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Abstract of the Dissertation

E�cient Reasoning in Graphical Models

by

Irina Rish
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Professor Rina Dechter, Chair

Most arti�cial intelligence problems are computationally hard (NP-hard). However,

in practice, the pessimistic worst-case performance can be improved by exploiting

problem structure and by using approximations that trade accuracy for e�ciency.

Theoretical studies identify tractable problem classes while empirical evaluations shed

light on average performance.

This thesis is concerned with e�cient algorithms for automated inference in graph-

ical models, such as constraint networks and belief networks. We use a general graph-

based algorithmic framework that combines a dynamic-programming approach called

variable elimination with conditioning techniques, such as backtracking search. We

investigate the e�ects of certain problem structures, identify new tractable classes,

and propose several structure-exploiting algorithms.

The central idea of this thesis is that e�ciency can be gained by reducing the

induced width, a graph parameter that bounds the complexity of variable elimina-

tion. We approach this problem by combining elimination with conditioning, which

xxii



reduces the graph connectivity; by exploiting hidden structure such as causal inde-

pendence in belief networks, which allows decomposition of large dependencies into

smaller ones; and by using approximation algorithms that bound the size of recorded

dependencies. Our empirical studies demonstrate promising results obtained both on

randomly generated problems and on realistic domains such as medical diagnosis and

probabilistic decoding.
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Chapter 1

Introduction and Overview

Automated reasoning is a �eld of arti�cial intelligence concerned with answering

queries and drawing new conclusions from previously stored knowledge. It includes

many areas such as theorem-proving, game playing, propositional satis�ability, con-

straint satisfaction, planning, scheduling, probabilistic inference and decision-making.

This dissertation is focused on reasoning in graphical frameworks such as con-

straint and belief networks, where domain knowledge is represented by a graph de-

picting variables as nodes and dependencies (e.g., propositional clauses, constraints,

probabilities, and utilities) as edges. Some reasoning tasks can be formulated as

combinatorial optimization or constraint satisfaction problems, while others can be

viewed as knowledge compilation, or inference. We approach those tasks using a

general graph-based algorithmic framework that combines a dynamic-programming

technique called variable elimination with backtracking search, and investigate the

e�ect of problem structure on the performance of such algorithms.

A popular method for solving combinatorial optimization and constraint satis-

faction problems is to search the space of variable assignments. This method can

also be viewed as conditioning, or reasoning by assumptions: a problem is divided

into subproblems conditioned on an instantiation of a subset of variables (also called

cutset). Each subproblem can be solved by any means; if the current subproblem is
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insoluble, or if more solutions are needed, the algorithm tries a di�erent assignment

to the cutset variables, and so on.

An alternative to search algorithms are dynamic-programming techniques also

known as variable-elimination algorithms which process (eliminate) variables in a

certain order and infer new dependencies among the remaining variables. In this thesis

we use an algorithmic framework called bucket elimination [26, 27] that generalizes

and uni�es non-serial dynamic programming techniques [7] for various reasoning tasks.

Both search and elimination schemes are used in many areas of reasoning. For

instance, a common approach to solving constraint satisfaction problems combines

backtracking search with local consistency enforcing which is a limited form of vari-

able elimination. Branch-and-bound is an example of a search algorithm for solving

combinatorial optimization problems. The tree-clustering method for belief networks

is closely related to variable elimination, while backward induction, value iteration

and policy iteration algorithms for decision-theoretic planning employ both elimina-

tion and conditioning.

Most reasoning problems are known to be computationally hard (NP-hard). It is

believed that the inherent complexity of those problems is associated with the level

of interactions among the problems' variables, that is captured, for instance, by the

notion of i-consistency [44, 22]. A constraint-satisfaction problem is called i-consistent

if any consistent assignment to i � 1 variables can be extended to any i-th variable

without violating any constraint. Consider, for example, a constraint network de�ned

on n variables that is (n�1)-consistent, but not n-consistent. Such networks are hard

to solve both by search and elimination. Search may encounter all partial solutions

of length n� 1, therefore traversing the complete search tree, while elimination may

deduce dependencies of size O(exp(n � 1)) involving n � 1 variables. However, the

level of i-consistency of a given problem is not known in advance and therefore cannot

serve as a complexity bound. Instead, we use a parameter of the problem's interaction

graph, called induced width, which does capture the problem's level of interactions

and which can be assessed prior to the algorithm's execution. The induced width
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Figure 1.1: An example of a constraint satisfaction problem: map coloring.

describes the size of largest constraint, function, or another dependence created by

a variable-elimination algorithm, which corresponds to a largest clique \induced" in

the problem's graph.

The central theme of this thesis is to improve the performance of reasoning al-

gorithms by reducing their induced width. We investigate several approaches that

include combining elimination with conditioning, exploiting hidden structure such as

causal independence, and using approximate algorithms.

The following three subsections present an overview of the reasoning tasks and

algorithms addressed in this thesis, and summarize the thesis' contributions.

1.1 Automated reasoning: frameworks and tasks

Constraint satisfaction

An example of a constraint satisfaction problem (CSP) is the map coloring problem,

illustrated in Figure 1.1. Given a �xed set of colors, the task is to color each country

on the map so that countries having a common border are assigned di�erent colors.

Generally, a constraint satisfaction problem is de�ned on a constraint network <

X;D;C >, where X = fX1; :::;Xng is the set of variables, associated with a set of

�nite domains, D = fDi; :::;Dng, and a set of constraints, C = fC1; :::; Cmg. Each
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constraint Ci is a relation Ri � Di1 � ::: � Dik de�ned on a subset of variables

Si = fXi1 ; :::;Xikg. A constraint network can be associated with an undirected

graph, called a constraint graph, where the nodes correspond to the variables, and

two nodes are connected if and only if they participate in the same constraint. The

constraint satisfaction problem (CSP) is to �nd a solution, namely a value assignment

to all the variables that satis�es all the constraints. If no such assignment exists,

the constraint network is inconsistent. For example, in the map-coloring problem

presented in Figure 1.1, countries correspond to the variables (i.e., X = fA; B; C;

D; E; F; Gg) and colors correspond to the domain values (e.g., Di = fred; green;

blueg). The problem is de�ned by a set of pairwise inequality constraints between

neighboring countries, such as A 6= B, B 6= C. Constraint networks are widely used in

many practical applications such as scheduling, planning, electronic circuit diagnosis,

query answering in databases, and line drawings understanding.

Propositional satis�ability (SAT)

A special case of a CSP is propositional satis�ability problem (abbreviated SAT).

Consider the following example. Assume that you would like to invite your friends

Alex, Beki, and Chris to a party. Let A, B, and C denote the propositions \Alex

comes", \Beki comes", and \Chris comes", respectively. You know that if Alex comes

to the party, Beki will come as well, and that if Chris comes, then Alex will, too. This

can be expressed in propositional calculus as (A ! B) ^(C ! A), or, equivalently,

4



as (:A _ B) ^(:C _ A), where disjunctive formulas (:A _ B) and (:C _ A) are

called clauses. Assume now that Chris came to the party; should you expect to see

Beki? Or, in propositional logic, does the propositional theory ' = C ^(A ! B)

^(C ! A) entail B? A common way to answer this query is to assume that Beki will

not come and check whether this is a plausible situation (i.e., decide whether '0 =

'^:B is satis�able). If '0 is unsatis�able, we conclude that ' entails B. Propositional

satis�ability can be de�ned as a CSP, where propositions correspond to the variables,

domains are f0; 1g, and constraints are represented by clauses (for example, clause

(:A _B) allows all tuples (A;B) except (A = 1; B = 0)).

Formally, the propositional satis�ability problem (SAT) is to decide whether a

given cnf theory has a model, i.e. an assignment to its propositions that does not

violate any clause. A formula ' in conjunctive normal form (cnf) is a conjunction

of clauses �1; :::; �t (denoted as a set f�1; :::; �tg) where a clause is a disjunction

of literals (propositions and their negations). For instance, � = (P _ :Q _ :R) is

a clause, where P;Q; and R are propositions, and P , :Q, and :R are literals. A

resolution over two clauses (� _ Q) and (� _ :Q) results in a clause (� _ �) (called

resolvent) thus eliminating proposition Q.

The structure of a propositional theory can be captured by its interaction graph

(equivalent to the constraint graph in a CSP). The interaction graph of a theory ',

denoted G('), is an undirected graph that contains a node for each propositional

variable and an edge connecting any two nodes representing variables appearing in

the same clause. The resolution operation creates new clauses which correspond to

new edges in the interaction graph. For example, given the theory ' = f(A_B_C);

(:A_B _E); (B _:C _D)g, resolution over A results into new clause (B _C _E),

thus adding a new edge between nodes E and C. Figure 1.2 shows the interaction

graph of ' and its induced graph, which corresponds to ' [ (B _C _E) obtained by

resolving over A.
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Figure 1.3: An example of a belief network.

Probabilistic inference

Constraint networks o�er a convenient deterministic framework for a wide variety of

reasoning tasks. However, this framework does not include representation of uncer-

tain knowledge. There are various formalisms for modeling uncertainty that include

nonmonotonic logic, probabilistic logic, fuzzy logic, and probabilistic constraint net-

works. We will focus on the popular framework known as Bayesian, or belief net-

works. The success of belief networks is not surprising: their clear semantics is based

on mathematical formalism of probability theory, the oldest and most developed

tool for modeling uncertainty. Belief networks exploit conditional independencies in

order to provide a convenient graphical representation of complex probabilistic dis-

tributions. Belief networks are used in a variety of applications including medical

diagnosis, troubleshooting in computer systems, circuit diagnosis, tra�c control, and

signal processing.

A belief network (BN) is a directed acyclic graph, where the nodes correspond to

random variables and the edges denote probabilistic dependencies. Given a directed
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edge (X;Y ), the node X is called a parent of Y , while the node Y is called a child

of X. A node and all its parents are called a family. Each node X in the network is

associated with the probability function P (xjpa(x)), where x and pa(x) denote the

values of X and of X's parents, respectively. The network de�nes a joint distribution

over the n variables:

P (x1; :::; xn) =
nY

i=1

P (xijpa(xi)):

Frequently, belief networks represent causal dependencies between parents and chil-

dren and therefore are also called causal networks. An example of a simple belief

network for medical diagnosis is shown in Figure 1.3. A sample query may be to as-

sess the probability that a patient has tuberculosis given that he has recently visited

Asia (which may increase the risk of getting the disease), or to determine the proba-

bility of lung cancer given that patient su�ers from dyspnea (shortness of breath), but

has normal X-ray results. The task of computing the posterior probability of query

node(s), given observations of some other nodes (evidence), is called belief updating.

Another task is to �nd a most probable explanation (MPE), namely, a maximum-

likelihood assignment to all unobserved nodes. For tasks that involve actions, such as

planning and decision-making, there is a utility function associated with the outcome

of actions. Given a utility function de�ned on the network's nodes, and a distin-

guished set of decision nodes, we want to �nd an assignment to the decision nodes

that maximizes the expected utility. A generalization of a belief network that includes

decision nodes and utility function is known as an in
uence diagram [103, 104].

The moral graph of a belief network is obtained by connecting (\marrying") the

parents of each node and dropping the directionality of edges. The moral graph

parallels the notions of the constraint graph and the interaction graph: they all have

the property that a pair of nodes is connected in the graph if the corresponding

variables belong to the same dependence, which can be a constraint, a clause, or a

conditional probability function.
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1.2 Reasoning algorithms

The two general approaches to reasoning include divide-and-conquer conditioning

strategies such as search and dynamic-programming techniques such as variable-

elimination. Conditioning, or reasoning by assumptions, splits a problem into sub-

problems by instantiating a subset of variables, while variable elimination transforms

a problem into an equivalent one, replacing the eliminated variable by new depen-

dencies deduced on the remaining variables. The next subsections elaborate on those

two approaches.

1.2.1 Conditioning and search

An example of conditioning (search) is backtracking, or depth-�rst search algorithm,

a common technique for solving constraint satisfaction problems. It processes the

variables in some order, instantiating each variable if it has a value consistent with

previous assignments. If there is no such value (a situation called a dead-end), the

algorithm backtracks to the previous variable (hence the name) and tries an alternative

assignment. If no consistent assignment is found, the algorithm backtracks again, and

so on. The algorithm explores the search space in a systematic way until it either �nds

a solution, or concludes that no solution exists. The search space can be represented

by a search tree, which is traversed in a depth-�rst manner. For example, the search

tree in Figure 1.4 is traversed when searching for a model of ' = (:A_B)^ (:C_A)^

:B ^ C: The tree nodes correspond to variables, while its branches represent value

assignments. Dead-end nodes are crossed out. Clearly, ' is inconsistent, since every

leaf, i.e., every partial assignment, is a dead-end.

There are many advanced backtracking algorithms for solving CSPs that improve

the basic scheme by using \smart" variable- and value-ordering heuristics ([14], [51]).

More e�cient backtracking mechanisms, such as backjumping [53, 21, 92], constraint

preprocessing (e.g., arc-consistency, forward checking [59]), or learning (recording

constraints) [21, 48, 3], are available.
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The worst-case time complexity of backtracking is exponential in the number of

variables, while its space requirements are linear. However, the time complexity of

backtracking varies considerably from one instance to another. Usually, the average

performance of backtracking is much lower than its worst-case bound, and is a�ected

by rare, but exceptionally hard instances; as noted by Donald E. Knuth in 1975, \great

discrepancies in execution time are characteristic of backtrack programs." Long-

tail exponential-family empirical distributions (e.g., lognormal, Weibull) observed in

recent studies [50, 96] summarize such observations in a concise way.

1.2.2 Variable elimination

We next discuss the bucket-elimination framework [26, 27], that provides a unifying

view of variable-elimination algorithms for a variety of reasoning tasks.

A bucket-elimination algorithm accepts as an input an ordered set of variables and

a set of dependencies, such as propositional clauses, constraints, probability or utility

functions. Each variable is then associated with a bucket constructed as follows:

all the dependencies de�ned on variable Xi but not on higher-index variables are

placed into the bucket of Xi, denoted bucketi. Once the buckets are created, the

algorithm processes them from last to �rst. It computes new dependencies, applying
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an elimination operator to all the dependencies in the bucket. The new dependencies,

summarizing the e�ect of Xi on the rest of the problem, are placed in the appropriate

lower buckets. The elimination operation depends on the task. In propositional

satis�ability, the bucket of Xi is processed by resolving all possible pairs of clauses

over Xi; in belief updating, eliminating a variable Xi is equivalent to computing
P

Xi
F , where F is the product of all functions in bucketi, and summation is over

all values of Xi. The bucket-elimination algorithm terminates when all buckets are

processed, or when some stopping criterion is satis�ed. For example, for SAT, a

theory is declared inconsistent as soon as an empty clause is generated.

To demonstrate the bucket-elimination approach, we consider two examples, one

for belief updating, and one for SAT (Figure 1.5). Figure 1.5a illustrates the bucket-

elimination algorithm for propositional satis�ability, called directional resolution (DR).

The algorithm is applied to the theory ' = f(:C); (A _ B _ C); (:A _ B _ E);

(:B _ C _ D)g along the ordering o = (E;D;C;B;A). The theory is partitioned
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into buckets, as shown in Figure 1.5a, and processed by directional resolution in the

reverse order. Resolving over variable A produces a new clause (B _C _E), which is

placed in the bucket of its highest-index variable, B. Resolving over B results into the

new clause (C _D_E) placed in the bucket of C. Finally, resolving over C produces

the clause (D _ E), which is placed in the bucket of D. The buckets of D and E

do not produce any new clauses. The theory is declared satis�able since no empty

clause was generated. The output of the algorithm is the collection of the clauses in

all buckets, called a directional extension of '. As it will be shown later, any model

of ' can be found by consulting the directional extension in a backtrack-free manner.

Another example (Figure 1.5b) demonstrates the bucket-elimination algorithm for

belief updating, called elim-bel [23], applied to the network in Figure 1.6a, given the

query variable A, the ordering o = (A;E;D;C;B), and evidence E = 0 (for illustra-

tion, we selected an arbitrary ordering which is not necessarily the most e�cient one).

The updated belief in A is computed as follows (upper-case letters denote variables,

while lower-case letters denote their values):

P (aje = 0) =
X

E=0;d;c;b

P (a; b; d; c; e) =
X

E=0;d;c;b

P (a)P (cja)P (ejb; c)P (dja; b)P (bja) =

11
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X

E=0

X

d

X

c

P (cja)
X

b

P (ejb; c)P (dja; b)P (bja):

The bucket-elimination algorithm computes this sum from right to left using the

buckets, as shown below:

1. bucket B: hB(a; d; c; e) =
P

b P (ejb; c)P (dja; b)P (bja)

2. bucket C: hC(a; d; e) =
P

c P (cja)h
B(a; d; c; e)

3. bucket D: hD(a; e) =
P

D h
C(a; d; e)

4. bucket E: hE(a) = hD(a;E = 0)

5. bucket A: Bel(a) = P (ajE = 0) = �P (a)hE(a);

where � is a normalizing constant. A schematic trace of the algorithm is also shown

in Figure 1.5b.

Bucket-elimination algorithms record new dependencies in a form of conditional

probability tables or relational tables (constraints). The number of variables in a

dependence, k, is called the arity of the dependence. The table representation may

require enumerating O(exp(k)) tuples. Therefore, the time and space complexity of

bucket elimination is bounded by O(m � exp(k)), where k is in the arity of largest
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dependence recorded, and m is the number of such dependencies.

The new dependencies are associated with new edges in the corresponding con-

straint graph, interaction graph, or moral graph. An important property of bucket-

elimination algorithms is that their performance can be predicted using a graph pa-

rameter called induced width [33] (also known as tree-width [2]). This parameter

describes the largest clique created in the problem's graph during the algorithm's

execution. The induced width is de�ned as follows. Given a graph G, the width of Xi

along ordering o is the number of Xi's neighbors preceding Xi in o. The width of the

graph along o, denoted wo, is the maximum width along o. The induced graph of G

along o is obtained by connecting the preceding neighbors of each Xi, for i from n to

1. The induced width along o, denoted w�
o, is the width of the induced graph along o,

while the induced width w� is the minimum induced width along any ordering. For

example, Figures 1.6b and 1.6c depict the induced graphs (induced edges are shown

as dashed lines) of the moral graph in Figure 1.6a along the orderings o = (A;E;D;

C;B) and o0 = (A;B; C;D;E), respectively. Clearly, w�
o = 4 and w�

o0 = 2.

Figure 1.7 demonstrates how processing theory ' in Figure 1.5a by bucket elimi-

nation generates directional extension of ' containing new clauses that correspond to

new edges in the interaction graph. Resolving over A creates the clause (B _C _E),

which corresponds to an induced edge between the nodes B and E. Similarly, resolv-

ing over B creates the clause (C _D _E), which induces an edge between C and E.

In this example both the width and the induced width equal 3.

