
CompSci 267 – Data Compression

• Prerequisite: CompSci 161 or 260 or 261

• Recommended textbook
K. Sayood, Introduction to Data Compression,

3rd ed., Morgan Kaufmann, San Francisco, 2006.

• Requirements
◦ term project, report, and class presentation

◦ weekly homework

◦ no examinations

• URL http://www.ics.uci.edu/∼dan/class/267/
◦ course outline

◦ homework

◦ links, references

c©2012 D. S. Hirschberg 1-1

Introduction to Data Compression

• Introduction – terminology, information theory, codes

• Coding – Huffman, arithmetic

• Modeling – dictionary, context

• Text Compr’n Systems – performance

• Image Compression – lossless techniques

• Lossy Compression – quantization, coding

• Lossy Image Compr’n – JPEG, MPEG

• Audio Compression – coding, masking

c©2012 D. S. Hirschberg 1-2

Introduction

• Terminology

• Performance Measures

• Information Theory

• Codes

c©2012 D. S. Hirschberg 1-3

Terminology

• Data Compression
transforms data to minimize size of its representation

In contrast: Data Reliability

is often implemented by adding check and parity bits,

and increases redundancy and size of the data

• Motivation

◦ increase capacity of storage media

◦ increase communication channel capacity

◦ achieve faster access to data

c©2012 D. S. Hirschberg 1-4

Applications

• Examples

◦ file compression – Gzip (Unix), Compactor (Mac), PKZIP (PC)

◦ automatic compression (disk doubler) – Stacker

◦ facsimile transmission

◦ modem compression

◦ CD/DVD players

◦ WWW – Flash

◦ digital camera image storage – JPEG

◦ HDTV

◦ Teleconferencing

c©2012 D. S. Hirschberg 1-5

Applications

• Typical source formats (format depends on the application)

◦ text – ASCII or EBCDIC chars (8 bits)

◦ audio – real-valued fixed precision samples

◦ images – pixels (picture elements)
1 bit b/w
8 bits grey scale
24 bits color (3 primaries)

◦ video example – an HDTV video format

• 1920 pixels × 1080 lines × 30 fps × 8 bits/color × 3 colors → 1.5 Gbps

• only ∼ 18 Mbps available for video
6 MHz/channel supports only 19.2 Mbps,

need some capacity for audio, captioning

• requires 83:1 video compression

c©2012 D. S. Hirschberg 1-6

Applications

• What can we expect? Depends on file type, size etc.

◦ Text compression (Calgary corpus) Pent-200, Win98

RK 1.81 bpc 29 kcps

LZOP 3.90 bpc 2.98 Mcps

◦ Image compression
Lossless b/w JBIG CR = 5%
Lossless grey scale JPEG 5 bpp (CR=65%)
Lossy color JPEG 0.6 bpp (CR=7%)

◦ Sound compression mp3

CD rates 1.5 Mbps, reduced to 128 Kbps: CR ≈ 8%

◦ Video compression MPEG-1

352×240 color images @ 30 fps = 60 Mbps

reduced to 1.2 Mbps: CR ≈ 2%

c©2012 D. S. Hirschberg 1-7

Terminology

• Encoding: compressing, reduce representation
Decoding: recover the original data

• Lossless: recover precisely the original data
Lossy: original data not recovered exactly

• 2-pass: pre-scan of source required
1-pass: no pre-scan required

• Modeling and Coding – components of the compression process

◦ Modeling: describe form of redundancy
• build abstract prototype of the source
• select source elements for focus

◦ Coding: encode model and description
of how data differs from model, residual

• construct new representation using model
• map source elements to produce output

c©2012 D. S. Hirschberg 1-8

Compression-Decompression Process

source

modeler coder

compressed

file

decodermodeler

recover

c©2012 D. S. Hirschberg 1-9

Types of Source Element Redundancy

• distribution
some elements occur more often than others,

e.g., ‘;’ in C programs

• repetition
elements often repeated,

e.g., 1 or 0 in b/w image bit maps

• patterns
correlation of symbols occurrence,

e.g., “th, qu” in English

• positional
some symbols occur mostly in the same relative position,

e.g., database fields

c©2012 D. S. Hirschberg 1-10

Methods for Compression

• pre-filtering — reduce complexity of data

may remove relevant details

• eliminate redundancy — remove any repeated information

• use human perception models — remove irrelevant detail

in ways that minimize humans’ ability to detect the information loss

• post-filtering
attempt to further reduce/mask artifacts

that were introduced by information loss

c©2012 D. S. Hirschberg 1-11

Performance Measures

Which measures are important depends on the application

• systemic encode/decode constraints

◦ limited CPU power

◦ limited working memory

◦ incremental encoding

◦ real-time transmittal (or multiple pass permitted)

