follows from the correctness of
Algorithm HM and the abovementioned facts.

Algorithm S-Sorting Algorithm
The n2 elements to be sorted are stored in the A-registers

of processors P[O:n - 1, O:n - 1]. The sorted output will be
placed in the processors P[O:n - 1, O:n - 1] in row-major
order.

Step 1:

For all odd i I< i < n-1 Do
EXCHANGE [i, O:n -1]
MOVEVERT [1, i, O:n -1]

For all even i 0 < i < n - 2 Do
I COMPARELO O:n-1, O:n-1]

MOVEVERT [-1, O:n -1]
EXCHANGE [i + 1, O:n -1]

I
Step 2:

For(s= 1,2,4,8,--,n/2)Do
Perform Algorithm HM on each s X s subarray
Perform Algorithm VM on each s X 2s subarray

Perform Algorithm HM on processors P[O:n - 1, O:n

Time Complexity ofAlgorithm S
Algorithm S uses the horizontal merge algorithm iteratively

to produce sorted subfiles of size 2 X 2, * - , n/2 X n/2, n X
n, by merging horizontally adjacent sorted subfiles of size 2

2 IfA [O:n] is a file, then A [, x] represents the subfile A U], A[U + x], A U
+ 2x], , A Ui [Ln-j/x] * x].

262

KUMAR AND HIRSCHBERG: BATCHER'S ODD-EVEN MERGE ALGORITHM

X 1, * * *, n/2 X n/4, n X n/2. So the total time used by hori-
zontal merge is

lognn9
= 2 [((2 + 1)2i + 2i - 2) * tr + 2i * t, + (2i-l + 9) *

i=l1

*te]
= [3(2('og n)+1 - 2) + (log2 n -log n)] * tr
+ [log2 n + log n] * t, + [21og n- 1 + 9 log n] *te

= (6n + log2 n - log n - 6) * tr + (log2 n + log n) * t,
+ (n + 9 log n -1) * te

The vertical merge algorithm is used iteratively to produce
sorted subfiles of size 4 X 2, , n/2 X n/4, n X n/2, by
merging vertically-adjacent sorted subfiles of size 2 X 2, * - ,

n/4 X n/4, n/2 X n/2. Hence the time used by vertical merge
is

log n
= E [(2i + 3 * 2-1+ 2i-2)* tr + (+ i-1) * tc

i=2

+ (2i1 + 2i-2 + 11) * tel
= [5(21og n- 2) - (log2 n - log n)l * tr + (log2 n - 1) *tc
+ [2log n+ 2(10g n)-1 - 14 + 11 log n] * te

= (5n + log2 n - log n - 10) * tr + (log2 n-I) *1

+ + 11 log n -14) * te

Step 1 requires only tc + 2tr + 2te time for the COMPARE,
MOVEVERT and the EXCHANGE instructions. Hence the total
time required by the sorting algorithm is

[ln + 2 (log2 n-log n-7)] * tr + [2 Iog2 n + log n] * tc
[Sn 5n

+ - +20logn -13 * te IInt, + 2log2ntc+ -te

Step 1 of this algorithm produces sorted subfiles of size 2
X 1 stored in two vertically adjacent processors. Step 2 applies
horizontal merge followed by vertical merge iteratively until
we are left with only two horizontally adjacent subfiles. The
last instruction in Step 2 merges these two horizontally adja-
cent subfiles to produce the sorted output.

If the model of computation is modified to allow 4j words
of local memory in each processor (sufficient to hold 4 j ele-
ments of the input file), the algorithms requiring n2 processors
with no local memory can be modified to work with as few as

n2/j processors, using the scheme discussed in [3]. With this
modification the time required by Algorithm S is

(11 Ijll2n * tr + [ilogj + 4jlog2 (1,2)j * tc

A SPECIAL CASE OF TWO-DIMENSIONAL MERGE

If the size of each of the two files to be merged is equal to
the size of the mesh-connected processor array, then the wrap
around connections can be used effectively to reduce the time
required to merge them. The two sorted files of size n2 each
are stored, in row major order, in the A- and R-registers of a
n X n mesh-connected processor array. Using Steps 2 and 3

of Algorithm M, we first merge the subfiles in each column,
and then merge the subfiles in each row similarly. This leaves
the merged output stored in row major order, with each pro-
cessor holding two elements of the output, the smaller of which
is in the A-register. The total time required is 2n * tr + (2 log
n + 1)*tc.

SUMMARY

In this paper we presented an implementation of Batcher's
odd-even merge algorithm for a linearly connected processor
array of n processors. Our algorithm merges two sorted subfiles
of size n/2 placed in the left and the right halves of the pro-
cessor array in nondecreasing order, in 3n/2 route steps and
log n compare-exchange steps. This is faster than the algorithm
proposed by Thompson and Kung [12], which requires 4n
route steps, and the row merge and column merge algorithms
proposed by Nassimi and Sahni [61, which merge a nonde-
creasing and a nonincreasing sequence of size n/2 each in 2n
route steps.
We generalized this first algorithm to a horizontal merge