It can be shown that the induced width w�
o(Xi) of node Xi bounds the number

of arguments of any function computed in bucketi. Consequently, the number of

clauses (e.g., resolvents) de�ned on the variables in bucketi (or the size of a table

representing a new probabilistic function) is O(exp(w�
o)), where o is the elimination

ordering. Therefore, the complexity of bucket-elimination algorithms is time and

space exponential in w�
o. Clearly, the induced width will vary with the variable

ordering. Although �nding a minimum-w� ordering is NP-hard [2], good heuristic

algorithms are available [7, 22, 97].
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1.3 Thesis overview and results

The central theme of this thesis is that e�ciency can be gained by reducing the

induced width of variable-elimination algorithms. We investigated three approaches:

1. Combining elimination with backtracking search into hybrid schemes that use

conditioning to reduce the induced width (Chapter 2).

2. Exploiting speci�c problem structures, such as causal independence in belief

networks, that allows decomposition of large dependencies into smaller ones

(Chapter 3).

3. Using approximation schemes, such as mini-buckets, that bound the size of

recorded dependencies (Chapter 4).

The following three subsections summarize the contributions along each of those lines.

1.3.1 Hybrid algorithms for SAT (Chapter 2)

Chapter 2 compares backtracking search with the variable-elimination algorithm di-

rectional resolution (DR) for propositional satis�ability. Backtracking search and

variable-elimination algorithms have distinct properties, summarized in Figure 1.8.

As noted, the time complexity of backtracking is worst-case exponential in the num-

ber of variables, n, while algorithm bucket-elimination is time and space exponential

in w�, w� � n, where w� is the induced width along the given variable ordering.

However, while the average performance of backtracking is often much better than

its worst-case bound, the average complexity of elimination is close to its worst-case.

In terms of space complexity, backtracking is linear in n, while the elimination algo-

rithms require O(n � exp(w�)) space as well.

Because of their average-case performance and e�cient memory use, backtracking

algorithms are more popular than variable elimination for �nding one solution (e.g.,

constraint satisfaction and optimization), while variable elimination is more suitable
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Figure 1.8: Conditioning versus elimination.

for knowledge compilation tasks. However, even when only one solution is required,

variable elimination can still be more e�cient than backtracking for problems with

low induced width. Indeed, we will provide experimental data demonstrating that on

low-width problems elimination algorithms sometimes outperform backtracking by

several orders of magnitude.

The complementary properties of backtracking and elimination, summarized in

Figure 1.8, call for hybrid algorithms that exploit the advantages of both techniques.

One approach is to reduce the amount of search by preprocessing it with some vari-

able elimination. Another approach is to alternate between both methods, using

conditioning to reduce a problem to a collection of subproblems that have smaller w�,

and thus can be tractable for variable elimination. For example, we may require that

the induced width of an eliminated variables does not exceed b. As demonstrated

in Figure 1.9 for b = 2, we condition on variable B since w�(B) > 2, and resolve

over the rest of variables having w� � 2. Based on these ideas, Chapter 2 presents a

family of parameterized hybrid algorithms allowing a 
exible control between variable

elimination and search.
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Figure 1.9: The idea of DCDR.

Contributions

The original resolution-based Davis-Putnam algorithm [19] is \revived" (in the form

of a bucket-elimination algorithm called directional resolution (DR)) by analyzing

its complexity, identifying tractable classes, and performing empirical studies. DR is

compared against the backtracking-based Davis-Putnam-Logeman-Loveland Proce-

dure [18] (herein called DP), which is one of the most e�ective complete satis�ability

algorithms known to date. In summary,

1. We showed that the time and space complexity of DR is O(n � exp(w�)), where

n is the number of variables and w� is the induced width of the problem's

interaction graph.

2. Our empirical studies con�rm that DR is impractical for theories having large

w� such as uniform random 3-cnfs; however, on low-w� problems, such as k-

tree-embeddings [1], DR is very e�cient and outperforms DP by several orders

of magnitude.

3. We emphasized complementary properties of backtracking search and resolu-

tion, and proposed two parametric families of hybrid algorithms, BDR-DP(i)
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and DCDR(b), that combine both approaches and that coincide with DR or DP

at the extreme values of their parameters. Empirical evaluation demonstrates

that the hybrid algorithms can be more e�cient than both DR and DP.

1.3.2 Exploiting causal independence (Chapter 3)

In probabilistic networks, the speci�cation of conditional probability tables (CPTs)

is exponential in the family size, which may be large. For example, dozens of dif-

ferent diseases may cause the same symptom, such as fever. In such cases, even

knowledge representation is di�cult, and therefore, simplifying assumptions about

the nature of probabilistic dependencies are required. The focus of Chapter 3 is on

causal independence assumption [63, 111, 114] which reduces the CPT representation

from exponential to linear in the family size, and which can be exploited to speed-up

inference.

Causal independence assumes that several causes contribute independently to a

common e�ect. For example, a burglary alarm can be turned on by a burglary

or by an earthquake. Assessing the conditional probability of alarm given every

possible combination of its causes is not straightforward either from statistical data,

or from our beliefs, since the causal mechanisms are unrelated to each other (belong

to di�erent \frames of knowledge" [89]). Namely, the probability of an alarm not

turning on in case of a burglary depends on burglar's skills, which are unrelated to

earthquakes. Thus, we may assume independence of causal mechanisms, and specify

them separately. Generally, a causally-independent probabilistic relation between a

set of causes c1; :::; cn and an e�ect e can be decomposed into a noisy transformation

of each cause ci into a hidden variable ui, and a deterministic function e = u1� :::�un,

where � is a commutative and associative binary operator, such as logical OR, logical

AND, addition, multiplication, etc. Figure 1.10 demonstrates such decomposition.

Chapter 3 investigates how causal independence can be further exploited to im-

prove inference algorithms, building upon the approaches of [63, 84] and [114]. We
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Figure 1.10: (a) a belief network and (b) its decomposition using causal independence.

show that the \e�ective" induced width of algorithms exploiting causal independence

can be signi�cantly reduced. For example, exploiting causal independence in poly-

trees with an arbitrary large family of size m reduces the e�ective induced width from

m to 2. Given a network, the anticipated computational bene�ts can be evaluated in

advance and contrasted with those of general-purpose \causally-blind" algorithms.

Contributions

We investigated the impact of causal independence on several probabilistic tasks, such

as belief updating, �nding a most probable explanation (MPE), �nding a maximum

a posteriori hypothesis (MAP), and �nding the maximum expected utility (MEU)

decision. Speci�cally,

1. We explicated the relationship between the previously proposed approaches,

such as network transformations and variable-elimination algorithm VE1 [114],

using the bucket-elimination framework. We showed that the ordering restric-

tions implied by algorithm VE1 may sometimes lead to an unnecessary (expo-

nential) complexity increase, and proposed a more general variable-elimination

scheme, called ci-elim-bel, that avoids VE1's drawback by allowing any variable

ordering.

2. We presented bucket-elimination algorithms that exploit causal independence
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for the tasks of belief updating, MPE, and MEU.We also showed that, generally,

causal independence cannot be exploited for �nding the MPE.

3. We analyzed the complexity of the above \causally-informed" algorithms, and

showed a signi�cant potential reduction of their \e�ective" induced width, up

to the induced width of the (unmoral) input network (note that the induced

width of standard \causally-blind" elimination algorithms is computed on the

moral network).

4. Finally, we showed how constraint-propagation techniques can be used for evi-

dence propagation in causally-independent networks.

1.3.3 Approximate inference (Chapter 4)

Another way of coping with computational complexity is to look for approximate

rather than exact solutions. Although approximation within a given error bound

is known to be NP-hard [86, 98], there are approximation strategies that work well

in practice. One approach advocates anytime algorithms. These algorithms can be

interrupted at any time, producing the best solution found thus far [20, 8]. Another

approach is to identify problem classes that can be solved approximately within given

error bounds, thus applying the idea of tractability to approximation.

Chapter 4 presents the general framework of mini-bucket approximations that

trade accuracy for e�ciency in those cases when computational resources are bounded.

This class of mini-bucket algorithms imports the idea of local inference from con-

straint networks to probabilistic reasoning and combinatorial optimization. Local

inference algorithms like i-consistency [44, 22] bound the computational complexity

by restricting the arity of recorded dependencies to i. Known special cases are arc-

consistency (i = 2) and path-consistency (i = 3) [78, 43, 22]. Indeed, the recent

success of constraint-processing algorithms can be attributed primarily to this class

of algorithms, especially when combined with backtracking search [28, 29]. The idea,

demonstrated in Figure 1.11, shows that while exact algorithmsmay record arbitrarily
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Figure 1.11: From global to local consistency: algorithm i-consistency and its partic-

ular cases path-consistency (i=3) and arc-consistency (i=2).

large constraints, i-consistency algorithms decide consistency of smaller subproblems,

recording constraints of size i or less.

Contributions

The mini-bucket algorithms for probabilistic tasks of belief updating, �nding the

most probable explanation, �nding the maximum a posteriori hypothesis, and for

optimization tasks are presented and analyzed. We identify regions of completeness

and demonstrate promising empirical results obtained both on randomly generated

networks and on realistic domains such as medical diagnosis and probabilistic decod-

ing. For example, for noisy-OR random networks and for CPCS networks, we often

computed an accurate solution in cases when the exact algorithm was much slower,
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or infeasible. For probabilistic decoding, we obtained preliminary results that demon-

strated the advantages of the mini-bucket scheme over the state-of-the-art iterative

belief propagation decoding algorithm on problems having low induced width.

Theoretical bounds on the complexity of mini-bucket algorithms allow us to pre-

dict in advance, using both memory considerations and the problem's graph, the

suitability of the algorithm's parameters for given networks.

1.3.4 Organization of this thesis

This chapter provided an overview of automated reasoning tasks addressed in this

thesis and summarized the main ideas and contributions of our work. Chapters 2,3

and 4 will present the main results. Those chapters are minor modi�cations of the

articles currently submitted to journals. Therefore, we apologize for possible minor

repetitions (e.g., some �gures and de�nitions in the introduction were borrowed from

the corresponding chapters). Chapter 5 concludes this thesis by summarizing the

results and outlining the directions for future work.
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Chapter 2

Hybrid Algorithms for SAT

2.1 Introduction

Propositional satis�ability (SAT) is a prototypical example of an NP-complete prob-

lem; any NP-complete problem is reducible to SAT in polynomial time [12]. Since

many practical applications such as planning, scheduling, and diagnosis can be formu-

lated as propositional satis�ability, �nding algorithms with good average performance

has been a focus of extensive research for many years [102, 15, 49, 70, 71, 4]. In this

chapter, we consider complete SAT algorithms that can always determine satis�ability

as opposed to incomplete local search techniques [102, 101]. The two most widely used

complete techniques are backtracking search (e.g., the Davis-Putnam Procedure [18])

and resolution (e.g., Directional Resolution [19, 35]). We compare both approaches

theoretically and empirically, suggesting several ways of combining them into more

e�ective hybrid algorithms.

In 1960, Davis and Putnam presented a resolution algorithm for deciding proposi-

tional satis�ability (the Davis-Putnam algorithm [19]). They proved that a restricted

amount of resolution performed along some ordering of the propositions in a propo-

sitional theory is su�cient for deciding satis�ability. However, this algorithm has
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received limited attention and analyses of its performance have emphasized its worst-

case exponential behavior [52, 57], while overlooking its virtues. It was quickly over-

shadowed by the Davis-Putnam Procedure, introduced in 1962 by Davis, Logemann,

and Loveland [18]. They proposed a minor syntactic modi�cation of the original

algorithm: the resolution rule was replaced by a splitting rule in order to avoid an

exponential memory explosion. However, this modi�cation changed the nature of

the algorithm and transformed it into a backtracking scheme. Most of the work on

propositional satis�ability quotes the backtracking version [58, 82]. We will refer

to the original Davis-Putnam algorithm as DP-resolution, or directional resolution

(DR)1, and to its later modi�cation as DP-backtracking, or DP (also called DPLL in

the SAT community).

Our evaluation has a substantial empirical component. A common approach used

in the empirical SAT community is to test algorithms on randomly generated prob-

lems, such as uniform random k-SAT [82]. However, these benchmarks often fail

to simulate realistic problems. On the other hand, \real-life" benchmarks are often

available only on an instance-by-instance basis without any knowledge of underlying

distributions which makes the empirical results hard to generalize. An alternative

approach is to use structured random problem generators inspired by the properties

of some realistic domains. For example, Figure 2.1 illustrates the unit commitment

problem of scheduling a set of n power generating units over T hours (here n = 3

and T = 4). The state of unit i at time t (\up" or \down") is speci�ed by the value

of boolean variable xit (0 or 1), while the minimum up- and down-time constraints

specify how long a unit must stay in a particular state before it can be switched.

The corresponding constraint graph can be embedded in a chain of cliques where

each clique includes the variables within the given number of time slices determined

by the up- and down-time constraints. These clique-chain structures are common in

many temporal domains that possess the Markov property (the future is independent

1A similar approach known as \ordered resolution" can be viewed as a more sophisticated �rst

order version of directional resolution [38].
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Figure 2.1: An example of a \temporal chain": the unit commitment problem for 3

units over 4 hours.

of the past given the present). Another example of structured domain is circuit di-

agnosis. In [40] it was shown that circuit-diagnosis benchmarks can be embedded

in a tree of cliques, where the clique sizes are substantially smaller than the overall

number of variables. In general, one can imagine a variety of real-life domains having

such structure that is captured by k-tree-embeddings [1] used in our random problem

generators.

Our empirical studies of SAT algorithms con�rm previous results: DR is very

ine�cient when dealing with unstructured uniform random problems. However, on

structured problems such as k-tree embeddings having bounded induced width, direc-

tional resolution outperforms DP-backtracking by several orders of magnitude. The

induced width (denoted w�) is a graph parameter that describes the size of the largest

clique created in the problem's interaction graph during inference. We show that the

worst-case time and space complexity of DR is O(n � exp(w�)), where n is the num-

ber of variables. We also identify tractable problem classes based on a more re�ned

syntactic parameter, called diversity.

Since the induced width is often smaller than the number of propositional vari-

ables, n, DR's worst-case bound is generally better than O(exp(n)), the worst-case

time bound for DP. In practice, however, DP-backtracking { one of the best complete
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Figure 2.2: Comparison between backtracking and resolution.

SAT algorithms available { is often much more e�cient than its worst-case bound.

It demonstrates \great discrepancies in execution time" (D.E. Knuth), encountering

rare but exceptionally hard problems [109]. Recent studies suggest that the empirical

performance of backtracking algorithms can be modeled by long-tail exponential-

family distributions, such as lognormal and Weibull [50, 96]. The average complexity

of algorithm DR, on the other hand, is close to its worst-case [31]. It is important to

note that the space complexity of DP is O(n), while DR is space-exponential in w�.

Another di�erence is that in addition to deciding satis�ability and �nding a solution

(a model), directional resolution also generates an equivalent theory that allows �nd-

ing each model in linear time (and �nding all models in time linear in the number of

models), and thus can be viewed as a knowledge-compilation algorithm.

The complementary characteristics of backtracking and resolution (Figure 2.2) call

for hybrid algorithms. We present two hybrid schemes, both using control parameters

that restrict the amount of resolution by bounding the resolvent size, either in a pre-

processing phase or dynamically during search. These parameters allow time/space
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trade-o�s that can be adjusted to the given problem structure and to the compu-

tational resources. Empirical studies demonstrate the advantages of these 
exible

hybrid schemes over both extremes, backtracking and resolution.

The rest of this chapter is organized as follows. Section 2.2 provides necessary def-

initions. Section 2.3 describes directional resolution (DR), our version of the original

Davis-Putnam algorithm expressed within the bucket-elimination framework. Section

2.4 discusses the complexity of DR and identi�es tractable classes, while Section 2.5

focuses on DP-backtracking. Empirical comparison of DR and DP is presented in Sec-

tion 2.6. Section 2.7 introduces the two hybrid schemes, BDR-DP and DCDR, and

empirically evaluates their e�ectiveness. Related work and conclusions are discussed

in Sections 2.8 and 2.9. Proofs of theorems are given in the Appendix A.

2.2 De�nitions and preliminaries

We denote propositional variables, or propositions, by uppercase letters, e.g. P;Q;R,

propositional literals (propositions or their negations, such as P and :P ) by lowercase

letters, e.g., p; q; r, and disjunctions of literals, or clauses, by the letters of the Greek

alphabet, e.g., �; �; 
. For instance, � = (P _Q _R) is a clause. We will sometimes

denote the clause (P _ Q _ R) by fP;Q;Rg. A unit clause is a clause with only

one literal. A clause is positive if it contains only positive literals and is negative

if it contains only negative literals. The notation (� _ T ) is used as shorthand for

(P _ Q _ R _ T ), while � _ � refers to the clause whose literals appear in either

� or �. A clause � is subsumed by a clause � if �'s literals include all �'s literals.

A clause is a tautology, if for some proposition Q the clause includes both Q and

:Q. A propositional theory ' in conjunctive normal form (cnf) is represented as a

set f�1; :::; �tg denoting the conjunction of clauses �1; :::; �t. A k-cnf theory contains

only clauses of length k or less. A propositional cnf theory ' de�ned on a set of n

variables Q1,...,Qn is often called simply \a theory '".

The set of models of a theory ' is the set of all truth assignments to its variables
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Figure 2.3: (a) The interaction graph of theory '1 = f(:C); (A_B_C); (:A_B_E);

(:B _ C _D)g, and (b) the e�ect of resolution over A on that graph.

that satisfy '. A clause � is entailed by ' (denoted ' j= �), if and only if � is true

in all models of '. A propositional satis�ability problem (SAT) is to decide whether

a given cnf theory has a model. A SAT problem de�ned on k-cnfs is called a k-SAT

problem.

The structure of a propositional theory can be described by an interaction graph.

The interaction graph of a propositional theory ', denoted G('), is an undirected

graph that contains a node for each propositional variable and an edge for each pair

of nodes that correspond to variables appearing in the same clause. For example, the

interaction graph of theory '1 = f(:C); (A_B _ C); (:A_B _ E); (:B _C _D)g

is shown in Figure 2.3a.

One commonly used approach to satis�ability testing is based on the resolution

operation. Resolution over two clauses (�_Q) and (�_:Q) results in a clause (�_�)

(called resolvent) eliminating variable Q. The interaction graph of a theory processed

by resolution should be augmented with new edges re
ecting the added resolvents.

For example, resolution over variable A in '1 generates a new clause (B _ C _ E),

so the graph of the resulting theory has an edge between nodes E and C as shown in

Figure 2.3b. Resolution with a unit clause is called unit resolution. Unit propagation

is an algorithm that applies unit resolution to a given cnf theory until no new clauses

can be deduced.
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Directional Resolution: DR

Input: A cnf theory ', o = Q1; :::; Qn.
Output: The decision of whether ' is satis�able.
If it is, the directional extension Eo(') equivalent to '.
1. Initialize: generate a partition of clauses, bucket1; :::; bucketn,
where bucketi contains all the clauses whose highest literal is Qi.
2. For i = n to 1 do:

If there is a unit clause in bucketi,
do unit resolution in bucketi
else resolve each pair f(� _Qi); (� _ :Qi)g � bucketi.
If 
 = � _ � is empty, return \' is unsatis�able"
else add 
 to the bucket of its highest variable.

3. Return \' is satis�able" and Eo(') =
S
i bucketi.

Figure 2.4: Algorithm Directional Resolution (DR).

Propositional satis�ability is a special case of constraint satisfaction problem (CSP).