◦ real-time decode

◦ random access decode enabled

◦ speed – chars/sec or pixels/sec

• Symmetric – encode + decode once

videoconferencing, multimedia mail

• Asymmetric – slow encode + fast multiple decode

picture archive, video-on-demand, electronic publishing

• Asymmetric – fast encode + slow rare decode

file system backup, security video tapes

c©2012 D. S. Hirschberg 1-12

Performance Measures

• compression effectiveness (size reduction)

◦ compression ratio CR = new file size as % of orig size

◦ compression factor CF = orig file size / new file size

◦ percent savings PS = amt of reduction as % of orig size

◦ bit usage bpc (# bits/char), bpp (# bits/pixel)

• quality

◦ fidelity – lossless, perceptually lossless, lossy

fidelity criteria

• MSE (mean squared error)

• SNR (signal-to-noise ratio)

• perceptual quality

◦ allow graceful (lossy) degradation

◦ allow browsing – rapid recovery of degraded version

◦ delay

◦ minimize error propagation

c©2012 D. S. Hirschberg 1-13

Information Theory – Information Content

• more likely events give less information
(learn more from surprising events)

so, measure of information content is inversely related to probability

◦ n events equally likely ⇒

to represent each item requires log2 n bits

• Information Content of an event having probability p

is log(1/p) = − log p

◦ base 2 logarithm → bits

◦ base e nats, base 3 trits, base 10 hartleys

• a sequence of independent events has additive information content

c©2012 D. S. Hirschberg 1-14

Information Theory – Entropy

Shannon Entropy: a discrete memoryless source that emits n chars

with probabilities p1, . . . , pn has entropy H =
∑

[−pi lg pi]

• entropy measures the avg # of bits needed

to encode the output of a source of a random sequence

◦ no compression scheme can do better

◦ compression methods that approach this limit without

knowledge of the pdf are called universal

• if sequence el’ts are not indep & ident distr (iid)

then above formula gives the first-order entropy

• in physics, entropy measures disorder

◦ if all n items equally likely, H = lgn

◦ if only 1 item can occur, H = 0

• entropy can be thought of as

a measure of uncertainty as to which character is emitted next

c©2012 D. S. Hirschberg 1-15

Information Theory – Examples

Example: fair coin

Prob(H) = Prob(T) = 1/2

i(H) = i(T) = 1 bit

H = 1

Example: biased coin

Prob(H) = 1/8 Prob(T) = 7/8

i(H) = 3 bits i(T) = 0.193 bits

H = .375 + .169 = 0.544

Example: fair and biased dice

• Prob(i) = 1/6, (i = 1 . . .6)

H = 2.585

• Prob(1) = 3/8, Prob(i) = 1/8, (i = 2...6)

H = 2.406

• Prob(1) = 11/16, Prob(i) = 1/16, (i = 2...6)

H = 1.622

c©2012 D. S. Hirschberg 1-16

Information Theory

• Joint Entropy of variables X, Y with joint pdf p

H(X, Y) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y)

• Conditional Entropy

H(Y |X) = −
∑

x∈X

p(x)H(Y |X = x) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x)

◦ H(Y |X) ≤ H(Y)

◦ knowing something about the context

can reduce the uncertainty (and the entropy)

◦ chain rule: H(X, Y) = H(X) + H(Y |X)

Proof: p(x, y) = p(x) ∗ p(y|x)
take logs: log p(x, y) = log p(x) + log p(y|x)
take expectations:

∑

x,y p(x, y) log p(x, y) =
∑

x p(x) log p(x)+
∑

x,y p(x, y) log p(y|x)

c©2012 D. S. Hirschberg 1-17

Information Theory

• Relative Entropy between two pdf’s, p and q

D(p||q) =
∑

x∈X

p(x) log
p(x)

q(x)

◦ always non-negative

◦ zero only if p = q, can be infinite

◦ not symmetric and does not satisfy triangle inequality

• Mutual Information is the relative entropy

between the joint pdf and the product of pdf’s

I(X, Y) = D(p(x, y)||p(x)p(y)) =
∑

x,y
p(x, y) log

p(x, y)

p(x)p(y)

=
∑

x,y
p(x|y)p(y) log

p(x|y)

p(x)