algorithm which merges two sorted subfiles of size m X n/2,
stored in the left and the right halves of an m X n mesh-con-
nected processor array in nondecreasing order, in m + 2n route
steps and (log m + log n) compare-exchange steps. This is
faster than its counterpart used by Thompson and Kung, which
requires 2m + 4n route steps and m + log n compare-exchange
steps. It is also faster than the horizontal merge algorithm used
by Nassimi and Sahni, which requires 2m + 2n route steps and
(log m + log n) compare-exchange steps to merge two subfiles
of size m X n/2 each, one of which is in nondecreasing- order
and the other is in nonincreasing order.
We gave a vertical merge algorithm to merge two vertically

aligned subfiles of size m/2 X n, stored in nondecreasing order
in an m X n mesh-connected processor array. Our algorithm
requires 3m/2 + 2n route steps and (log m + log n) com-
pare-exchange steps. Nassimi and Sahni have proposed a
vertical merge algorithm to merge a vertically aligned pair of
subfiles in 2m + 2n route steps and (log m + log n) com-
pare-exchange steps, provided one of the subfiles being merged
is sorted- in nondecreasing order and the other in nonincreasing
order.

Finally, we gave a sorting algorithm which uses the hori-
zontal merge and the vertical merge algorithms to sort n2 el-
ements stored in an n X n mesh-connected processor array in
11 n route steps (the contribution of the low order terms is less
than n for all values of n), O(log2 n) compare-exchange steps
and 5n/2 exchange steps. This algorithm requires 3n fewer
route steps and 5n/2 more exchange steps, than the algorithm
proposed by Nassimi and Sahni. Thus, we have reduced in-
terprocessor communication by introducing comparable
amount of intraprocessor communication.
The sorting algorithm proposed by Thompson and Kung

requires 6n + 0(n2/3 log n) route steps and n + 0(n2/3 log n)
compare-exchange steps. Preliminary investigation by
Thompson and Kung indicates that for all values of n, their
algorithm is optimal only within a factor of 7, under the as-
sumption that tc < 2tr. When tc < 2tr condition is not valid,

263

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 3, MARCH 1983

this optimality factor will be still higher. Therefore, for some
values of n (4 < n < 512), our sorting algorithm will be faster
than Thompson and Kung's algorithm.

REFERENCES

[1] G. H. Barnes, "The Illiac IV computer," IEEE Trans. Comput., vol.
C-17, pp. 746-757, Aug. 1968.

[2] K. E. Batcher, "Sorting networks and their application," in Proc. AFIPS
1968 SJCC, AFIPS Press, Montvale, NJ, vol. 32, pp. 307-314.

[31 G. Baudet and D. Stevenson, "Optimal sorting algorithms for parallel
computers," IEEE Trans. Comput., vol. C-27, pp. 84-87, Jan. 1978.

[41 M. J. Flynn, "Very high-speed computing systems," Proc. IEEE, vol.
54, pp. 1901-1909, Dec. 1966.

[5] D. E. Knuth, The Art ofComputer Programming, Vol. 3: Sortingand
Searching. Reading, MA: Addison-Wesley, 1973.

161 D. Nassimi and S. Sahni, "Bitonic sort on a mesh-connected parallel
computer," IEEE Trans. Comput., vol. C-28, pp. 2-7, Jan. 1979.

[71 D. Nassimi and S. Sahni, "Parallel permutation and sorting algorithms
and a new-generalized connection network," Univ. Minnesota, Minne-
apolis, Tech. Rep. 79-9, 1979.

[81 H. J. Siegel, "A model ofSIMD machines and a comparison of various
interconnection networks," IEEE Trans. Comput., vol. C-28, pp.

907-917, Dec. 1979.
[91 H. J. Siegel, "Interconnection networks for SIMD machines," Com-

puter, vol. 12, pp. 57-65, June 1979.
[101 D. L. Slotnick, W. C. Borck, and R. C. McReynolds, "The SOLOMON

Computer," Proc. FJCC, AFIPS, vol. 22, Washington, DC, Spartan,
pp. 97-107, 1962.

[111 H. S. Stone, "Parallel processing with the perfect shuffle," IEEE Trans.
Comput., vol. C-20, pp. 153-161, Feb. 1971.

[121 C. D. Thompson and H. T. Kung, "Sorting on a mesh-connected parallel
computer," Commun. Ass. Comput. Mach., vol. 20, pp. 263-271, Apr.
1977.

Manoj Kumar (M'8 1) received the B.Tech. degree
from the Indian Institute of Technology, Kanpur,
India, in 1979, and the M.S. degree from Rice
University, Houston, TX, in 1981, both in electri-
cal engineering.
He is currently completing the Ph.D. degree in

Electrical Engineering at Rice University. His re-
search interests include parallel computation and
interconnection networks for parallel/distributed
processing.

Daniel S. Hirschberg received the B.E. degree in
electrical engineering from the City College of
New York in 1971, and the Ph.D. degree in com-
puter science from Princeton University, Prince-
ton, NJ, in 1975.
From 1975-1981 he was an Assistant Professor

of Electrical Engineering at Rice University,
Houston, TX. Since 1981 he has been an Asso-
ciate Professor in the Department of Information
and Computer Science at the University of Cali-
fornia, Irvine. His research has centered on the de-

sign and complexity analysis of algorithms and has concentrated on common
subsequence problems, knapsack problems, graph algorithms, and algorithms
using a parallel processor.

Dr. Hirschberg is a member of the Association for Computing Machinery
and the Special Interest Group on Automata and Computability Theory.

264