CSP is de�ned on a constraint network < X;D;C >, where X = fX1; :::;Xng is the

set of variables, associated with a set of �nite domains, D = fDi; :::;Dng, and a set

of constraints, C = fC1; :::; Cmg. Each constraint Ci is a relation Ri � Di1 � :::�Dik

de�ned on a subset of variables Si = fXi1 ; :::;Xikg. A constraint network can be

associated with an undirected constraint graph where nodes correspond to variables

and two nodes are connected if and only if they participate in the same constraint.

The constraint satisfaction problem (CSP) is to �nd a value assignment to all the

variables (called a solution) that is consistent with all the constraints. If no such

assignment exists, the network is inconsistent. A constraint network is binary if each

constraint is de�ned on at most two variables.
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2.3 Directional Resolution (DR)

DP-resolution [19] is an ordering-based resolution algorithm that can be described

as follows. Given an arbitrary ordering of the propositional variables, we assign to

each clause the index of its highest literal in the ordering. Then resolution is applied

only to clauses having the same index and only on their highest literal. The result of

this restriction is a systematic elimination of literals from the set of clauses that are

candidates for future resolution. The original DP-resolution also includes two addi-

tional steps, one forcing unit resolution whenever possible, and one assigning values

to all-positive and all-negative variables. An all-positive (all-negative) variable is a

variable that appears only positively (negatively) in a given theory, so that assigning

such a variable the value \true" (\false") is equivalent to deleting all relevant clauses

from the theory. There are other intermediate steps that can be introduced between

the basic steps of eliminating the highest indexed variable, such as deleting subsumed

clauses. Albeit, we will focus on the ordered elimination step and refer to auxiliary

steps only when necessary. We are interested not only in deciding satis�ability but

in the set of clauses accumulated by this process constituting an equivalent theory

with useful computational features. Algorithm directional resolution (DR), the core

of DP-resolution, is presented in Figure 2.4. This algorithm can be described using

the notion of buckets, which de�ne an ordered partitioning of clauses in ', as follows.

Given an ordering o = (Q1 ; :::; Qn) of the variables in ', all the clauses containing

Qi that do not contain any symbol higher in the ordering are placed in bucketi. The

algorithm processes the buckets in a reverse order of o, from Qn to Q1. Processing

bucketi involves resolving over Qi all possible pairs of clauses in that bucket. Each

resolvent is added to the bucket of its highest variable Qj (clearly, j < i). Note that

if the bucket contains a unit clause (Qi or :Qi), only unit resolutions are performed.

Clearly, a useful dynamic-order heuristic (not included in our current implementa-

tion) is to processes next a bucket with a unit clause. The output theory, Eo('), is

called the directional extension of ' along o. As shown by Davis and Putnam [19],
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�nd-model (Eo('); o )
Input: A directional extension Eo('), o = Q1; :::; Qn.
Output: A model of '.
1. For i = 1 to N

Qi  a value qi consistent with the assignment to
Q1; :::; Qi�1 and with all the clauses in bucketi.

2. Return Q1 = q1; :::; Qn = qn.

Figure 2.5: Algorithm �nd-model.

the algorithm �nds a satisfying assignment to a given theory if and only if there exists

one. Namely,

Theorem 1: [19] Algorithm DR is sound and complete. 2

A model of a theory ' can be easily found by consulting Eo(') using a simple

model-generating procedure �nd-model in Figure 2.5. Formally,

Theorem 2: (model generation)

Given Eo(') of a satis�able theory ', the procedure �nd-model generates a model of

' backtrack-free, in time O(jEo(')j). 2

Example 1: Given the input theory '1 = f(:C); (A _ B _ C); (:A _ B _ E);

(:B _ C _D)g; and an ordering o = (E;D;C;B;A), the theory is partitioned into

buckets and processed by directional resolution in reverse order2. Resolving over

variable A produces a new clause (B _C _E), which is placed in bucketB. Resolving

over B then produces clause (C_D_E) which is placed in bucketC. Finally, resolving

over C produces clause (D _ E) which is placed in bucketD. Directional resolution

now terminates, since no resolution can be performed in bucketD and bucketE. The

2For illustration, we selected an arbitrary ordering which is not the most e�cient one. Variable

ordering heuristics will be discussed in Section 2.4.3.
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Figure 2.6: A trace of algorithm DR on the theory '1 = f(:C); (A _B _ C); (:A _
B _ E); (:B _ C _ D)g along the ordering o = (E;D;C;B;A).

output is a non-empty directional extension Eo('1). Once the directional extension

is available, model generation begins. There are no clauses in the bucket of E, the

�rst variable in the ordering, and therefore E can be assigned any value (e.g., E =

0). Given E = 0, the clause (D _ E) in bucketD implies D = 1, clause :C in

bucketC implies C = 0, and clause (B _C _E) in bucketB, together with the current

assignments to C and E, implies B = 1. Finally, A can be assigned any value since

both clauses in its bucket are satis�ed by previous assignments.

As stated in Theorem 2, given a directional extension, a model can be generated

in linear time. Once Eo(') is compiled, determining the entailment of a single literal

requires checking the bucket of that literal �rst. If the literal appears there as a unit

clause, it is entailed; if not, its negation is added to the appropriate bucket and the

algorithm resumes from that bucket. If the empty clause is generated, the literal is

entailed.
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2.4 Complexity and tractability

Clearly, the e�ectiveness of algorithm DR depends on the the size of its output theory

Eo(').

Theorem 3: (complexity)

Given a theory ' and an ordering o, the complexity of algorithm DR is O(njEo(')j2)

where n is the number of variables. 2

The size of the directional extension and therefore the complexity of directional

resolution is worst-case exponential in the number of variables. However, there are

identi�able cases when the size of Eo(') is bounded, yielding tractable problem

classes. The order of variable processing has a particularly signi�cant e�ect on the

size of the directional extension. Consider the following two examples:

Example 2: Let '2 = f(B _A), (C _:A); (D_A); (E _:A)g: Given the ordering

o1 = (E;B;C;D;A), all clauses are initially placed in bucket(A). Applying DR

along the (reverse) ordering, we get: bucket(D) = f(C _D); (D _ E)g, bucket(C) =

f(B _ C)g, bucket(B) = f(B _ E)g. In contrast, the directional extension along

ordering o2 = (A;B;C;D;E) is identical to the input theory '2 since each bucket

contains at most one clause.

Example 3: Consider the theory '3 = f(:A _ B); (A _ :C); (:B _ D); (C _

D _ E)g. The directional extensions of '3 along ordering o1 = (A;B;C;D;E) and

o2 = (D;E;C;B;A) are Eo1('3) = '3 and Eo2('3) = '3 [ f(B _ :C) ; (:C _ D);

(E _D)g, respectively.

In example 2, variable A appears in all clauses. Therefore, it can potentially

generate new clauses when resolved upon, unless it is processed last (i.e., it appears

�rst in the ordering), as in o2. This shows that the interactions among variables

can a�ect the performance of the algorithm and should be consulted for producing

preferred orderings. In example 3, on the other hand, all the symbols have the same
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Figure 2.7: The e�ect of algorithm DR on the interaction graph of theory '1 =
f(:C); (A_B_C); (:A_B_E); (:B_C_D)g along the ordering o = (E;D;C;B;A).

type of interaction, each (exceptE) appearing in two clauses. Nevertheless,D appears

positive in both clauses in its bucket, therefore, it will not be resolved upon and can be

processed �rst. Subsequently,B and C appear only negatively in the remaining theory

and will not add new clauses. Inspired by these two examples, we will now provide

a connection between the algorithm's complexity and two parameters: a topological

parameter, called induced width, and a syntactic parameter, called diversity.

2.4.1 Induced width

In this section we show that the size of the directional extension and therefore the

complexity of directional resolution can be estimated using a graph parameter called

induced width.

As noted before, DR creates new clauses which correspond to new edges in the

resulting interaction graph (we say that DR \induces" new edges). Figure 2.7 il-

lustrates again the performance of directional resolution on theory '1 along ordering

o = (E;D;C;B;A), showing the interaction graph of Eo('1) (dashed lines correspond

33



A C D

D E

B C D

C

A

E

D

C

B

D E

CA B BA E

EDCC

ECBDB C

BA E

B C D

CA B

A B

C

A

B

C

D

E
CA B BA E

B

E

D

C

A

C D E

A C D E

(a) w� = 4 (b) w� = 3 (c) w� = 2
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(a) o1 = (E;D;C;A;B), (b) o2 = (E;D;C;B;A), and (c) o3 = (A;B;C;D;E).

to induced edges). Resolving over A creates clause (B _C _E) which corresponds to

a new edge between nodes B and E, while resolving over B creates clause (C_D_E)

which induces a new edge between C and E. In general, processing a bucket of a vari-

able Q produces resolvents that connect all the variables mentioned in that bucket.

The concepts of induced graph and induced width are de�ned to re
ect those changes.

De�nition 1: Given a graph G, and an ordering of its nodes o, the parent set of

a node Xi is the set of nodes connected to Xi that precede Xi in o. The size of this

parent set is called the width of Xi relative to o. The width of the graph along o,

denoted wo, is the maximum width over all variables. The induced graph of G along

o, denoted Io(G), is obtained as follows: going from i = n to i = 1, we connect all

the neighbors of Xi preceding it in the ordering. The induced width of G along o,

denoted w�
o, is the width of Io(G) along o, while the induced width w� of G is the

minimum induced width along any ordering.

For example, in Figure 2.7 the induced graph Io(G) contains the original (bold)

and the induced (dashed) edges. The width of B is 2, while its induced width is 3;

the width of C is 1, while its induced width is 2. The maximum width along o is
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3 (the width of A), and the maximum induced width is also 3 (the induced width

of A and B). Therefore, in this case, the width and the induced width of the graph

coincide. In general, however, the induced width of a graph can be signi�cantly larger

than its width. Note that in this example the graph of the directional extension,

G(Eo(')), coincides with the induced ordered graph of the input theory's graph,

Io(G(')). Generally,

Lemma 1: Given a theory ' and an ordering o, G(Eo(')) is a subgraph of Io(G(')).

2

The parents of node Xi in the induced graph correspond to the variables mentioned

in bucketi. Therefore, the induced width of a node can be used to estimate the size

of its bucket, as follows:

Lemma 2: Given a theory ' and an ordering o = (Q1; :::; Qn), if Qi has at most

k parents in the induced graph along o, then the bucket of a variable Qi in Eo(')

contains no more than 3k+1 clauses. 2

We can now derive a bound on the complexity of directional resolution using

properties of the problem's interaction graph.

Theorem 4: (complexity of DR)

Given a theory ' and an ordering of its variables o, the time complexity of algorithm

DR along o is O(n � 9w
�

o ), and Eo(') contains at most n � 3w
�

o+1 clauses, where w�
o is

the induced width of ''s interaction graph along o. 2

Corollary 1: Theories having bounded w�
o for some ordering o are tractable. 2.

Figure 2.8 demonstrates the e�ect of variable ordering on the induced width,

and consequently, on the complexity of DR when applied to theory '1. While DR

generates 3 new clauses of length 3 along ordering (a), only one binary clause is

generated along ordering (c). Although �nding an ordering that yields the smallest
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Figure 2.9: The interaction graph of '4 in example 4: '4 = f(A1 _ A2 _ :A3),
(:A2 _ A4), (:A2 _ A3 _ :A4), (A3 _ A4 _ :A5), (:A4 _ A6), (:A4 _ A5 _ :A6),
(A5 _ A6 _ :A7), (:A6 _A8), (:A6 _A7 _ :A8)g.

induced width is NP-hard [1], good heuristic orderings are currently available [7, 22,

97] and continue to be explored [5]. Furthermore, there is a class of graphs, known

as k-trees, that have w� < k and can be recognized in O(n � exp(k)) time [1].

De�nition 2: (k-trees)

1. A clique of size k (complete graph with k nodes) is a k-tree.

2. Given a k-tree de�ned on X1; :::;Xi�1, a k-tree on X1; :::;Xi can be generated by

selecting a clique of size k and connecting Xi to every node in that clique.

Corollary 2: If the interaction graph of a theory ' having n variables is a subgraph

of a k-tree, then there is an ordering o such that the space complexity of algorithm

DR along o (the size of Eo(')) is O(n � 3k), and its time complexity is O(n � 9k). 2

Important tractable classes are trees (w� = 1) and series-parallel networks (w� =

2). These classes can be recognized in polynomial (linear or quadratic) time.

Example 4: Consider a theory 'n de�ned on the variables fA1; A2; :::; Ang. A

clause (Ai_Ai+1_:Ai+2) is de�ned for each odd i, and two clauses (:Ai_Ai+2) and

(:Ai_ Ai+1_ :Ai+2) are de�ned for each even i, where 1 � i � n. The interaction

graph of 'n for n = 5 is shown in Figure 2.9. The reader can verify that the graph is a

3-tree (w� = 2) and that its induced width along the original ordering is 2. Therefore,

by theorem 4, the size of the directional extension will not exceed 27n.
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2-SAT

Note that algorithm DR is tractable for 2-cnf theories, because 2-cnfs are closed

under resolution (the resolvents are of size 2 or less) and because the overall number

of clauses of size 2 is bounded by O(n2) (in this case, unordered resolution is also

tractable), yielding O(n � n2) = O(n3) complexity. Therefore,

Theorem 5: Given a 2-cnf theory ', its directional extension Eo(') along any

ordering o is of size O(n2), and can be generated in O(n3) time.

Obviously, DR is not the best algorithm for solving 2-SAT, since 2-SAT can be

solved in linear time [39]. Note, however, that DR also compiles the theory into one

that can produces each model in linear time. As shown in [30], in this case all models

can be generated in output linear time.

The graphical e�ect of unit resolution

Resolution with a unit clause Q or :Q deletes the opposite literal over Q from all

relevant clauses. It is equivalent to assigning a value to variable Q. Therefore, unit

resolution generates clauses on variables that are already connected in the graph, and

therefore will not add new edges.

2.4.2 Diversity

The concept of induced width sometimes leads to a loose upper bound on the number

of clauses recorded by DR. In Example 4, only six clauses were generated by DR, even

without eliminating subsumption and tautologies in each bucket, while the computed

bound is 27n = 27 � 8 = 216. Consider the two clauses (:A _ B) and (:C _ B) and

the order o = A;C;B. When bucket B is processed, no clause is added because B is

positive in both clauses, yet nodes A and C are connected in the induced graph. In

this subsection, we introduce a new parameter called diversity, that provides a tighter

bound on the number of resolution operations in the bucket. Diversity is based on
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the fact that a proposition can be resolved upon only when it appears both positively

and negatively in di�erent clauses.

De�nition 3: (diversity)

Given a theory ' and an ordering o, let Q+
i (Q�

i ) denote the number of times Qi

appears positively (negatively) in bucketi. The diversity of Qi relative to o, div(Qi),

is de�ned as Q+
i �Q�

i . The diversity of an ordering o, div(o), is the largest diversity

of its variables relative to o, and the diversity of a theory, div, is the minimal diversity

among all orderings.

The concept of diversity yields new tractable classes. For example, if o is an

ordering having a zero diversity, algorithm DR adds no clauses to ', regardless of its

induced width.

Example 5: Let '= f(G_E_:F ); (G_:E_D); (:A_F ); (A_:E); (:B_C_:E);

(B_C_D)g. It is easy to see that the ordering o = (A;B;C;D;E;F;G) has diversity

0 and induced width 4.

Theorem 6: Zero-diversity theories are tractable for DR: given a zero-diversity

theory ' having n variables and c clauses, 1. its zero-diversity ordering o can be

found in O(n2 � c) time and 2. DR along o takes linear time. 2

The proof follows immediately from Theorem 8 (see subsection 2.4.3).

Zero-diversity theories generalize the notion of causal theories de�ned for gen-

eral constraint networks of multi-valued relations [34]. According to this de�nition,

theories are causal if there is an ordering of the propositional variables such that

each bucket contains a single clause. Consequently, the ordering has zero diversity.

Clearly, when a theory has a non-zero diversity, it is still better to place zero-diversity

variables last in the ordering, so that they will be processed �rst. Indeed, the pure

literal rule of the original Davis-Putnam resolution algorithm requires processing �rst

all-positive and all-negative (namely, zero-diversity) clauses.
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min-diversity (')
1. For i = n to 1 do:

Choose symbol Q having the smallest diversity
in '�

Sn
j=i+1 bucketj and put it in the ith position.

Figure 2.10: Algorithm min-diversity.

However, the parameter of real interest is the diversity of the directional extension

Eo('), rather than the diversity of '.

De�nition 4: (induced diversity)

The induced diversity of an ordering o, div�(o), is the diversity of Eo(') along o, and

the induced diversity of a theory, div�, is the minimal induced diversity over all its

orderings.

Since div�(o) bounds the number of clauses generated in each bucket, the size of

Eo(') for every o can be bounded by j'j+n �div�(o). The problem is that computing

div�(o) is generally not polynomial (for a given o), except for some restricted cases.

One such case is the class of zero-diversity theories mentioned above, where div�(o) =

div(o) = 0. Another case, presented below, is a class of theories having div� = 1.

Note that we can easily create examples with high w� having div� � 1.

Theorem 7: Given a theory ' de�ned on variables Q1,..., Qn, such that each symbol

Qi either (a) appears only negatively (only positively), or (b) it appears in exactly two

clauses, then div�(') � 1 and ' is tractable. 2
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min-width (')
1. Initialize: G G(')
2. For i = n to 1 do

1.1. Choose symbol Q having the smallest
degree in G and put it in the ith position.

1.2. G G� fQg.

Figure 2.11: Algorithm min-width.

min-degree (')
1. Initialize: G G(')
2. For i = n to 1 do

1.1. Choose symbol Q having the smallest
degree in G and put it in the ith position.

1.2. Connect the neighbors of Q in G.
1.3. G G� fQg.

Figure 2.12: Algorithm min-degree.

2.4.3 Ordering heuristics

As previously noted, �nding a minimum-induced-width ordering is known to be NP-

hard [1]. A similar result can be demonstrated for minimum-induced-diversity or-

derings. However, the corresponding suboptimal (non-induced) min-width and min-

diversity heuristic orderings often provide relatively low induced width and induced

diversity. Min-width and min-diversity orderings can be computed in polynomial time

by a simple greedy algorithm, as shown in Figures 2.10 and 2.11.

Theorem 8: Algorithm min-diversity generates a minimal diversity ordering of a

theory in time O(n2 � c), where n is the number of variables and c is the number of

clauses in the input theory. 2
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max-cardinality (')
1. For i = 1 to n do

Choose symbol Q connected to maximum number of
previously ordered nodes in G and put it in the ith position.

Figure 2.13: Algorithm max-cardinality.

The min-width algorithm [22] (Figure 2.11) is similar to the min-diversity, except

that at each step we select a variable with the smallest degree in the current interaction

graph. The selected variable is then placed i-th in the ordering and deleted from the

graph.

A modi�cation of min-width ordering, called min-degree [41] (Figure 2.12), con-

nects all the neighbors of the selected variable in the current interaction graph before

the variable is deleted. Empirical studies demonstrate that the min-degree heuris-

tic usually yields lower-w� orderings than the induced-width heuristic. In all these

heuristics ties are broken randomly.