◦ I(X, Y) = H(X)−H(X|Y) = I(Y, X)

c©2012 D. S. Hirschberg 1-18

Information Theory – English

• information content of English

◦ if 96 printable chars equally likely entropy = lg 96 = 6.6 bpc

need ⌈lg 96⌉ = 7 bpc

◦ using pdf of English text entropy ≈ 4.5 bpc

Huffman code for this pdf = 4.7+ bpc

◦ group text in 8-char blocks: entropy ≈ 2.4 bpc

estimate limit for larger-size blocks = 1.3 bpc

• historical performance of best general-purpose compressors
on Calgary corpus

Year bpc algorithm

1977 3.94 LZ77
1984 3.32 LZMW
1987 2.71 Gzip
1988 2.48 PPMC
1994 2.33 PPMD
1995 2.29 BWT
1997 1.99 BOA
1999 1.82 RK
2009 1.77 ZPAQ slow, much memory (unconfirmed)
2009 1.51 PAQ8 variant, very slow, very much memory (unconfirmed)

c©2012 D. S. Hirschberg 1-19

Codes

• Types of codes

• Fixed finite codes

• Fixed infinite codes

c©2012 D. S. Hirschberg 1-20

Types of Codes
classified by time variance of codewords

A code is a mapping

from source = string over alphabet S

to compressor output = stream of codewords over alphabet C

• Fixed code

codeword set is time invariant

selection is predetermined

• Static code

codeword set is time invariant

selection dictated by model

• Adaptive code

dynamic codeword set (varies with time)

selection/modification dictated by model

c©2012 D. S. Hirschberg 1-21

Types of Codes
classified by input-output rates

(for time-invariant codes, think of parse+codeword lengths)

• Fixed-to-Fixed rate code: S → C

ASCII code

• Fixed-to-Variable rate code: S → C+

Morse, Huffman codes

• Variable-to-Fixed rate code: S+ → C

also called free-parse methods

Tunstall code, Lempel-Ziv methods

• Variable-to-Variable rate code: S+ → C+

Runlength encoding, Arithmetic coding

c©2012 D. S. Hirschberg 1-22

Types of Codes
classified by decodability

• Ambiguous Code ∃ 2 strings with identical encoding
symbol a b c d

code 1 01 010 001

◦ dilemma: 01001 could be bd or cb

• Complete every semi-infinite string is decodable

• Uniquely Decodable unambiguous and complete

• Instantaneous can be decoded as codewords are received

Prefix Code no codeword is a prefix of any other

◦ C is a prefix code ⇔ C is instantaneous

Example: symbol a b

code 0 01

• not complete, as 110... is undecodable

• unambiguous but not instantaneous

c©2012 D. S. Hirschberg 1-23

Fixed Codes

• Advantages – agreed upon beforehand

◦ no need for encoder to transmit code

◦ faster because selecting, not computing code

• Disadvantages – does not exploit info from model

◦ code unrelated to particular text

◦ can’t remove inherent data redundancy

• One fixed length provides no compression

Example: ASCII, EBCDIC

◦ modeler does all the work, packing information into ‘events’

• Multiple fixed-length (e.g., 6 and 12) gain compression by using

◦ shorter codes for expected freq chars

◦ longer codes for infrequent chars

Example: Morse

c©2012 D. S. Hirschberg 1-24

Fixed Finite Codes – Enumerative Coding

• for a known finite set S of n elements (chars)

map S to the set {0,1, . . . , n−1} (can refer to elements via indices)

◦ problem is reduced to representing integers 0,1,2, . . . , n− 1

which normally requires ⌈lgn⌉ bits

• to decode requires inverse map, can implement by

◦ maintaining a table, or

◦ use algorithm to compute maps

• no compression if all codewords are same length

var-length code gains some compression

c©2012 D. S. Hirschberg 1-25

Enumerative Coding – Example

S = { length-m binary strings having exactly j ones }

• n = |S| =
(

m
j

)

= m!
j!(m−j)!

• can compute index I ∈ [0, n− 1] for X = xm−1 . . . x1x0

let positions {pi} in X that contain ones be

m− 1 ≥ p1 > p2 > · · · > pj ≥ 0

index I =
(

p1
j

)

+
(

p2
j−1

)

+
(

p3
j−2

)

+ · · ·+
(

pj
1

)

• can compute inverse map: index I → string

r ← I

for i← 1 to j

pi ← max t s.t.
(

t
j+1−i

)

≤ r

r ← r −
(

pi
j+1−i

)

c©2012 D. S. Hirschberg 1-26

Enumerative Coding – Example

Example: m = 6, j = 4→ n = 15

• compute index(110110)

◦ 1-bits in positions 5,4,2,1

◦ index =
(

5
4

)

+
(

4
3

)

+
(

2
2

)