There are several other commonly used ordering heuristics, such asmax-cardinality

heuristic presented in Figure 2.13. For more details, see [7, 22, 97].

2.5 Backtracking search (DP)

Backtracking search processes the variables in some order, instantiating the next

variable if it has a value consistent with previous assignments. If there is no such

value (a situation called a dead-end), the algorithm backtracks to the previous variable

and selects an alternative assignment. Should no consistent assignment be found, the

algorithm backtracks again. The algorithm explores the search tree, in a depth-

�rst manner, until it either �nds a solution or concludes that no solution exists. An

41



0 1

0 1

1

0 1

0

A

B B

C

DP('):

Input: A cnf theory '.
Output: A decision of whether ' is satis�able.
1. Unit propagate(');
2. If the empty clause generated return(false);
3. else if all variables are assigned return(true);
4. else
5. Q = some unassigned variable;
6. return(DP('^ :Q) _
7. DP('^Q) )

(a) (b)

Figure 2.14: (a) A backtracking search tree along the ordering A;B;C for a cnf theory
'5 = f(:A _ B); (:C _A); :B;Cg and (b) the Davis-Putnam Procedure.

example of a search tree is shown in Figure 2.14a. This tree is traversed when deciding

satis�ability of a propositional theory '5 = f(:A _B); (:C _A); :B;Cg. The tree

nodes correspond to the variables, while the tree branches correspond to di�erent

assignments (0 and 1). Dead-end nodes are crossed out. Theory '5 is obviously

inconsistent.

There are various advanced backtracking algorithms for solving CSPs that improve

the basic scheme using \smart" variable- and value-ordering heuristics ([14], [51]).

More e�cient backtracking mechanisms, such as backjumping [53, 21, 92], constraint

propagation (e.g., arc-consistency, forward checking [59]), or learning (recording con-

straints) [21, 48, 3] are available. The Davis-Putnam Procedure (DP) [18] shown in

Figure 2.14b is a backtracking search algorithm for deciding propositional satis�abil-

ity combined with unit propagation. Various branching heuristics augmenting this

basic version of DP have been proposed since 1962 [69, 14, 64, 55].

The worst-case time complexity of all backtracking algorithms is exponential in

the number of variables while their space complexity is linear. Yet, the average time

complexity of DP depends on the distribution of instances [42] and is often much
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lower then its worst-case bound. Usually, its average performance is a�ected by rare,

but exceptionally hard instances. Exponential-family empirical distributions (e.g.,

lognormal, Weibull) proposed in recent studies [50, 96] summarize such observations

in a concise way. A typical distribution of the number of explored search-tree nodes

is shown in Figure 2.15. The distribution is shown for inconsistent problems. As it

turns out, consistent and inconsistent CSPs produce di�erent types of distributions

(for more details see [50, 51]).

Frequency

Nodes in Search Space

0 1,000 3,000 6,000

.005

.010

.015

.020

Figure 2.15: An empirical distribution of the number of nodes explored by algorithm
BJ-DVO (backjumping+dynamic variable ordering) on 106 instances of inconsistent
random binary CSPs having N=50 variables, domain size D=6, constraint density
C=.1576 (probability of a constraint between two variables), and tightness T=0.333
(the fraction of prohibited value pairs in a constraint).
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2.5.1 The proportionate-e�ect model of backtracking

In this section, we discuss the proportionate-e�ect model of backtracking [51, 96] that

provides additional insights on the characteristics of the runtime distributions and

supports the empirical observations. This model is derived under general assumptions

which hold for any variable- and value-ordering. The point we are trying to make

is that no matter how \smart" ordering heuristics are, it is always possible that

backtracking will encounter exceptionally hard problems, although the heuristics can

(and should) reduce this possibility.

The performance model is derived for uniform random binary CSP generator that

takes four parameters: N;D; T and C. It generates instances with N variables, reach

having a domain of size D. The parameter T (tightness) speci�es the probability that

a value pair in a constraint is disallowed. The parameter C speci�es the probability

of a binary constraint existing between two variables.

We restrict our attention to the simple backtracking algorithmwith a �xed variable

ordering (Y1; :::; YN) and to the inconsistent random binary CSPs with the parameters

hN;D; T;Ci. We show that the number of nodes on level i of the search tree explored

by backtracking is distributed lognormally when i is su�ciently large.

A common method for deriving the lognormal distribution uses the law of pro-

portionate e�ect [16]: if the growth rate of a variable at each step in a process is

randomly proportion to its size at that step, then the size of the variable at time n

will be approximately lognormally distributed. Formally, if the value of a random

variable at time i is Xi, and

Xi = Xi�1 � bi; (2.1)

where (b1; b2; : : : ; bn) are positive independent random variables, then the distribution

of Xi is, for large enough i, lognormally distributed. The law of proportionate e�ect

follows from the central limit theorem, since 2.1 implies

log(Xn) =
nX

i

log(bi); (2.2)
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and the sum of independent random variables log(bi) converges to the normal distri-

bution.

Let Xi be the number of nodes explored at i-th level of the search tree. The

branching factor bi at i-th level of the tree is de�ned as Xi=Xi�1, where for 2 � i �

n, and b1 = D (D is the domain size). For i > 1, bi is randomly distributed in

[0;D] and speci�es how many values of variable Yi�1 are consistent with the previous

assignment. The probability of a value k for Yi�1 being consistent with the assignment

to Y1; :::; Yi�2 is

pi = (1 �CT )i�2;

where C is the probability of a constraint between Yi�1 and a previous variable, and

T is the probability of a value pair to be prohibited by that constraint. Therefore,

the branching factor bi is distributed binomially with parameter pi. On each level i,

bi is independent of previous bj, j < i. Note that bi are non-negative (positive for

all levels except the deepest level in the tree reached by backtracking) and can be

greater than or less than 1 (since bi can be zero, the low of proportionate e�ect is not

entirely applicable for some deep levels of the search tree). Then

Xi = b1 � b2 � : : :� bi;

is lognormally distributed by the law of proportionate e�ect.

This derivation applies to the distribution of nodes on each particular level i,

where i is large enough. It still remains to be shown how this analysis relates to the

distribution of the total number of nodes explored in a tree. In a complete search tree,

the total number of nodes
PN

i=0D
i = (DN+1 � 1)=(D � 1) � DN D

D�1 is proportional

to the number of nodes at the deepest level, DN . A similar relation may be possible

to derive for a backtracking search tree.

Satis�able CSPs do not �t this scheme since the tree traversal is interrupted when

a solution is found. Indeed, empirical results reported in [50] point to substantial

di�erence in behavior of satis�able and unsatis�able problems. In addition, the model

is derived for binary CSPs rather than for SAT, although empirical results suggest
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(a) (b)

Figure 2.16: An example of a theory with (a) a chain structure (3 subtheories, 5
variables in each) and (b) a (k,m)-tree structure (k=2, m=2).

the same distribution families in both cases [50, 96]. This model provides a general

insight on what type of behavior is expected from backtracking algorithms.

2.6 DP versus DR: empirical evaluation

In this section we present an empirical comparison of DP and DR on di�erent types

of cnf theories, including uniform random problems, random chains and (k,m)-trees,

and benchmark problems from the Second DIMACS Challenge 3. The algorithms

were implemented in C and tested on SUN Sparc stations. Since we used several

machines having di�erent performance (from Sun 4/20 to Sparc Ultra-2), we specify

which machine was used for each set of experiments. Reported runtime is measured

in seconds.

Algorithm DR is implemented as discussed in Section 2.3. If it is followed by

DP using the same �xed variable ordering, no dead-ends will occur (see Theorem

2). Algorithm DP was implemented using the dynamic variable ordering heuristic

of Tableau [14], a state-of-the-art backtracking algorithm for SAT. This heuristic,

called the 2-literal-clause heuristic, suggests instantiating next a variable that would

cause the largest number of unit propagations approximated by the number of 2-

literal clauses in which the variable appears. The augmented algorithm signi�cantly

3Available at ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/volume/cnf.
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outperforms DP without this heuristic [14].

2.6.1 Random problem generators

To test the algorithms on problems with di�erent structures, several random problem

generators were used. The uniform k-cnfs generator [82] uses as input the number of

variables N, the number of clauses C, and the number of literals per clause k. Each

clause is generated by randomly choosing k out of N variables and by determining

the sign of each literal (positive or negative) with probability p. In the majority of

our experiments p = 0:5. Although we did not check for clause uniqueness, for large

N it is unlikely that identical clauses will be generated.

Our second generator, chains, creates a sequence of independent uniform k-cnf

theories (called subtheories) and connects each pair of successive cliques by a 2-cnf

clause containing variables from two consecutive subtheories in the chain (see Figure

2.16a). The parameters of the generator are the number of cliques,Ncliq, the number

of variables per clique,N , and the number of clauses per clique, C. A chain of cliques,

each having N variables, is a subgraph of a k-tree [1] where k = 2N�1 and therefore,

has w� � 2N � 1.

We also used a (k,m)-tree generator which generates a tree of cliques each having

(k+m) nodes where k is the size of the intersection between two neighboring cliques

(see Figure 2.16b, where k = 2 and m = 2). Given k, m, the number of cliques

Ncliq, and the number of clauses per clique Ncls, the (k,m)-tree generator produces

a clique of size k+m with Ncls clauses and then generates each of the other Ncliq�1

cliques by selecting randomly an existing clique and its k variables, adding m new

variables, and generating Ncls clauses on that new clique. Since a k-m-tree can be

embedded into a (k +m� 1)-tree, its induced width is bounded by k +m� 1 (note

that (k; 1)-trees are conventional k-trees).
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Figure 2.17: (a) DP versus DR on uniform random 3-cnfs; (b) DP, DR, BDR-DP(3)
and backjumping on 3-cnf chains (Sun 4/20).

2.6.2 Results

As expected, on uniform random 3-cnfs having large w�, the complexity of DR grew

exponentially with the problem density while the performance of DP was much better.

Even small problems having 20 variables already demonstrate the exponential behav-

ior of DR (see Figure 2.17a). On larger problems DR often ran out of memory. We

did not proceed with more extensive experiments in this case, since the exponential

behavior of DR on uniform 3-cnfs is already well-known [52, 57].

However, the behavior of the algorithms on chain problems was completely dif-

ferent. DR was by far more e�cient than DP, as can be seen from Table 2.1 and

from Figure 2.17b, summarizing the results on 3-cnf chain problems that contain 25

subtheories, each having 5 variables and 9 to 23 clauses (24 additional 2-cnf clauses
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Figure 2.18: DR and DP on 3-cnf chains with di�erent orderings (Sun 4/20).

Table 2.1: DR versus DP on 3-cnf chains having 25 subtheories, 5 variables in each,
and from 11 to 21 clauses per subtheory (total 125 variables and 299 to 549 clauses).
20 instances per row. The columns show the percentage of satis�able instances, time
and deadends for DP, time and the number of new clauses for DR, the size of largest
clause, and the induced width w�

md along the min-diversity ordering. The experiments
were performed on Sun 4/20 workstation.

Num % DP DR
of sat Time Dead Time Number Size of w�

cls ends of new max
clauses clause

299 100 0.4 1 1.4 105 4.1 5.3
349 70 9945.7 908861 2.2 131 4.0 5.3
399 25 2551.1 207896 2.8 131 4.0 5.3
449 15 185.2 13248 3.7 135 4.0 5.5
499 0 2.4 160 3.8 116 3.9 5.4
549 0 0.9 9 4.0 99 3.9 5.2
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Table 2.2: DR and DP on hard chains when the number of dead-ends is larger than
5,000. Each chain has 25 subtheories, with 5 variables in each (total of 125 variables).
The experiments were performed on Sun 4/20 workstation.

Num Sat: DP DR

of 0 or 1 Time Dead Time
cls ends

349 0 41163.8 3779913 1.5
349 0 102615.3 9285160 2.4
349 0 55058.5 5105541 1.9
399 0 74.8 6053 3.6
399 0 87.7 7433 3.1
399 0 149.3 12301 3.1
399 0 37903.3 3079997 3.0
399 0 11877.6 975170 2.2
399 0 841.8 70057 2.9
449 1 655.5 47113 5.2
449 0 2549.2 181504 3.0
449 0 289.7 21246 3.5

Table 2.3: Histograms of the number of deadends (log-scale) for DP on chains having
20, 25 and 30 subtheories, each de�ned on 5 variables and 12 to 16 clauses. Each
column presents results for 200 instances; each row de�nes a range of deadends; each
entry is the frequency of instances (out of total 200) that yield the range of deadends.
The experiments were performed on Sun Ultra-2.

C=12 C=14 C=16
Deadends Ncliq Ncliq Ncliq

20 25 30 20 25 30 20 25 30

[0; 1) 103 90 75 75 23 8 7 2 2
[1; 10) 81 85 102 102 107 93 73 68 59
[10; 102) 3 4 7 7 21 24 40 37 43
[102; 103) 2 1 4 4 8 12 20 26 22
[103; 104) 1 3 2 2 10 8 21 10 21
[104;1) 10 17 10 10 31 55 39 57 53
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Figure 2.19: An inconsistent chain problem: a naive backtracking is very ine�cient
when encountering an inconsistent subproblem at the end of the variable ordering.

connect the subtheories in the chain) 4. A min-diversity ordering was used for each in-

stance. Since the induced width of these problems was small (less than 6, on average),

directional resolution solved these problems quite easily. However, DP-backtracking

encountered rare but extremely hard problems that contributed to its average com-

plexity. Table 2.2 lists the results on selected hard instances from Table 2.1 (where

the number of dead-ends exceeds 5,000).

Similar results were obtained for other chain problems and with di�erent variable

orderings. For example, Figure 2.18 graphs the experiments with min-width and

input orderings. We observe that min-width ordering may signi�cantly improve the

performance of DP relative to the input ordering (compare Figure 2.18a and Figure

2.18b). Still, it did not prevent backtracking from encountering rare, but extremely

hard instances.

Table 2.3 presents the histograms demonstrating the performance of DP on chains

in more details. The histograms show that in most cases the frequency of easy prob-

lems (e.g., less than 10 deadends) decreased and the frequency of hard problems

(e.g., more than 104 deadends) increased with increasing number of cliques and with

increasing number of clauses per clique. Further empirical studies are necessary to

investigate phase transition in chains5.

4Figure 2.17b also shows the results for algorithms BDR-DP and backjumping discussed later.
5The phase transition phenomenon observed in uniform random 3cnf and in CSPs corresponds

to a sharp transition from mostly satis�able to mostly unsatis�able problems around a particular

value of a critical parameter, such as clauses/variables ratio, and is usually associated with a sharp

peak in the algorithm's complexity [10, 82, 56, 110, 65].
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Table 2.4: DP versus Tableau on 150- and 200-variable uniform random 3-cnfs using
the min-degree ordering. 100 instances per row. Experiments ran on Sun Sparc
Ultra-2.

Cls % Tableau DP DP
sat time time de

150 variables

550 1.00 0.3 0.4 81
600 0.93 2.0 3.9 992
650 0.28 4.1 10.1 2439
700 0.04 2.7 7.1 1631

200 variables

780 0.99 11.6 10.0 1836
820 0.95 48.5 43.7 7742
860 0.40 81.7 125.8 22729
900 0.07 26.6 92.4 17111

In our experiments nearly all of the 3-cnf chain problems that were di�cult for

DP were unsatis�able. One plausible explanation is that inconsistent chain theories

may have an unsatis�able subtheory only at the end of the ordering. If all other sub-

theories are satis�able then DP will try to re-instantiate variables from the satis�able

subtheories whenever it encounters a dead-end. Figure 2.19 shows an example of a

chain of satis�able theories with an unsatis�able theory close to the end of the order-

ing. Min-diversity and min-width orderings do not preclude such a situation. There

are enhanced backtracking schemes, such as backjumping [53, 54, 21, 91], that are

capable of exploiting the structure and preventing useless re-instantiations. Experi-

ments with backjumping con�rm that it substantially outperforms DP on the same

chain instances (see Figure 2.17b).

The behavior of DP and DR on (k-m)-trees is similar to that on chains and will

be discussed later in the context of hybrid algorithms.

52



Table 2.5: Histograms of DP and Tableau runtimes (log-scale) on chains having
Ncliq = 15, N = 8, and C from 21 to 27, 200 instances per column. Each row de�nes
a runtime range, and each entry is the frequency of instances within the range. The
experiments were performed on Sun Ultra-2.

Time C=21 C=23 C=25

Tableau runtime histogram

[0; 1) 195 189 166
[1; 10) 0 2 12
[10; 102) 0 3 14
[102;1) 5 6 8

DP runtime histogram

[0; 1) 193 180 150
[1; 10) 2 3 8
[10; 102) 2 2 11
[102;1) 3 15 31

Comparing di�erent DP implementations

One may raise the question whether our (not highly optimized) DP implementation

is e�cient enough to be representative of backtracking-based SAT algorithms. We

answer this question by comparing our DP with the executable code of Tableau [14].

The results for 150- and 200-variable uniform random 3-cnf problems are pre-

sented in Table 2.4. We used min-degree as an initial ordering consulted by both

(dynamic-ordering) algorithms Tableau and DP in tie-breaking situations. In most

cases, Tableau was 2-4 times faster than DP, while in some DP was faster or compa-

rable to Tableau.

On chains, the behavior pattern of Tableau was similar to that of DP. Table

2.5 compares the runtime histograms for DP and Tableau on chain problems showing

that both algorithms were encountering rare hard problems, although Tableau usually

encountered hard problems less frequently than DP. Some problem instances that were

hard for DP were easy for Tableau, and vice versa.

Therefore, although Tableau is often more e�cient than our implementation, this
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di�erence does not change the key distinctions made between backtracking- and

resolution-based approaches. Most of experiments in this chapter use our imple-

mentation of DP 6.

2.7 Combining search and resolution

The complementary properties of DP and DR suggest combining both into a hybrid

scheme (note that algorithm DP already includes a limited amount of resolution in

the form of unit propagation). We will present two general parameterized schemes

integrating bounded resolution with search. The hybrid scheme BDR-DP(i) performs

bounded resolution prior to search, while the other scheme called DCDR(b) uses it

dynamically during search.

2.7.1 Algorithm BDR-DP(i)

The resolution operation helps detecting inconsistent subproblems and thus can pre-

vent DP from unnecessary backtracking. Yet, resolution can be costly. One way of

limiting the complexity of resolution is to bound the size of the recorded resolvents.

This yields the incomplete algorithm bounded directional resolution, or BDR(i), pre-

sented in Figure 2.20, where i bounds the number of variables in a resolvent. The

algorithm coincides with DR except that resolvents with more than i variables are

not recorded. This bounds the size of the directional extension Ei
o(') and, there-

fore, the complexity of the algorithm. The time and space complexity of BDR(i) is

O(n �exp(i)). The algorithm is sound but incomplete. AlgorithmBDR(i) followed by

DP is named BDR-DP(i) 7. Clearly, BDR-DP(0) coincides with DP while for i > w�
o

BDR-DP(i) coincides with DR (each resolvent is recorded).

6Having the source code for DP allowed us more control over the experiments (e.g., bounding

the number of deadends) than having only the executable code for Tableau.

7Note that DP always uses the 2-literal-clauses dynamic variable ordering heuristic.
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Bounded Directional Resolution: BDR(i)

Input: A cnf theory ', o = Q1; :::; Qn, and bound i.
Output: The decision of whether ' is satis�able.
If it is, a bounded directional extension Ei

o(').
1. Initialize: generate a partition of clauses, bucket1; :::; bucketn,
where bucketi contains all the clauses whose highest literal is Qi.
2. For i = n to 1 do:

resolve each pair f(� _Qi); (� _ :Qi)g � bucketi.
If 
 = � _ � is empty, return \' is unsatis�able"
else if 
 contains no more than i propositions,
add 
 to the bucket of its highest variable.

3.Return Ei
o(') =

S
i bucketi.

Figure 2.20: Algorithm Bounded Directional Resolution (BDR).

2.7.2 Empirical evaluation of BDR-DP(i)

We tested BDR-DP(i) for di�erent values of i on uniform 3-cnfs, chains, (k,m)-trees,

and on DIMACS benchmarks. In most cases, BDR-DP(i) achieved its optimal per-

formance for intermediate values of i.

Table 2.6: DP versus BDR-DP(i) for 2 � i � 4 on uniform random 3-cnfs with 150
variables, 600 to 725 clauses, and positive literal probability p = 0:5. The induced
width w�

o along the min-width ordering varies from 107 to 122. Each row presents
average values on 100 instances (Sun Sparc 4).

Num DP BDR-DP(2) BDR-DP(3) BDR-DP(4) w�

o

of Time Dead BDR DP Dead New BDR DP Dead New BDR DP Dead New

cls ends time time ends cls time time ends cls time time ends cls

600 4.6 784 0 4.6 786 0 0.1 4.1 692 16 1.7 8.5 638 731 113

625 8.9 1487 0 8.9 1503 0 0.1 8.2 1346 18 1.9 16.8 1188 805 114

650 11.2 1822 0.1 11.2 1821 0 0.1 10.3 1646 19 2.3 21.4 1421 889 115

675 10.2 1609 0.1 9.9 1570 0 0.1 9.1 1405 21 2.6 19.7 1232 975 116

700 7.9 1214 0.1 7.9 1210 0 0.1 7.5 1116 23 3 16.6 969 1071 117

725 6.1 910 0.1 6.1 904 0 0.1 5.7 820 25 3.5 13.3 728 1169 118
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Figure 2.21: BDR-DP(i) on a class of uniform random 3-cnf problems. (150 variables,
600 to 725 clauses). The induced width along the min-width ordering varies from 107
to 122. Each data point corresponds to 100 instances. Note that the plots for DP
and BDR(2)-DP in (a) and (b) almost coincide (the white-circle plot for BDR(2)-DP
overlaps with the black-circle plot for DP).

Performance on uniform 3-cnfs

These results for BDR-DP(i) (0 � i � 4) on a class of uniform random 3-cnfs are

presented in Table 2.6. It shows the average time and number of deadends for DP, the

average BDR(i) time, DP time and the number of deadends after preprocessing, as

well as the average number of new clauses added by BDR(i). An alternative summary

of the same data is given in Figure 2.21, comparing DP and BDR-DP(i) time. It also

demonstrates the increase in the number of clauses and the corresponding reduction

in the number of deadends. For i = 2, almost no new clauses are generated (Figure

2.21c). Indeed, the graphs for DP and BDR-DP(2) practically coincide. Incrementing

i by 1 results in a two orders of magnitude increase in the number of generated clauses,

while the number of deadends decreases by 100-200, as shown in Figure 2.21c.

The results suggest that BDR-DP(3) is the most cost-e�ective on these problem
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Table 2.7: DP versus BDR-DP(i) for i = 3 and i = 4 on uniform 3-cnfs with 200
variables, 900 to 1400 clauses, and with positive literal probability p = 0:7. Each row
presents mean values on 20 experiments.

Num DP BDR-DP(3) BDR-DP(4)

of Time Dead BDR DP Dead New BDR DP Dead New
cls ends time time ends cls time time ends cls

900 1.1 0 0.3 1.1 0 11 8.4 1.7 1 657
1000 2.7 48 0.4 1.6 14 12 13.1 2.7 21 888
1100 8.8 199 0.6 27.7 685 18 20.0 50.4 729 1184
1200 160.2 3688 0.8 141.5 3271 23 28.6 225.7 2711 1512
1300 235.3 5027 1.0 219.1 4682 28 39.7 374.4 4000 1895
1400 155.0 3040 1.2 142.9 2783 34 54.4 259.0 2330 2332

Table 2.8: DP versus BDR-DP(3) on uniform random 3-cnfs with p = 0:5 at the
phase-transition point (C/N=4.3): 150 variables and 645 clauses, 200 variables and
860 clauses, 250 variables and 1075 clauses. The induced width w�

o was computed for
the min-width ordering. The results in the �rst two rows summarize 100 experiments,
while the last row represents 40 experiments.

< vars; cls > DP BDR-DP(3) w�
o

Time Dead BDR DP Dead New
ends time time ends cls

< 150; 650> 11.2 1822 0.1 10.3 1646 19 115
< 200; 860> 81.3 15784 0.1 72.9 14225 18 190
< 250; 1075> 750 115181 0.1 668.8 102445 19 1094
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classes (see Figure 2.21a). It is slightly faster than DP and BDR-DP(2) (BDR-DP(2)

coincides with DP on this problem set) and signi�cantly faster than BDR-DP(4).

Table 2.6 shows that BDR(3) takes only 0.1 second on average, while BDR(4) takes

up to 3.5 seconds and indeed generates many more clauses. Observe also that DP

is slightly faster when applied after BDR(3). Interestingly, for i = 4 the time of

DP almost doubles although fewer deadends are encountered. For example, in Table

2.6, for the problem set with 650 clauses, DP takes on average 11.2 seconds but

after preprocessing by BDR(4) it takes 21.4 seconds. This can be explained by the

signi�cant increase in the number of clauses that need to be consulted by DP. Thus, as

i increases beyond 3, DP's performance is likely to worsen while at the same time the

complexity of preprocessing grows exponentially in i. Table 2.7 presents additional

results for problems having 200 variables where p = 0:7 8.

Finally, we observe that the e�ect of BDR(3) is proportional to the theory size.

In Table 2.8 we compare the results for three classes of uniform 3-cnf problems in

the phase transition region. While this improvement was marginal for 150-variable

problems (from 11.2 seconds for DP to 10.3 seconds for BDR-DP(3)), it was more

pronounced on 200-variable problems (from 81.3 to 72.9 seconds), and on 250-variable

problems (from 929.9 to 830.5 seconds). In all those cases the average speed-up is

about 10%.

Our tentative empirical conclusion is that i = 3 is the optimal parameter for

BDR-DP(i) on uniform random 3-cnfs.

Performance on chains and (k,m)-trees

The experiments with chains showed that BDR-DP(3) easily solved almost all in-

stances that were hard for DP. In fact, the performance of BDR-DP(3) on chains was

comparable to that of DR and backjumping (see Figure 2.17b).

8Note that the average decrease in the number of deadends is not always monotonic: for problems

having 1000 clauses, DP has an average of 48 deadends, BDR-DP(3) yields 14 deadends, but BDR-

DP(4) yields 21 deadends. This may occur because DP uses dynamic variable ordering.
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Figure 2.22: DP and BDR-DP(3) on (k-m)-trees, k=1,2, m=4, Ncliq=100, and
Ncls=11 to 15. 50 instances per each set of parameters (total of 500 instances),
an instance per point.

Table 2.9: BDR-DP(3) and DP (termination at 20,000 dead ends) on (k;m)-trees,
k=1,2, m=4, Ncliq=100, and Ncls=11 to 14. 50 experiments per each row.

DP BDR-DP(3)
Number % Time Dead BDR(3) DP after BDR(3) Number

of sat ends time time dead of new
ends clauses

(1,4)-tree, Ncls = 11 to 14, Ncliq = 100 (total: 401 vars, 1100-1400 cls)

1100 60 233.2 7475 5.4 17.7 2 298
1200 18 352.5 10547 7.5 1.2 7 316
1300 2 328.8 9182 9.8 0.25 3 339
1400 0 174.2 4551 11.9 0.0 0 329

(2,4)-tree, Ncls = 11 to 14, Ncliq = 100 (total: 402 vars, 1100-1400 cls)

1100 36 193.7 6111 4.1 23.8 568 290
1200 12 160.0 4633 6.0 1.6 25 341
1300 2 95.1 2589 8.4 0.1 0 390
1400 0 20.1 505 10.3 0.0 0 403
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Figure 2.23: BDR-DP(i) on 100 instances of (1,4)-trees, Ncliq = 100, Ncls = 11,
w�
md = 4 (termination at 50,000 deadends). (a) Average time, (b) the number of dead-

ends, and (c) the number of new clauses are plotted as functions of the parameter i.
Note that the plot for BDR-DP(i) practically coincides with the plot for DP when
i � 3, and with DP when i > 3.

Experimenting with (k;m)-trees, while varying the number of clauses per clique,

we discovered again exceptionally hard problems for DP. The results on (1,4)-trees

and on (2,4)-trees are presented in Table 2.9. In these experiments we terminated

DP once it exceeded 20,000 dead-ends (around 700 seconds). This happened in 40%

of (1,4)-trees with Ncls = 13, and in 20% of (2,4)-trees with Ncls = 12. density).

Figure 2.22 shows a scatter diagram comparing DP and BDR-DP(3) time on the same

data set together with an additional 100 experiments on (k,m)-trees having 15 cliques

(total of 500 instances).

As in the case of 3-cnf chains we observed that the majority of the exceptionally

hard problems were unsatis�able. For �xed m, when k is small and the number of

cliques is large, hard instances for DP appeared more frequently.

The behavior of BDR-DP(i) as a function of i on structured bounded-w� theories

is demonstrated in Figures 2.23 and 2.24. In these experiments we used min-degree
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Figure 2.24: BDR-DP(i) on 3 classes of (k,m)-tree problems: (a) (4,8)-trees, Ncliq =
60, Ncls = 23, w�

md = 9, (b) (5,12)-trees, Ncliq = 60, Ncls = 36, w� = 12, and (c)
(8,12)-trees, Ncliq = 50, Ncls = 34, w� = 14 (termination at 50,000 deadends). 100
instances per each problem class. Average time, the number of dead-ends, and the
number of new clauses are plotted as functions of the parameter i.

ordering that yielded smaller average w� (denoted w�
md) than input ordering, min-

width ordering, and min-cardinality ordering. Appendix A compares the results for

all four orderings in Tables 1-3.

Figure 2.23 shows results for (1,4)-trees, while Figure 2.24a presents the results

for (4,8)-trees, (5,12)-trees, and (8,12)-trees. Each point represents an average over

100 instances. We observed that for relatively low-w� (1,4)-trees preprocessing time is

not increasing when i > 3 since BDR(4) coincides with DR (Figure 2.23a), while for

high-w� (8,12)-trees the preprocessing time grows quickly with increasing i (Figure

2.23c). Since DP time after BDR(i) usually decreases monotonically with i, the total

time of BDR-DP(i) is optimal for some intermediate values of i. We observe that

for (1,4)-trees, BDR-DP(3) is most e�cient, while for (4,8)-trees and for (5,12)-trees

the optimal parameters are i = 4 and i = 5, respectively. For (8,12)-trees, the values
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Table 2.10: Tableau, DP, DR, and BDR-DP(i) for i=3 and 4 on the Second DIMACS
Challenge benchmarks. The experiments were performed on Sun Sparc 5 workstation.

Problem Tableau DP Dead DR BDR-DP(3) BDR-DP(4)
time time ends time time Dead New time Dead New w�

ends cls ends cls
aim-

100-2 0-no-1 2148 >8988 > 108 * 0.9 5 26 0.60 0 721 54
dubois20 270 3589 3145727 0.2 349 262143 30 0.2 0 360 4
dubois21 559 7531 6291455 0.2 1379 1048575 20 0.2 0 390 4

ssa0432-003 12 45 4787 4 132 8749 950 40 1902 1551 19
bf0432-007 489 8688 454365 * 46370 677083 10084 * * * 131

i = 3; 4; and 5 provide the best performance.

BDR-DP(i), DP, DR, and Tableau on DIMACS benchmarks

We tested DP, Tableau, DR and BDR-DP(i) for i=3 and i=4 on the benchmark

problems from the Second DIMACS Challenge. The results presented in Table 2.10

are quite interesting: while all benchmark problems were relatively hard for both DP

and Tableau, some of them had very low w� and were solved by DR in less than

a second (e.g., dubois20 and dubois21). On the other hand, problems having high

induced width, such as aim-100-2 0-no-1 (w� = 54) and bf0432-007 (w� = 131) were

intractable for DR, as expected. Algorithm BDR-DP(i) was often better than both

\pure" DP and DR. For example, solving the benchmark aim-100-2 0-no-1 took more

than 2000 seconds for Tableau, more than 8000 seconds for DP, and DR ran out of

memory, while BDR-DP(3) took only 0.9 seconds and reduced the number of DP

deadends from more than 108 to 5. Moreover, preprocessing by BDR(4), which took

only 0.6 seconds, made the problem backtrack-free. Note that the induced width of

this problem is relatively high (w� = 54). Interestingly, for some DIMACS problems

(e.g., ssa0432-003 and bf0432-007) preprocessing by BDR(3) actually worsened the

performance of DP. Similar phenomenon was observed in some rare cases for (k,m)-

trees (Figure 2.22).

In summary,BDR-DP(i) with intermediate values of i is overall more cost-e�ective
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than both DP and DR. On unstructured random uniform 3-cnfs BDR-DP(3) is com-

parable to DP, on low-w� chains it is comparable to DR, and on intermediate-w�

(k,m)-trees, BDR-DP(i) for i = 3; 4; 5 outperforms both DR and DP. We believe that

the transition from i=3 to i=4 on uniform problems is too sharp, and that interme-

diate levels of preprocessing may provide a more re�ned trade-o�.

2.7.3 Algorithm DCDR(b)

B

C

A

D

E

B

C

D

E

B

C

D

E

A=0 A=1

Figure 2.25: The e�ect of conditioning on A on the interaction graph of theory ' =
f(:C _ E); (A _ B _ C); (:A _B _ E); (:B _ C _D)g.

The second method of combining DP and DR that we consider uses resolution

dynamically during search. We propose a class of hybrid algorithms that select a

set of conditioning variables (also called a cutset), such that instantiating those vari-

ables results in a low-width theory tractable for DR 9. The hybrids run DP on the

cutset variables and DR on the remaining ones, thus combining the virtues of both

approaches. Like DR, they exploit low-w� structure and produce an output theory

that facilitates model generation, while using less space and allowing less average

time, like DP.

9This is a generalization of the cycle-cutset algorithm proposed in [33] which transforms the

interaction graph of a theory into a tree.
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The description of the hybrid algorithms uses a new notation introduced below.

An instantiation of a set of variables C � X is denoted I(C). The theory ' condi-

tioned on the assignment I(C) is called a conditional theory of ' relative to I(C), and

is denoted as 'I(C). The e�ect of conditioning on C is deletion of variables in C from

the interaction graph. Therefore the conditional interaction graph of ' with respect

to I(C), denoted G('I(C)), is obtained from the interaction graph of ' by deleting

the nodes in C (and all their incident edges). The conditional width and conditional

induced width of a theory ' relative to I(C), denoted wI(C) and w�
I(C), respectively,

are the width and induced width of the interaction graph G('I(C)).

For example, Figure 2.25 shows the interaction graph of theory ' = f(:C _ E);

(A _ B _ C); (:A _ B _ E); (:B _ C _D)g along the ordering o = (E;D; C;B;A)

having width and induced width 4. Conditioning on A yields two conditional theories:

'A=0 = f(:C _ E); (B _ C); (:B _ C _ D)g, and 'A=1 = f(:C _ E); (B _ E);

(:B _ C _D)g. The ordered interaction graphs of 'A=0 and 'A=1 are also shown in

Figure 2.25. Clearly, wo(B) = w�
o(B) = 2 for theory 'A=0, and wo(B) = w�

o(B) =

3 for theory 'A=1. Note that, besides deleting A and its incident edges from the

interaction graph, an assignment may also delete some other edges (e.g., A = 0

removes the edge between B and E because the clause (:A_B_E) becomes satis�ed).

The conditioning variables can be selected in advance (\statically"), or during

the algorithm's execution (\dynamically"). In our experiments, we focused on the

dynamic versionDynamic Conditioning + DR (DCDR) that was superior to the static

one.

Algorithm DCDR(b) guarantees that the induced width of variables that are re-

solved upon is bounded by b. Given a consistent partial assignment I(C) to a set of

variables C, the algorithm performs resolution over the remaining variables having

w�
I(C) < b. If there are no such variables, the algorithm selects a variable and attempts

to assign it a value consistent with I(C). The idea of DCDR(b) is demonstrated in

Figure 2.26 for the theory ' = f(:C _ E); (A _ B _ C _ D); (:A _ B _ E _ D);
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Figure 2.26: A trace of DCDR(2) on the theory ' = f(:C _E); (A _B _C); (:A _
B _ E); (:B _ C _ D)g.

(:B _C _D)g. Assume that we run DCDR(2) on '. Every variable is initially con-

nected to at least 3 other variables in G('). As a result, no resolution can be done

and a conditioning variable is selected. Assume that A is selected. AssignmentA = 0

adds the unit clause :A which causes unit resolution in bucketA, and produces a new

clause (B _ C _ D) from (A _ B _ C _ D). The assignment A = 1 produces clause

(B _E _D). In Figure 2.26, the original clauses are shown on the left as a partition-

ing into buckets. The new clauses are shown on the right, within the corresponding

search-tree branches.

Following the branch for A = 0 we get a conditional theory f(:B _ C _ D);

(B _ C _D); (:C _ E)g. Since the degrees of all the variables in the corresponding
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(conditional) interaction graph are now 2 or less, we can proceed with resolution.

We select B, perform resolution in its bucket, and record the resolvent (C _ D)

in bucketC. The resolution in bucketC creates clause (D _ E). At this point, the

algorithm terminates, returning the assignmentA = 0, and the conditional directional

extension '^ (B _ C _D)^ (C _D)^ (D _ E).

The alternative branch of A = 1 results in the conditional theory f(B _ E _D);

(:B _ C _D); (:C _E)g. Since each variable is connected to three other variables,

no resolution is possible. Conditioning on B yields the conditional theory f(E _D);

(:C_E)g when B = 0, and the conditional theory f(C_D); (:C_E)g when B = 1.

In both cases, the algorithm terminates, returning A = 1, the assignment to B, and

the corresponding conditional directional extension.