+
(

1
1

)

= 11

• compute inverse of index 9

◦ maximize
(

t
4

)

≤ 9 → p1 = 5

◦ maximize
(

t
3

)

≤ 9−
(

5
4

)

= 4→ p2 = 4

◦ maximize
(

t
2

)

≤ 4−
(

4
3

)

= 0→ p3 = 1

◦ maximize
(

t
1

)

≤ 0−
(

1
2

)

= 0→ p4 = 0

⇒ sequence 110011

c©2012 D. S. Hirschberg 1-27

Fixed Finite Codes – Phasing-In

To represent n codes normally need B = ⌈lgn⌉ bits

If n not power of 2, can sometimes use B − 1 bits

• i < 2B − n ⇒ encode i (B − 1 bits)

• i ≥ 2B − n ⇒ encode i + 2B − n (B bits)

• save some space

increase encode/decode time

Example: n = 5 ⇒ B = 3
i code

0 00

1 01

2 10

3 110

4 111

c©2012 D. S. Hirschberg 1-28

Fixed Finite Codes – Start-Step-Stop Codes

family based on choice of 3 parameters
• k codeword sets, k = (stop− start)/step + 1

• set n has codewords = 111...1 0 xxx...x

prefix: (n− 1) 1’s, one 0 (omit when n = k)

suffix: start + (n− 1) ∗ step bits

Example: start = 3, step = 2, stop = 9
n=1 0xxx {0000, 0001, 0010, 0011, 0100, ... 0111}

n=2 10xxxxx 32 codewords

n=3 110xxxxxxx 128 codewords

n=4 111xxxxxxxxx 512 codewords, 680 in all

• instantaneously decodable:
read n 1’s until either 0 encountered

or n = (stop− start)/step

read start + (n− 1) ∗ step more bits, build #

Example: start = 3, step = 2, stop = 9

1 1 0 1 1 0 1 0 1 1

8 +32 (n=3)+64 +32 +8 +2 +1

c©2012 D. S. Hirschberg 1-29

Fixed Infinite Codes

• for a set of unknown or increasing size

encode 1,2,3,...

with codewords of increasing length

• popular codes

◦ Elias

◦ Even-Rodeh

◦ Zeckendorf (Fibonacci)

◦ Golomb and Rice

◦ variable-byte

c©2012 D. S. Hirschberg 1-30

Elias Gamma Code

• instantaneously decodable:

read n 0-bits until encounter 1 bit (starts X)

read n more bits, computing binary value X

Example:

0 0 0 1 0 0 1

1 2 3=n 8 8 8 9

• to encode j: ⌊lg j⌋ 0’s

followed by binary value of j

• length of encoding(j) = 2⌊lg j⌋+ 1

Gamma Code Integer Bits

1 1 1
01x 2 - 3 3
001xx 4 - 7 5
0001xxx 8 - 15 7
00001xxxx 16 - 31 9
000001xxxxx 32 - 63 11

c©2012 D. S. Hirschberg 1-31

Elias Delta Code

• instantaneously decodable:

read an Elias Gamma Code number V

read V − 1 more bits, computing binary value W

X = 2V−1 + W

Example: 0 0 1 0 0 0 0 1

1 2=n 4 4 4=V 8 8 9

• to encode j: ⌊lg(1 + lg j)⌋ 0’s

then binary value of 1 + ⌊lg j⌋

then binary value of j − 2⌊lg j⌋, using ⌊lg j⌋ − 1 bits

• length of encoding of j ≈ lg j + 2 lg lg j

Delta Code Integer Bits

1 1 1
010x 2- 3 4
011xx 4- 7 5
00100xxx 8-15 8
00101xxxx 16-31 9
00110xxxxx 32-63 10

c©2012 D. S. Hirschberg 1-32

Elias Omega Code

• instantaneously decodable:

j ← 0

while peek(next bit)=1 do

j ← j + 1

j ← compute value of next j bits

• to encode j: write 0

while j ≥ 2

prepend binary value of j

j ← ⌊lg j⌋

• each group encodes len(next group)−1

the first group has length 2

Omega Code Integer Bits

0 1 1
1x0 2- 3 3
101xx0 4- 7 6
111xxx0 8-15 7
101001xxxx0 16-31 11
101011xxxxx0 32-63 12

c©2012 D. S. Hirschberg 1-33

Even-Rodeh Code

• similar to Elias Omega

• to encode j ≤ 3: express as 3 bits (has leading 0)

• to encode j ≥ 4: write 0

while j ≥ 8

prepend binary value of j

j ← ⌊lg j⌋+ 1

• each group encodes len(next group)

the first group has length 3

Even-Rodeh Integer Bits

0xx 0- 3 3
1xx0 4- 7 4
1001xxx0 8-15 8
1011xxxx0 16-31 9
1101xxxxx0 32-63 10

• compare
value 1 2 4 8 16 32 64 128 256

Elias ω 1 3 6 7 11 12 13 14 21

Even-Rodeh 3 3 4 8 9 10 11 17 18

c©2012 D. S. Hirschberg 1-34

Zeckendorf (Fibonacci) Code

• to encode j:

◦ express j as sum of Fibonacci #’s

◦ represent as bit vector (1,2,3,5,8,13,...)