Algorithm DCDR(b) (Figure 2.27) takes as an input a propositional theory '

and a parameter b bounding the size of resolvents. Unit propagation is performed

�rst (lines 1-2). If no inconsistency is discovered, DCDR proceeds to its primary

activity: choosing between resolution and conditioning. While there is a variable Q

connected to at most b other variables in the current interaction graph conditioned on

the current assignment, DCDR resolves upon Q (steps 4-9). Otherwise, it selects an

unassigned variable (step 10), adds it to the cutset (step 11), and continues recursively

with the conditional theory ' ^ :Q. An unassigned variable is selected using the

same dynamic variable ordering heuristic that is used by DP. Should the theory

prove inconsistent the algorithm switches to the conditional theory ' ^ Q. If both

positive and negative assignments to Q are inconsistent the algorithm backtracks to

the previously assigned variable. It returns to the previous level of recursion and

the corresponding state of ', discarding all resolvents added to ' after the previous

assignment was made. If the algorithm does not �nd any consistent partial assignment

it decides that the theory is inconsistent and returns an empty cutset and an empty

directional extension. Otherwise, it returns an assignment I(C) to the cutset C,

and the conditional directional extension Eo('I(C)) where o is the variable ordering

dynamically constructed by the algorithm. Clearly, the conditional induced width
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DCDR(', X, b)

Input: A cnf theory ' over variables X ; a bound b.
Output: A decision of whether ' is satis�able. If it is, an assignment I(C) to its
conditioning variables, and the conditional directional extension Eo('I(C)).
1. if unit propagate(') = false, return(false);
2. else X  X � f variables in unit clauses g
3. if no more variables to process, return true;
4. else while 9Q 2 X s.t. degree(Q) � b in the current graph
5. resolve over Q
6. if no empty clause is generated,
7. add all resolvents to the theory
8. else return false
9. X  X � fQg

10. Select a variable Q 2 X ; X  X � fQg
11. C  C [ fQg;
12. return( DCDR('^ :Q, X , b) _

DCDR('^ Q, X , b) ).

Figure 2.27: Algorithm DCDR(b).

w�
I(C) of ''s interaction graph with respect to o and to the assignment I(C) is bounded

by b.

Theorem 9: (DCDR(b) soundness and completeness) Algorithm DCDR(b) is sound

and complete for satis�ability. If a theory ' is satis�able, any model of ' consistent

with the output assignment I(C) can be generated backtrack-free in O(jEo('I(C))j)

time where o is the ordering computed dynamically by DCDR(b). 2

Theorem 10: (DCDR(b) complexity) The time complexity of algorithm DCDR(b)

is O(n2��b+jCj), where C is the largest cutset ever conditioned upon by the algorithm,

and � � log29. The space complexity is O(n � 2��b). 2

The parameter b can be used to control the trade-o� between search and resolution.

If b � w�
o('), where o is the ordering used by DCDR(b), the algorithm coincides with
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DR having time and space complexity exponential in w�('). It is easy to show that

the ordering generated by DCDR(b) in case of no conditioning yields a min-degree

ordering. Thus, given b and a min-degree ordering o, we are guaranteed that DCDR(b)

coincides with DR if w�
o � b. If b < 0, the algorithm coincides with DP. Intermediate

values of b allow trading space for time. As b increases, the algorithm requires more

space and less time (see also [25]). However, there is no guaranteed worst-case time

improvement over DR. It was shown [7] that the size of the smallest cycle-cutset C (a

set of nodes that breaks all cycles in the interaction graph, leaving a tree, or a forest),

and the smallest induced width, w�, obey the relation jCj � w� � 1. Therefore, for

b = 1, and for a corresponding cutset Cb, � � b+ jCbj � w� + � � 1 � w�, where the

left side of this inequality is the exponent that determines complexity of DCDR(b)

(Theorem 10). In practice, however, backtracking search rarely demonstrates its

worst-case performance and thus the average complexity of DCDR(b) is superior to

its worst-case bound as will be con�rmed by our experiments.

Algorithm DCDR(b) uses the 2-literal-clause ordering heuristic for selecting con-

ditioning variables as used by DP. Random tie-breaking is used for selecting the

resolution variables.

2.7.4 Empirical evaluation of DCDR(b)

We evaluated the performance of DCDR(b) as a function of b. We tested problem

instances in the 50%-satis�able region (the phase transition region). The results for

di�erent b and three di�erent problem structures are summarized in Figures 2.28-

2.30. Figure 2.28(a) presents the results for uniform 3-cnfs having 100 variables and

400 clauses. Figures 2.28(b) and 2.28(c) focus on (4; 5)-trees and on (4; 8)-trees,

respectively. We plotted the average time, the number of dead-ends, and the number

of new clauses generated as functions of the bound b (we plot both the total number

of generated clauses and the number of clauses actually added to the output theory

excluding tautologies and subsumed clauses).
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(c) (4,8)-trees

Figure 2.28: DCDR(b) on three di�erent classes of 3-cnf problems. Average time, the
number of dead-ends, and the number of new clauses are plotted as functions of the
parameter b.
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As expected, the performance of DCDR(b) depends on the induced width of the

theories. We observed three di�erent patterns:

� On problems having large w�, such as uniform 3-cnfs in the phase-transition

region (see Figure 2.28), the time complexity of DCDR(b) is similar to DP

when b is small. However, when b increases, the CPU time grows exponentially.

Apparently, the decline in the number of dead ends is too slow relative to the

exponential (in b) growth in the total number of generated clauses. However, the

number of new clauses actually added to the theory grows slowly. Consequently,

the �nal conditional directional extensions have manageable sizes. We obtained

similar results when experimenting with uniform theories having 150 variables

and 640 clauses.

� Since DR is equivalent to DCDR(b) whenever b is equal or greater then w�, for

theories having small induced width, DCDR(b) indeed coincides with DR even

for small values of b. Figure 2.28(b) demonstrates this behavior on (4,5)-trees

with 40 cliques, 15 clauses per clique, and induced width 6. For b � 8, the time,

the total number of clauses generated, as well as the number of new clauses

added to the theory, do not change. With small values of b (b = 0; 1; 2; 3), the

e�ciency of DCDR(b) was sometimes worse than that of DCDR(-1), which is

equivalent to DP, due to the overhead incurred by extra clause generation (a

more accurate explanation is still required).

� On (k;m)-trees having larger size of cliques (Figure 2.28(c)), intermediate val-

ues of b yielded a better performance than both extremes. DCDR(-1) is still

ine�cient on structured problems while large induced width made pure DR

too costly time- and space-wise. For (4,8)-trees, the optimal values of b appear

between 5 and 8.

Figure 2.29 summarizes the results for DCDR(-1), DCDR(5), and DCDR(13) on

the three classes of problems. The intermediate bound b=5 seems to be overall more

cost-e�ective than both extremes, b= -1 and b=13.
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Figure 2.29: Relative performance of DCDR(b) for b = �1; 5; 13 on di�erent types of
problems.

Figure 2.30 describes the average number of resolved variables which indicates the

algorithm's potential for knowledge compilation. When many variables are resolved

upon, the resulting conditional directional extension encodes a larger portion of the

models, all sharing the assignment to the cutset variables.

2.8 Related work

Directional resolution belongs to a family of elimination algorithms �rst analyzed

for optimization tasks in dynamic programming [7] and later used in constraint sat-

isfaction [100, 33] and in belief networks [76]. In fact, DR can be viewed as an

adaptation of the constraint-satisfaction algorithm adaptive consistency to propo-

sitional satis�ability where the project-join operation over relational constraints is

replaced by resolution over clauses [33, 37]. Using the same analogy, bounded resolu-

tion can be related to bounded consistency-enforcing algorithms, such as arc- path-

and i-consistency [78, 43, 22], while bounded directional resolution, BDR(i), paral-

lels directional i-consistency [33, 37]. Indeed, one of this chapter's contributions is

transferring constraint satisfaction techniques to the propositional framework.
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Figure 2.30: DCDR: the number of resolved variables on di�erent problems.

The recent success of constraint processing which can be attributed to techniques

combining search with limited forms of constraint propagation (e.g., forward-checking,

MAC, constraint logic programming [59, 53, 99, 67]) that motivated our hybrid algo-

rithms. In the SAT community, a popular form of combining constraint propagation

with search is unit-propagation in DP. Our work extends this idea.

The hybrid algorithm BDR-DP(i), initially proposed in [35], corresponds to ap-

plying directional i-consistency prior to backtracking search for constraint processing.

This approach was empirically evaluated for some constraint problems in [32]. How-

ever, those experiments were restricted to small and relatively easy problems, for

which only a very limited amount of preprocessing was cost-e�ective. The presented

experiments with BDR-DP(i) suggest that the results in [32] were too preliminary

and that the idea of preprocessing before search is viable and should be further in-

vestigated.

Our second hybrid algorithm, DCDR(b), proposed �rst in [94], generalizes the

cycle-cutset approach that was presented for constraint satisfaction [21] using static

variable ordering. This idea of alternating search with bounded resolution was also

suggested and evaluated independently by van Gelder in [55], where a generalization

of unit resolution known as k-limited resolution was proposed. This operation requires

that the operands and the resolvent have at most k literals each. The hybrid algorithm
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proposed in [55] computes k-closure (namely, it applies k-limited resolution iteratively

and eliminates subsumed clauses) between branching steps in DP-backtracking. This

algorithm, augmented with several branching heuristics, was tested for k=2 (the

combination called 2cl algorithm), and demonstrated its superiority to DP, especially

on larger problems. Algorithm DCDR(b) computes a subset of b-closure between its

branching steps 10. In this chapter, we study the impact of b on the e�ectiveness of

hybrid algorithms over di�erent problem structures, rather than focus on a �xed b.

2.9 Summary and conclusions

The chapter compares two popular approaches to solving propositional satis�ability,

backtracking search and resolution, and proposes two parameterized hybrid algo-

rithms. We analyze the complexity of the original resolution-based Davis-Putnam

algorithm, called here directional resolution (DR)), as a function of the induced

width of the theory's interaction graph. Another parameter called diversity pro-

vides an additional re�nement for tractable classes. Our empirical studies con�rm

previous results showing that on uniform random problems DR is indeed very ine�-

cient. However, on structured problems such as k-tree embeddings, having bounded

induced width, directional resolution outperforms the popular backtracking-based

Davis-Putnam-Logemann-Loveland Procedure (DP).

The two parameterized hybrid schemes, BDR-DP(i) and DCDR(b), allow a 
exible

combination of backtracking search with directional resolution. Both schemes use a

parameter that bounds the size of the resolvents recorded. The �rst scheme, BDR-

DP(i), uses bounded directional resolution BDR(i) as a preprocessing step, recording

only new clauses of size i or less. The e�ect of the bound was studied empirically over

10DCDR(b) performs resolution on variables that are connected to at most b other variables;

therefore, the size of resolvents is bounded b. It does not, however, resolve over the variables having

degree higher than b in the conditional interaction graph, although such resolutions can sometimes

produce clauses of size not larger than b.
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both uniform and structured problems, observing that BDR-DP(i) frequently achieves

its optimal performance for intermediate levels of i, outperforming both DR and DP.

We also believe that the transition from i=3 to i=4 is too sharp and that intermediate

levels of preprocessing are likely to provide even better trade-o�. Encouraging results

are obtained for BDR-DP(i) on DIMACS benchmark, where the hybrid algorithm

easily solves some of the problems that were hard both for DR and DP.

The second hybrid scheme uses bounded resolution during search. Given a bound

b, algorithm DCDR(b) instantiates a dynamically selected subset of conditioning vari-

ables such that the induced width of the resulting (conditional) theory and therefore

the size of the resolvents recorded does not exceed b. When b � 0, DCDR(b)

coincides with DP, while for b � w�
o (on the resulting ordering o) it coincides with

directional resolution. For intermediate b, DCDR(b) was shown to outperform both

extremes on intermediate-w� problem classes.

For both schemes selecting the bound on the resolvent size allows a 
exible scheme

that can be adapted to the problem structure and to computational resources. Our

current \rule of thumb" for DCDR(b) is to use small b when w� is large, relying on

search, large b when w� is small, exploiting resolution, and some intermediate bound

for intermediate w�. Additional experiments are necessary to further demonstrate

the spectrum of optimal hybrids relative to problem structures.
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Chapter 3

Exploiting Causal Independence

3.1 Introduction

Belief networks 1 are a powerful and convenient tool for probabilistic reasoning, suc-

cessfully used in many practical applications, including medical diagnosis, hardware

troubleshooting, and noisy-channel communication. However, (exact) reasoning in

belief networks is known to be NP-hard [13]. Commonly used structure-exploiting al-

gorithms such as join-tree propagation [75, 68, 105] and variable elimination [114, 23]

are time and space exponential in the network parameter known as induced width

(the size of largest clique induced by the above inference algorithms). The induced

width is often large, especially in networks with large families (a family is a group

of nodes that participate in the same conditional probability table, or CPT). Even

CPT speci�cation, which is exponential in the family size, may be intractable in such

networks. One way to cope with this problem is to make structural assumptions that

simplify the CPT speci�cation. In this chapter, we focus on an assumption known as

causal independence [63, 111, 114], where multiple causes contribute independently

to a common e�ect. The causal-independence assumption is commonly used in large

practical networks, such as CPCS and QMR-DT networks for medical diagnosis [90].

1Also known as Bayesian networks, causal networks, or graphical models.
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The causal-independence assumption simpli�es CPT speci�cation from exponen-

tial to linear in family size. However, the question is to what extent it is possible

to maintain such concise representation during inference. Some computational bene-

�ts of causal independence have already been demonstrated by previously proposed

approaches that include network transformations [63, 84], the variable-elimination

algorithm VE1 [114], and the algorithm Quickscore for a special class of two-layer

noisy-OR (BN2O) networks. Our work extends the existing approaches in several

ways.

� We provide the connection between the network transformations and algorithm

VE1, which can be viewed as variable-elimination inference applied to a trans-

formed network subject to some variable ordering restrictions. We show that

the ordering restrictions imposed by VE1 may sometimes lead to a unnecessary

complexity increase, and describe a general variable-elimination scheme, called

ci-elim-bel, that improves VE1 by accommodating any variable ordering.

� We investigate the impact of causal independence on �nding a most probable

explanation (MPE), �nding a maximum a posteriori hypothesis (MAP), and

�nding a maximum expected utility (MEU) decision. We show that, while

causal independence can signi�cantly reduce the complexity of belief updating

and �nding MAP and MEU, it is generally not e�ective for MPE. Finally,

we outline the algorithms for �nding MAP and MEU in causally-independent

networks.

� The complexity of the above algorithms is analyzed using the notion of the

induced width of the transformed network (called the e�ective induced width).

We demonstrate that, when a proper variable ordering is used, the e�ective

induced width is never larger than the induced width of the moral graph of the

original network (the graph where the parents in each family are connected),

and can be as small as the induced width of the original (unmoralized) directed

acyclic graph. For example, exploiting causal independence in polytrees with
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families of size m reduces the induced width from m to 2. An advantage of the

graph-based complexity analysis is that the anticipated computational bene�ts

of exploiting causal independence can be evaluated in advance and compared

with those of general-purpose algorithms.

� Finally, we show that causal independence allows a more e�cient propaga-

tion of evidence. A causally-independent network can be transformed into one

that combines probabilistic and deterministic relations. Constraint-propagation

techniques, such as relational arc-consistency, can propagate evidence and sim-

plify subsequent probabilistic inference. We present an evidence-propagation

scheme for causally-independent networks generalizing the property of noisy-

OR: observing a particular value of one variable, such as z = 0 in z = x _ y,

allows to deduce value assignments to some other variables. Subsequently, we

present an algorithm for arbitrary noisy-OR networks that uses evidence prop-

agation and generalizes the Quickscore algorithm [60].

This chapter is organized as follows. Sections 3.2 and 3.3 provide background on

probabilistic inference and on causal independence. Section 3.4 introduces the notion

of transformed networks, while Section 3.5 focuses on belief updating using trans-

formed networks. Subsection 3.5.1 analyzes the computational bene�ts of exploiting

causal independence, while subsection 3.5.2 shows the relation between network trans-

formations and algorithm VE1. Section 3.6 extends the analysis to the tasks of �nding

MPE, MAP and MEU. Evidence propagation in causally-independent networks is dis-

cussed in Section 3.7. Section 3.8 concludes this chapter. Proofs of some theorems

can be found in Appendix B.

3.2 Inference in belief networks: an overview

This section provides a background on belief networks, probabilistic tasks and infer-

ence algorithms, focusing on the bucket-elimination approach [23].

77



A belief network is a directed acyclic graph, where the nodes represent random

variables and the edges denote probabilistic dependencies among those variables,

quanti�ed by conditional probabilities. A formal de�nition is given after introducing

some basic notation and terminology.

A directed graph is a pair G = fV;Eg, where V = fX1; :::;Xng is a set of nodes

and E = f(Xi;Xj)jXi;Xj 2 V; i 6= jg is a set of edges. Two nodes Xi and Xj are

called neighbors if there is an edge between them (either (Xi;Xj) or (Xj;Xi)). We

say that Xi points to Xj if (Xi;Xj) 2 E; Xi is called a parent of Xj, while Xj is called

a child of Xi. The set of parent nodes of Xi is denoted pa(Xi), or pai, while the set of

child nodes of Xi is denoted ch(Xi), or chi. We call a node and its parents a family.

A directed graph is acyclic if it has no directed cycles. In an undirected graph, the

directions of the edges are ignored: (Xi;Xj) and (Xj ;Xi) are identical. A directed

graph is singly-connected (also known as a polytree), if its underlying undirected graph

(called skeleton graph) has no (undirected) cycles. Otherwise, it is called multiply-

connected. A directed ordered graph is a pair (G; o), where G is a directed graph and

o is an ordering of its variables, o = (X1; :::;Xn). Given a subgraph G0 = fV 0; E0g of

G, where V 0 � V , the ordering o0 of G0 obtained by deleting Xi 62 V 0 from o is called

the restriction of o to G0 (we also say that o0 agrees with o on the set of nodes V 0).

Let X = fX1; :::;Xng be a set of random variables having domains D1; :::;Dn,

respectively. A belief network is a pair (G;P ), where G = (X;E) is a directed acyclic

graph representing the variables as nodes and P = fP (xijpai)ji = 1; :::; ng is the set

of conditional probabilities de�ned for each variable Xi and its parents pai in G. A

belief network represents a joint probability distribution over X having the product

form

P (x1; ::::; xn) = �n
i=1P (xijpai): (3.1)

where x stnads for value of X (when there is no confusion, the lower-case letters will

sometimes denote variables as well).

The moral graph GM of a belief network (G;P ) is obtained by connecting all

the parents of each node and dropping the directionality of edges. The original
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Figure 3.1: (a) a belief network representing the joint probability distribution P (g;

f; d; c; b; a) = P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a), and (b) its moral graph.

directed acyclic graph G will be also called unmoral graph. We will use the terms

\moral" (\unmoral") graph and \moral" (\unmoral") network interchangeably. An

evidence e =
S
j(Xj = dj), where dj 2 Dj , is an instantiated subset of variables. We

denote variables by upper-case letters, and use lower-case letters for the corresponding

domain values.

Example 6: Consider the belief network that represents

P (g; f; d; c; b; a) = P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a):

Its acyclic directed graph is shown in Figure 3.1a, and the corresponding moral graph

is shown in Figure 3.1b. In this case, for example, pa(F ) = fB;Cg, pa(B) = fAg,

pa(A) = ;, ch(A) = fB;D;Cg.