◦ forbidden to have two adjacent 1’s

◦ append a 1-bit

• instantaneously decodable:

◦ 11 delimits end of codeword

◦ while parsing, build value based on Fib #’s

Example: 0 1 0 1 0 0 1 1

1 2 3 5 8 13 21 end

• length of encoding of j = ⌊logφ j⌋+ 1

• Advantages

◦ for most pdf’s, Fib outperforms Elias

◦ robust: 1-bit errors disturb ≤ 3 chars

c©2012 D. S. Hirschberg 1-35

Compare Elias & Fibonacci Code Lengths

Integer Gamma Delta Fibonacci

1 1 1 2
2 3 4 3
3 3 4 4
4 5 5 4
5-7 5 5 5
8-15 7 8 6-7
16-31 9 9 7-8
32-63 11 10 8-10
64-88 13 11 10
100 13 11 11
1000 19 16 16

104 27 20 20

105 33 25 25

106 39 28 30

Asymptotically, Elias Delta uses fewer bits but,

if most numbers are small (< 7) and others not too large

then Elias Gamma is best

c©2012 D. S. Hirschberg 1-36

Golomb Codes

• family of codes, with one parameter (m)

◦ start with code for 0

◦ designed for coding asymmetric

binary events with probs p >> (1− p)

by encoding runlengths of probable event

◦ pm = 0.5→ Pr(len n + m) = 1
2 Pr(len n)

so codeword(n + m) should have

one more bit than for n

• to encode j

◦ transmit unary value of ⌊j/m⌋

uses ⌊j/m⌋ 1-bits and one 0-bit

◦ transmit phased-in binary code for jmod m

uses ⌊lgm⌋ or ⌈lgm⌉ bits

c©2012 D. S. Hirschberg 1-37

Golomb Codes

Integer m = 3 m = 4 m = 5 m = 6

0 00 000 000 000

1 010 001 001 001

2 011 010 010 0100

3 100 011 0110 0101

4 1010 1000 0111 0110

5 1011 1001 1000 0111

6 1100 1010 1001 1000

7 11010 1011 1010 1001

8 11011 11000 10110 10100

c©2012 D. S. Hirschberg 1-38

Rice Codes

• family of codes, with one parameter (k)

special case of Golomb codes, m = 2k

• to encode j transmit ⌊j/2k⌋ 1-bits, then one 0-bit

transmit k least significant bits of j

• length of encoding of j = ⌊j/2k⌋+ k + 1
k = 2: 0xx 0-3 k = 3: 0xxx 0-7

10xx 4-7 10xxx 8-15
110xx 8-11 110xxx 16-31
11111111001 33 11110001 33

• instantaneously decodable

position of 0 gives value prefix

append next k bits

c©2012 D. S. Hirschberg 1-39

Variable-Byte Code

• simple binary, using minimum required number of bytes

• each byte: value (7 bits), is this last byte? (1 bit)

Integer Bits

0 - 127 8
128 - 16383 16

16384 - 2097151 24

• integral byte sizes for easy coding

• effective for medium-size numbers

• wasteful for small numbers

c©2012 D. S. Hirschberg 1-40

Comparing Fixed Codes

+
1

+
2

+
5

+
10

+
20

+
50

+
100

+ + +
1000

Length of encoding

+0

+5

+10

+15

+20

+30

+40

Integer to be encoded

△ △ △ △ △
△

•

•

•

•

•

•

◦
◦

◦
◦
◦

◦

⋄ ⋄ ⋄ ⋄

⋄ ⋄
∗ ∗ ∗ ∗ ∗ ∗

△
△

△

△

△

△Rice 5

•

•

•

•

•

•Elias Gamma

◦ ◦

◦
◦

◦

◦Fibonacci

⋄ ⋄ ⋄

⋄ ⋄ ⋄ sss 4-3-10

∗ ∗ ∗

∗ ∗ ∗
var-byte

c©2012 D. S. Hirschberg 1-41