The following reasoning tasks are de�ned over belief networks:

1. belief updating, i.e. �nding the posterior probability P (Y je) of query nodes

Y � X given evidence e (this task is often referred to as probabilistic inference);

2. �nding a most probable explanation (MPE), i.e. �nding a maximum probability

assignment to unobserved variables given evidence;
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3. �nding maximum a posteriori hypothesis (MAP), i.e. �nding a maximum prob-

ability assignment to a subset of hypothesis variables given evidence;

4. given a utility function, �nding the maximum expected utility (MEU) decision,

namely, �nding an assignment to a set of decision nodes that maximizes the

expected utility.

All these tasks are known to be NP-hard [13]. However, there exists a polyno-

mial propagation algorithm for singly-connected networks [88]. The two common

approaches to extending this algorithm to exact inference in multiply-connected net-

works are the cycle-cutset approach, also called conditioning, and join-tree clustering

[88, 76, 103]. Join-tree clustering is closely related to the variable-elimination ap-

proach [17, 114, 23]. We focus here on a general variable-elimination scheme called

bucket-elimination [23] that allows a unifying approach to various reasoning tasks.

3.2.1 The bucket-elimination scheme

A bucket-elimination algorithm accepts as an input an ordered set of variables and a

set of functions, such as propositional clauses, constraints, or conditional probability

functions. Each variable is associated with a bucket. All functions de�ned on variable

Xi and on lower-index variables are placed in the bucket of Xi. Bucket-elimination

processes each bucket, from last to �rst, applying an elimination operator which

eliminates the bucket's variable and computes a new function that summarizes the

e�ect of this variable on the rest of the problem. The new function is placed in an

appropriate lower bucket. Some elimination operators are de�ned below:

De�nition 5: Given a function h de�ned over subset of variables S, where X 2

S, the functions (minX h), (maxX h), (meanXh), and (
P

X h) are de�ned over U =

S � fXg as follows. For every U = u, (minX h)(u) = minx h(u; x), (maxX h)(u) =

maxx h(u; x), (
P

X h)(u) =
P

x h(u; x), and (meanXh)(u) =
P

x
h(u;x)
jXj

, where jXj is

the cardinality of X's domain. Given a set of functions h1; :::; hj de�ned over the
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subsets S1; :::; Sj, the product function (�jhj) and
P

J hj are de�ned over U = [jSj.

For every u 2 U , (�jhj)(u) = �jhj(uSj), and (
P

j hj)(u) =
P

j hj(uSj ).

Next, we review the bucket-elimination algorithms for belief updating and for

�nding the MPE [23]. Without loss of generality, consider the task of updating the

belief in X1. Given a belief network (G;P ), and a variable ordering o = (X1; :::;Xn),

the belief P (x1je) is de�ned as:

P (x1je) =
P (x1; e)

P (e)
= �P (x1; e) = �

X

X=fX1g

Y

i

P (xijpai) = �
X

x2

: : :
X

xn

Y

i

P (xijpai);

(3.2)

where � is a normalizing constant. By the distributivity law,

X

x2

: : :
X

xn

Y

i

P (xijpai) = F1

X

x2

F2 : : :
X

xn

Fn; (3.3)

where each Fi =
Q
x P (xjpa(x)) is the product of all probabilistic components de�ned

on Xi and not de�ned on any variable Xj for j > i. The set of all such components is

initially placed in the bucket of Xi (denoted bucketi). Algorithm elim-bel [23] shown

in Figure 3.2 computes the sums in the equation (3.3) sequentially from right to

left, eliminating variables from Xn to X1. For each Xi, the algorithm multiplies the

components of bucketi, then sums over Xi, and puts the resulting function in the

bucket of its highest-index variable. If Xi is observed (Xi = a), then Xi is replaced

by a independently in each of the bucket's components, and each result is placed in its

highest-variable buckets. The following example illustrates elim-bel on the network

in Figure 3.3a.

Example 7: Given the belief network in Figure 3.3, the ordering o = (A;E;D;C;B),

and evidence E = 0, Bel(a) = P (ajE = 0) = �P (a;E = 0) is computed as follows:

P (a;E = 0) =
X

E=0;d;c;b

P (a; b; d; c; e) =
X

E=0;d;c;b

P (a)P (cja)P (ejb; c)P (dja; b)P (bja) =

P (a)
X

E=0

X

d

X

c

P (cja)
X

b

P (ejb; c)P (dja; b)P (bja):
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Algorithm elim-bel(BN,o,e)

Input: A belief network BN = (G;P ), ordering o, evidence e.
Output: P (x1je), the belief in X1 given evidence e.

1. Initialize: Partition P = fP1; :::; Png into buckets bucket1, : : :, bucketn, where
bucketp contains all matrices h1; h2; :::; ht whose highest-index variable is Xi.

2. Backward: for p = n to 1 do

� If Xp is observed (Xp = a), replace Xp by a in each hi
and put the result in its highest-variable bucket.

� Else compute hp =
P

Xp
�t
i=1hi

and place hp in its highest-variable bucket.

3. Return Bel(x1) = �P (x1) ��ihi(x1),
where each hi is in bucket1 and � is a normalizing constant.

(a) Algorithm elim-bel.

Eh 

E = 0 h D

h C

h B

B

A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

P(e|b,c) P(b|a)P(d|a,b)

P(c|a)

P(a)

(a,e)

(a)

(a,d,c,e)

(a,d,e)

P(A|E=0)
(b) A trace of elim-bel.

Figure 3.2: (a) Algorithm elim-bel and (b) an example of the algorithm's execution.
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Figure 3.3: (a) A belief network, (b) its induced graph along o = (A;E;D;C;B), and

(c) its induced graph along o = (A;B;C;D;E).

Using bucket elimination, we get:

1. bucket B: hB(a; d; c; e) =
P

b P (ejb; c)P (dja; b)P (bja)

2. bucket C: hC(a; d; e) =
P

c P (cja)h
B(a; d; c; e)

3. bucket D: hD(a; e) =
P

d h
C(a; d; e)

4. bucket E: hE(a) = hd(a;E = 0)

5. bucket A: Bel(a) = P (ajE = 0) = �P (a)hE(a);

where � is a normalizing constant. Figure 3.2(b) shows a schematic trace of the

algorithm.

Note that the elimination procedure can be simpli�ed by processing evidence

nodes �rst, thus placing them last in the ordering. In example 7, placing E last in

the ordering yields:

1. bucket E: hE(b; c) = P (e = 0jb; c)

2. bucket B: hB(a; d; c) =
P

b h
E(b; c)P (dja; b)P (bja)

3. bucket C: hC(a; d) =
P

c P (cja)h
B(a; d; c)

4. bucket D: hD(a) =
P

d h
C(a; d)

5. bucket A: Bel(a) = P (ajE = 0) = �P (a)hE(a);
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Algorithm elim-mpe(BN,o,e)
Input: A belief network BN = (G;P ), ordering o, evidence e.
Output: An MPE assignment.

1. Initialize: Partition P = fP1; :::; Png into buckets bucket1, : : :, bucketn, where
bucketp contains all matrices h1; h2; :::; ht whose highest-index variable is Xi.

2. Backward: for p = n to 1 do

� If Xp is observed (Xp = a), replace Xp by a in each hi
and put the result in its highest-variable bucket.

� Else compute hp = maxxp �
t
i=1hi,

xoptp = argmaxxp �
t
i=1hi,

and place hp in its highest-variable bucket.

3. Forward: for p = 1 to n,
given X1 = x

opt
1 ; :::; Xp�1 = x

opt
p�1, assign xoptp to Xp.

4. Return the assignment xopt = (xopt1 ; :::; xoptn ).

Figure 3.4: Algorithm elim-mpe.

Eliminating an evidence variable is equivalent to replacing this variable by its

observed value in all relevant probabilistic components. This simpli�es computation,

and corresponds to removing the evidence node from the moral network. From now

on, we always assume that evidence nodes are eliminated �rst, and refer to the variable

ordering of the remaining network.

Similar bucket-elimination algorithms were derived for the tasks of �nding MPE,

MAP, and MEU [23]. Given a belief network (G;P ), and given a variable ordering

o = (X1; :::;Xn), the MPE task is to �nd

MPE = max
x1

: : :max
xn

Y

i

P (xijpai): (3.4)

Using the product form of the joint probability distribution, we move maximization

over each variable as far to the right as possible:

MPE = max
x1

F1 : : :max
xn�1

Fn�1max
xn

Fn: (3.5)
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This leads to the bucket-elimination algorithm elim-mpe [23] (see Figure 3.4), which is

quite similar to elim-bel, except that maximization is replaced by summation. Bucket-

elimination algorithms elim-map and elim-meu for �nding MAP and MEU, respec-

tively, are presented in [23].

An important property of bucket-elimination algorithms is that their performance

can be predicted using a graph parameter called induced width [33] (also known as

tree-width [2]), which describes the largest clique created in the problem's graph and

corresponds to the largest function recorded by the algorithm. Formally, the induced

width is de�ned as follows. Given a (directed or undirected) graph G, the width of

Xi along ordering o is the number of Xi's neighbors preceding Xi in o. The width

of the graph along o, denoted wo, is the maximum width along o. The induced graph

of G along o is obtained by connecting the preceding neighbors of each Xi, going

from i = n to i = 1. The induced width along o, denoted w�
o, is the width of the

induced graph along o, while the induced width w� is the minimum induced width

along any ordering. For example, Figures 3.3b and 3.3c depict the induced graphs

(induced edges are shown as dashed lines) of the moral graph in Figure 3.3a along

the orderings o = (A;E;D; C;B) and o0 = (A;B; C;D;E), respectively. We get

w�
o = 4 and w�

o0 = 2. It can be shown that the induced width of node Xi bounds the

number of arguments of any function computed in bucketi. Therefore, the complexity

of bucket-elimination algorithms is time and space exponential in w�. Note, that we

assume that evidence nodes are eliminated from the moral graph before computing

its induced width. Assuming �nite domains of size not greater than d,

Theorem 11: [23] The complexity of bucket-elimination algorithms is O(ndw
�

o+1),

where n is the number of variables in a belief network, and w�
o is the induced width of

the moral graph along ordering o after all evidence nodes are removed.

The induced width will vary depending on the variable ordering. Although �nding

a minimum-w� ordering is NP-hard [2], good heuristic algorithms are available [7, 22,

97]. For more details on bucket-elimination and induced width see [23, 27].
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Note that the induced width cannot be lower than jF j� 1 where jF j is the size of

largest family in the network. The next section introduces a simplifying assumption

about CPTs called causal independence that allows decomposing large families into

smaller ones.

3.3 The causal independence assumption

The speci�cation of the conditional probability tables (CPTs) is exponential in the

family size which may be sometimes prohibitively large. For example, dozens of

di�erent diseases may cause the same symptom, such as fever. In such cases, sim-

plifying assumptions about the nature of the probabilistic dependencies should be

made. This chapter will focus on the causal independence assumption often used in

real-life applications, such as medical-diagnosis CPCS and QMR-DT networks [90].

Causal independence assumes that several causes contribute independently to a

common e�ect. Consider the following example inspired by [89]. A burglary alarm

can be turned on by one of possible causes, such as a burglary, an earthquake, or

something else. A belief network describing this situation is shown in Figure 3.5a,

where the \e�ect" node e stands for the state of the alarm (on or o�), while the nodes

c1, c2,...,cn represent possible causes, such as burglary or earthquake. Speci�cation of

the full CPT, namely, the probability of alarm given every combination of its parents'

values, would be intractable for large n. Moreover, it is generally di�cult to assess

such joint probabilities from the causal mechanisms that are unrelated to each other

(belong to di�erent \frames of knowledge" [89]). For example, the probability of the

alarm not turning on in the case of a burglary depends on the burglar's skills, which

are unrelated to earthquakes. It is more natural to specify separately the probability

of alarm given burglary, and the probability of alarm given earthquake. How should

we combine those two? Assume there were no uncertainty, and the alarm would

always turn on if either a burglary, or an earthquake, or any of the other speci�ed
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Figure 3.5: (a) a causally-independent family, (b) its dependence graph, and (c) its

binary-tree transformation.

causes occurred. Then we could use a simple disjunctive model

c1 _ c2 _ ::: _ cn ! e:

However, in real-life, the alarm may not always turn on in the presence of one or

more causes, since it may be broken, or a burglar may be smart, or some other hidden

inhibiting mechanism [89] may be present. Those hidden mechanisms can be modeled

by adding hidden variables to the network, as described below, thus transforming the

logical-OR into the noisy-OR [72].

Several generalizations of noisy-OR model were proposed in [111, 61, 62] and sum-

marized in [63] under the collective name causal independence (CI). Most generally,

causal independence assumes that a probabilistic relation between a set of causes

c1; :::; cn and an e�ect e can be decomposed into a \noisy transformation" of each

cause ci into a hidden variable ui, and a deterministic function e = g(u1; :::; un).

Such structure can be captured by a dependence graph depicting the hidden variables

explicitly (see Figure 3.5b).

A special kind of causal independence, called decomposable causal independence

[63], implies that the function g(u1; :::; un) can be decomposed into a series of binary

functions. Following [114], we assume that g(u1; :::; un) = u1 � ::: � un, where �

is a commutative and associative binary operator (e.g., logical OR, logical AND,
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addition). This class of causally-independent relations includes several commonly

used models, such as noisy-OR, noisy-MAX, noisy-AND, and noisy-adder (e.g., linear-

Gaussian model). From now on, we assume decomposable causal independence calling

it simply \causal independence". Formally,

De�nition 6: [114] Let c1; :::; cm be the parents of e in a belief network. The

variables c1; :::; cm are said to be causally-independent w.r.t. e (called convergent

variable) if there exists a set of random variables ue1; :::; u
e
m (called hidden variables), a

set of conditional probability functions f(uei ; ci) = P (uei jci), and a binary commutative

and associative operator � such that

1. for each i, uei is independent of any of cj and uej, i 6= j, given ci, i.e.

P (uei jc1; :::; cn; u
e
1; :::; u

e
m) = P (uei jci); and

2. e = ue1 � : : : � u
e
m:

The family e; c1; :::; cm will be called a causally-independent family. If all the

families in a belief network are causally-independent, then the network will be called

a causally-independent belief network (CI-network). A causally-independent network

BN = (G;P ) over the set of random variablesX is de�ned by a directed acyclic graph

G (where the nodes correspond to variables in X) a set of functions P = PCI [Ppriors

over X [ U , where U is the set of hidden variables, PCI = fP (uei jci)je 2 X; pa(e) 6=

;, ci 2 pa(e)g is the set of conditional probabilities introduced for each causally-

independent family, and Ppriors is the set of prior probabilities on the root nodes

(nodes without parents).

The next section shows how causal independence can be used to decompose large

families into smaller ones which allows computing CPT entries in linear time and can

be further exploited by probabilistic inference algorithms.
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3.4 Binary-tree network transformations

Given the input speci�cation of a causally-independent family (i.e., the set of functions

fP (uei jci)ji = 1; :::;mg), the CPT of a causally-independent family can be computed

as

P (ejc1; :::cm) =
X

fue1:::u
e
mje=ue1�:::�u

e
mg

mY

i=1

P (uei jci): (3.6)

Since the operation � is commutative and associative, e = ue1 � ::: � u
e
m can be decom-

posed into a sequence of pairwise computations, such as

e = ue1 � y1; y1 = ue2 � y2; :::; ym�2 = uem�1 � u
e
m;

Then each CPT entry can be computed in O(m) time as follows [114]:

P (ejc1; :::cm) =
X

fue
1
:::uemje=ue

1
�:::�uemg

mY

i=1

P (uei jci) =

X

fue1;y1je=u
e
1�y1g

P (ue1jc1) : : :
X

fuem�1;u
e
mjym�2=u

e
m�1�u

e
mg

P (uem�1jcm�1)P (u
e
mjcm) = (3.7)

X

ue
1
;y1

P 0(ejue1; y1)P (u
e
1jc1) : : :

X

ue
m�1

;uem

P 0(ym�2ju
e
m�1; u

e
m)P (u

e
m�1jcm�1)P (u

e
mjcm); (3.8)

where yj denote hidden variables introduced for keeping the intermediate results, and

P 0(xjy; z) are new (deterministic) CPTs de�ned as follows: P 0(xjy; z) = 1 if x = y �z,

and 0 otherwise.

Clearly, there are many di�erent ways of decomposing e = ue1 � ::: � u
e
m into

a sequence of binary operations, each corresponding to a traversal of some binary

computation tree.

De�nition 7: [binary computation tree]

Given an expression e = ue1�:::�u
e
m where � is commutative and associative, its binary

computation tree is a directed rooted binary tree having the root e and leaves uei , where

each non-leaf node y is pointed to by its two children2 yl and yk and associated with

the operation y = yl � yk.

2Note that the children of y in such directed binary tree will be called parents of y in the

corresponding belief network.
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This leads to the notion of a binary-tree transformation that decomposes a causally-

independent family of size m + 1 (Figure 3.5a) into an equivalent network having

families of size at most 3, as we will show.

De�nition 8: [binary-tree transformation]

Given a causally-independent family F having the parents c1,...,cm and the child e

such that e = ue1 � ::: � u
e
m, its dependence graph includes the variables uei explicitly

as shown in Figure 3.5b. Given a causally-independent network BN = (G;P ), a

transformed graph GT of the BN is obtained by �rst replacing each family in G

by its dependence graph, and then replacing the resulting family e = ue1 � ::: � u
e
m

with a binary computation tree (Figure 3.5c). The nodes of the BN are called input

nodes, while both the nodes uei introduced by causal independence and the nodes

yj introduced by binary computation trees will be called hidden nodes. A binary-

tree transformation (a transformed network) of the BN = (G;P ) is a belief network

TBN = (GT ; P; P
0) where GT is a transformed graph, each uei is associated with the

function P (uei jci) 2 P , and each node x in a binary computation tree of some family,

having parents y and z, is associated with P 0(xjy; z) 2 P 0 de�ned as P 0(xjy; z) = 1 if

x = y � z, and 0 otherwise.

Equations 3.6-3.8 show that the causally-independent CPTs can be derived by

belief updating in a transformed network (see equation 3.8). Moreover,

Theorem 12: [equivalence of belief updating in BN and TBN ]

Given a causally-independent belief network BN, a transformed network TBN, and an

evidence e, computing P (x1je) over the BN is equivalent to computing P (x1je) over

the TBN.

Proof: Given a belief network BN = (G;P ) over the set of variables X =

fX1; :::;Xng, the task of updating the belief in X1 given evidence e is to �nd

P (x1je) = �
X

x2;:::;xn

Y

i

P (xijpai): (3.9)
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Figure 3.6: (a) A belief network, (b) a temporal transformation, and (c) a parent-

divorcing transformation.

Assuming causal independence, we can generate a transformed network TBN as dis-

cussed above. Let cij denote the parents of xi in G, and let uij and yik denote the

hidden variables associated with the family of xi in the TBN . Then each P (xijpai) in

(3.9) can be replaced by the corresponding expression (3.8) yielding

X

x2;:::;xn

Y

i

X

ui1;y
i
1

P 0(ejui1; y
i
1)P (u

i
1jc

i
1) : : :

X

uim�1;u
i
m

P 0(yim�2ju
i
m�1; u

i
m)P (u

i
m�1jc

i
m�1)P (u

i
mjc

i
m);

(3.10)

where P 0(xjy; z) are de�ned as P 0(xjy; z) = 1 if x = y � z, and 0 otherwise. Namely,

P (x1je) = �
X

X�fX1g

Y

i

P (xijpai) = �
X

x1;:::;xn

X

H

Y

z2Z

P (zjpa(z)); (3.11)

where H = U [ Y is the set of all the hidden variables U = fuijji = 1; :::; ng and

Y = fyilji = 1; :::; ng, contributed by causal independence and by binary computation

trees, respectively, and where Z = U [ Y [ X � fX1g is the set of variables in the

TBN. Thus, computing P (x1je) over BN (equation 3.9) is equivalent to computing

P (x1je) over TBN (equation 3.11), which concludes the proof. 2

The idea of network transformations was already proposed in [63] (\temporal trans-

formation") and [84] (\parent divorcing"). Our de�nition extends these approaches

by including of the uei variables associated with causal independence explicitly and

by avoiding any commitment to a particular binary computation tree. Temporal

transformations, for example, assume that causes are activated one after another
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at subsequent time points (thus the name \temporal"). Variables uei are not spec-

i�ed explicitly but rather \hidden" within the new CPTs. For example, given a

causally-independent network in Figure 3.6a, a possible temporal-transformation or-

der is y = ((uy1 � u
y
2) � u

y
3) � u

y
4 which yields

P (yjx1; x2; x3; x4) =
X

fuy
1
;uy
2
;uy
3
;uy
4
jy=uy

1
�uy

2
�uy

3
�uy

4
g

P (uy1jx1)P (u
y
2jx2)P (u

y
3jx3)P (u

y
4jx4) =

=
X

fy3;u
y
4 jy=y3�u

y
4g

X

fy2;u
y
3 jy3=y2�u

y
3g

X

fy1;u
y
2 jy2=y1�u

y
2g

P (y1jx1)P (u
y
2jx2)P (u

y
3jx3)P (u

y
4jx4) =

=
X

y3

X

fuy
4
jy=y3�u

y
4
g

P (uy4jx4)
X

y2

X

fuy
3
jy=y2�u

y
3
g

P (uy3jx3)
X

y1

X

fuy
2
jy2=y1�u

y
2
g

P (uy2jx2)P (y1jx1):

If we de�ne the new conditional probabilities for y1, y2, y3:

P (y1jx1) = P (uy1jx1);

P (y2jy1; x2) =
P

fuy2 jy2=y1�u
y
2g
P (uy2jx2);

P (y3jy2; x3) =
P

fuy3 jy3=y2�u
y
3g
P (uy3jx3);

P (yjy3; x4) =
P

fuy
4
jy=y3�u

y
4
g P (u

y
4jx4);

then we get

P (yjx1; x2; x3; x4) =
X

y3

P (yjy3; x4)
X

y2

P (y3jy2; x3)
X

y1

P (y2jy1; x2)P (y1jx1);

yielding the temporal transformation network in Figure 3.6b. The parent-divorcing

method [84], on the other hand, would use the order y = (uy1 � u
y
2) � (u

y
3 � u

y
4) which

yields the transformed network in Figure 3.6c.

Clearly, network transformations are not deterministic: there are many feasible

binary-tree transformation of each causally-independent family. As noted in [63],

some transformations yield better performance than others. Finding a transforma-

tion that allows the best performance is generally hard. However, generating any

particular transformation network is easy:

Theorem 13: [transformation complexity]

The complexity of transforming a causally-independent belief network BN into a

transformed network TBN and its size are O(nmd3), where n is the number of vari-

ables, m is the largest family size, and d is the domain size.
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Figure 3.7: (a) A belief network, (b) its dependence graph, and (c) its transformed

network.

Proof: For each causally-independent family having m parents, any of its binary-

tree transformations introduces no more than 2m hidden variables (the number of

nodes in a binary tree having m leaves). Consequently, there are no more than 2m

new CPTs, each de�ned on at most 3 variables, yielding O(md3) time and space com-

plexity. Since a TBN has O(nm) nodes and families of size at most 3, its speci�cation

requires O(nmd3) space. 2

The next section shows how belief updating on transformed networks yields com-

putational savings.

3.5 Belief updating in CI-networks

Once a transformed network is available, a standard inference technique such as join-

tree clustering or a variable-elimination algorithm can be applied. Algorithms that

exploit causal independence are called \causally-informed", while standard algorithms

ignoring this assumption are called \causally-blind". The next few paragraphs demon-

strate the application of elim-bel to the transformed network.

Example 8: Consider the noisy-OR network in Figure 3.7a. Causal independence is
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explicitly depicted by the dependence graph in Figure 3.7b. The query P (x3jx1 = 0)

can be computed as follows:

P (x3jx1 = 0) = �
X

z;y;x2;x1=0

P (z)P (x1jz)P (x2jz)P (x3jz)P (yjx1; x2; x3) =

�
X

z;y;x2;x1=0

P (z)P (x1jz)P (x2jz)P (x3jz)
X

fuy
1
;uy
2
;uy
3
jy=uy

1
_uy

2
_uy

3
g

P (uy1jx1)P (u
y
2jx2)P (u

y
3jx3):

Assuming now the transformed network in Figure 3.7c, we get

P (x3jx1 = 0) = �
X

z

X

y

X

x2

X

x1=0

P (z)P (x1jz)P (x2jz)P (x3jz)�

�
X

fy1;u
y
3
jy=y1_u

y
3
g

X

fuy
1
;uy
2
jy1=u

y
1
_uy

2
g

P (uy1jx1)P (u
y
2jx2)P (u

y
3jx3):

Pushing the summation over x1 and x2 as far to the right as possible yields

P (x3jx1 = 0) = �
X

z

P (z)P (x3jz)
X

y

X

fy1;u
y
3 jy=y1_u

y
3g

P (uy3jx3)�

�
X

fuy1 ;u
y
2 jy1=u

y
1_u

y
2g

X

x2

P (x2jz)P (u
y
2jx2)

X

x1=0

P (x1jz)P (u
y
1jx1) =

= �
X

z

P (z)P (x3jz)
X

y

X

y1

X

uy3

P 0(yjy1; u
y
3)P (u

y
3jx3)�

�
X

u
y
1

X

u
y
2

P 0(y1ju
y
1; u

y
2)
X

x2

P (x2jz)P (u
y
2jx2)

X

x1=0

P (x1jz)P (u
y
1jx1):

The last expression can be computed by summation from right to left along the

ordering o = (x3, z, y, y1, u
y
3, u

y
1, u

y
2, x2, x1) which indeed corresponds to applying

algorithm elim-bel to the transformed network in Figure 3.7c along ordering o as

follows:

1. Bucket x1 : fx1 = 0; P (x1jz); P (u
y
1jx1)g !

hx1(uy1; z) =
P

x1=0 P (x1jz)P (u
y
1jx1)! put into bucket of uy1.

2. Bucket x2: fP (x2jz); P (u
y
2jx2)g !

hx2(uy2; z) =
P

x2 P (x2jz)P (u
y
2jx2)! put into bucket of uy2.
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3. Bucket uy2: fh
x2(uy2; z); P

0(y1ju
y
1; u

y
2)g !

hu
y
2 (uy1; y1; z) =

P
uy
2
P 0(y1ju

y
1; u

y
2)h

x2(uy2; z)! put into bucket of uy1.

4. Bucket uy1: fh
x1(uy1; z); h

u
y
2 (uy1; y1; z)g !

hu
y
1 (y1; z) =

P
uy
1
hx1(uy1; z)h

uy
2 (uy1; y1; z)! put into bucket of y1.

5. Bucket uy3: fP (u
y
3jx3); P

0(yjy1; u
y
3)g !

hu
y
3 (y; y1; x3) =

P
uy
3
P (uy3jx3)P

0(yjy1; u
y
3)! put into bucket of y1.

6. Bucket y1: fhu
y
1 (y1; z); hu

y
3 (y; y1; x3)g !

hy1(y; z; x3) =
P

y1 h
uy1 (y1; z)h

uy3 (y; y1; x3)! put into bucket of y.

7. Bucket y: fhy1(y; z; x3)g !

hy(x3; z) =
P

y h
y1(y; z; x3)! put into bucket of z.

8. Bucket z: fP (z); P (x3jz); hy(x3; z)g !

hz(x3) =
P

z P (z)P (x3jz)h
y(x3; z)! put into bucket of x3.

9. Bucket x3: fhz(x3)g !

P (x3jx1 = 0) = �hz(x3); where � is a normalizing constant.

The complexity of the computation in each bucket is O(d3) since the arity of each

function in a bucket is not larger than 3. In contrast, the complexity of elim-bel

applied to the input belief network (Figure 3.7a) is O(nd4), where n is the number of

variables.

Algorithm ci-elim-bel(BN,e)

Input: A belief network BN = (G;P ), and evidence e.
Output: P (x1je).
1. Generate a transformed network TBN .
2. Return elim-bel(TBN,o,e), where o is some ordering of the TBN .

Figure 3.8: Algorithm ci-elim-bel
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The causally-informed algorithm ci-elim-bel that �rst generates a transformed

network and then applies algorithm elim-bel is presented in Figure 3.8.

3.5.1 Complexity analysis

This section makes a few observations regarding the performance gain when exploiting

causal independence for belief updating. Recall that GM denotes the moral graph

of a belief network BN = (G;P ), GT denotes the graph of a transformed network,

and GM
T denotes its moral graph. We will use \the induced width of the network"

as a shorthand for \the induced width of the network's graph". As an immediate

implication of theorems 11 and 13,

Corollary 3: [complexity of ci-elim-bel on a TBN]

Given a causally-independent belief network BN and a transformed network TBN,

the complexity of elim-bel on TBN and therefore the complexity of ci-elim-bel is

O(nmdw
�

o+1), where w�
o is the induced width of GM

T along o. 2

The question is how w�(GM
T ) which characterizes the performance of elim-bel

on a transformed network compares to w�(GM ) that determines the complexity of

elim-bel on the original network. We de�ne the e�ective induced width w�
e as w�

e =

minGT
w�(GM

T ). We next present several classes of causally-independent networks

that allow signi�cant reduction in the e�ective induced width.

Performance gains due to causal indpendence

Theorem 14: [polytrees]

Given a causally-independent poly-tree BN having n nodes, domains of size d, and

no more than m parents in each family, the complexity of ci-elim-bel on the BN is

O(nmd3).

Proof: Any transformed network of a polytree is a polytree having families of

size 3 or smaller. It therefore allows an ordering having w� = 2 (starting with query
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Figure 3.9: (a) A belief network, (b) its dependence graph, and (c) its moral trans-

formed network.

nodes). Therefore, the complexity of elim-bel on any TBN (and thus the complexity

of ci-elim-bel) is O(nmd3). 2

Theorem 14 generalizes Pearl's result for noisy-OR polytrees [89]. Remember

that the standard causally-blind polytree algorithm is exponential (namely, O(ndm))

in size of a largest parent set. The following example introduces another class of

multiply-connected causally-independent networks that allow linear complexity.

Example 9: [\Source-sink" networks]

The causally-independent network BN in Figure 3.9a has a \source" node z and \sink"

node y, and a middle layer of nodes x1,...,xn, such that there is an edge from z to

each xi, and from each xi to y. Given the transformed network in Figure 3.9c, and

the ordering o = (z; y; xn; :::; x2; x1) over the BN, the induced width w�
o(G) of the

original network's graph is 2. The reader can check that the induced width w�
o0(G

M
T )

of the moral transformed network along the ordering o0 = (z; y; yn�1; :::; y2; y1, u
y
1; u

y
2;

:::; uyn; x1; x2; :::; xn) is also 2. Note that the induced width w
�(GM ) of the moral BN

is n. Thus, while the causally-blind representation and the corresponding inference

algorithms require O(dn) time and space, exploiting causal independence reduces the
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Figure 3.10: (a) A k-2-network BN and (b) a moral graph of a transformed network

TBN.

complexity to O(nd3).

The examples above demonstrated that the e�ective induced width of a causally-

independent network can be as small as the induced width w�(G) of its (unmoral)

directed acyclic graph. The following result identi�es a general class of such networks.

Theorem 15: [best-case complexity]

If convergent variables (i.e. children in causally-independent families) in a network

BN = (G;P ) never have more than one common parent (e.g., Figure 3.9a, but not

3.10a), then for every transformed network TBN , w�(GM
T ) equals the induced width of

the (unmoral) graph G.

Proof: See Appendix B. 2

On the other hand, w�(G) is also a lower bound on the e�ective induced width:

Theorem 16: For every belief network BN = (G;P ), w�
e � w�(G).

Proof: Assume the opposite and let o be an ordering of some transformed network

yielding an induced width w = w�
o(G

M
T ), where w < w�(G). Then the restriction o0 of

o to the input nodes must have an induced width w0 = w�
o0(G) that is not larger than

w, thus leading to the contradiction: w�
o0(G) < w�(G), but w�(G) = minow

�
o(G). 2
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Thus, the best we can expect is that the e�ective induced width would equal the

induced width of the (unmoral) directed acyclic graph. Another example of net-

work structures that can greatly bene�t from exploiting causal independence are

k-n-networks.

Example 10: [k-n-networks]

Figure 3.10 depicts a k-n-network, which is a two-layer network with k nodes in the

top layer, each connected to n nodes in the bottom layer (here n = 2). An example is

a binary-node 2-layer noisy-OR (BN2O) network used in medical-diagnosis QMR-DT

system [90], where the top layer nodes, di, represent diseases that cause �ndings fj

in the bottom layer. Clearly, the induced width of the moral k-2-network in Figure

3.10a is at least k (the number of parents). Consider now the moral graph of the

transformed network in Figure 3.10b, along orderings where parents appear after

their children, such as o = (f1; f2; y1k�1; y
2
k�1; ... , y11, y

2
1, dk, ..., d1, u

1
1; :::; u

1
k; u

2
1;

:::; u2k). Each u1j for j > 1 has three preceding neighbors in o, dj , y1j�1, and y1j , thus

w�
o(u

1
j) = 3; eliminating u1j connects dj , y

1
j�1, and y

1
j . Similarly, for k > 1, w�

o(u
2
k) = 3

and eliminating each u2k connects dk, y
2
k�1, and y2k. Since d1 is now connected to y11

and y21, its induced width is 2, and eliminating d1 connects y11 and y12. Every di for

i � 2 is now connected to yi�11 , yi�12 , yi1, and yi2 in the induced graph of GM
T in Figure

3.10b, so that w�
o(di) = 4. Eliminating all di creates a chain of cliques of size 4 (each

de�ned on yi�11 , yi�12 , yi1, and yi2). Subsequently, w�
o(y

2
j ) = 3 and w�

o(y
1
j ) = 2 for

j = 1; :::; k � 1. It is easy to see that the induced width of the transformed network

along o is constant (w� = 4) rather than linear in k, yielding an exponential speed-up.

This example generalizes to an arbitrary k-n-network yielding w�
o(G

M
T ) = 2n along

any ordering o where parents appear after their children. It can be therefore shown

that

Theorem 17: [k-n-networks]

The complexity of algorithm ci-elim-bel applied to a causally-independent k-n-network

is O(dminfk;2ng).
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Figure 3.11: (a) A 2-3 network and (b) its transformed network.

Proof: See Appendix B. 2

Therefore, when k > 2n, exploiting causal independence can exponentially de-

crease the complexty of belief updating, while for k � 2n causally-blind algorithms

(yielding w� = k) are best.

Some pitfalls of network transformations

All the previous examples exploited causal independence by processing parents in a

family before their hidden variables. However, this ordering is not always good. Some-

times it is best to ignore causal independence and reconstruct some of the original

CPTs by eliminating the hidden variables �rst.

Example 11: Consider the 2-3-network in Figure 3.11a, the transformed network

TBN in Figure 3.11b, and the ordering o = (a; b; c, uc1, u
c
2, u

b
1, u

b
2, u

a
1, u

a
2, x1, x2).

Eliminating each parent xi interconnects uai ; u
b
i ; and uci ; eliminating ua2 , and then ua1,

connects a to the rest of the hidden variables. As a result, w�
o(TBN) = 5. However, the

induced width of the original moral graph (Figure 3.11a) along a restricted ordering

o0 = (a, b, c, x1, x2), is just 3. Indeed, a di�erent ordering of the transformed

network where the hidden variables are eliminated �rst has also induced width of 3.

This ordering, however, restores the original CPTs. In other words, for an arbitrary

k-n-network, restoring the original CPTs yielding the e�ective induced width k is

preferrable when k < 2n (see theorem 17). As we can see, careless use of causal
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independence (namely, selecting a bad ordering of the transformed network) may

actually increase the complexity of inference.

It can be shown that, although a transformed network includes new (hidden)

nodes, no new edges are induced between the input nodes:

Theorem 18: [w� on the input variables]

Given a causally-independent belief network BN = (G;P ) having induced width

w�
o(G) along o, and given a transformed network TBN, there exists an extension of

o to o0 such that the induced width of the input variables in TBN along o0, computed

only with respect to the edges induced between the input variables, is not larger than

w�
o(G).

Proof: See the Appendix B. 2

Therefore, the e�ective induced width may increase only because of new induced

edges connected to at least one hidden node; thus we focus on a proper ordering of

hidden nodes. Figure 3.12 presents an \order-correction" procedure for constructing

an appropriate ordering of the hidden variables which guarantees that ci-elim-bel is

never worse than the causally-blind algorithm. The procedure starts with some initial

ordering of the transformed network and then, if necessary, restores some CPTs, so

that the w�
e is never larger than the w�(GM ). In summary,

Corollary 4: Given a belief network BN = (G;P ), then for every transformed

network TBN = (GT ; P; P
0) the induced width w�(GM

T ) satis�es

w�(G) � w�(GM
T ) � w�(GM ):

3.5.2 The connection between previous approaches

We next identify ordering restrictions that reduce ci-elim-bel to the previously pro-

posed network transformation approaches of [63, 84] and to the variable-elimination

algorithm VE1 [114].
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Procedure: Order(BN, TBN)

Input: a network BN, and a transformed network TBN .
Output: an ordering oT of TBN s.t. w�

oT
� w�

oI
,

where w�
oI

is the restriction of oT to the variables of BN.
1. �nd a good heuristic ordering oT of the transformed network.

Let oI be the restriction of oT to BN.
2. For each variable x in oT , going from last to �rst,

If w�
oT
(x) > w�

oI
:

If x is an input variable, move all hidden variables yxi
related to x to the top of oT .
Else if x = yzi is a hidden variable of some convergent variable z,
put all z's hidden variables at the top of oT .

3. Return oT .

Figure 3.12: Procedure order.

Temporal transformations and parent-divorcing

As noted in section 3.3, the only di�erence between our notion of binary-tree network

transformations and the previously proposed transformations (temporal [63] and par-

ent divorcing [84]) is that we explicitly specify the variables uei contributed by causal

independence. Let us denote by TTBN and PDBN an arbitrary temporal transforma-

tion and a parent-divorcing transformation of a belief network BN, respectively, while

GM
TT and GM

PD denote their moral graphs. Clearly, there is a one-to-one correspon-

dence between TTBN or PDBN and the binary-tree transformation TBN obtained by

inserting the additional layer of hidden nodes uei into each family of TTBN or PDBN .

Proposition 1: [ordering restrictions of network transformations]

Given a belief network BN, applying elim-bel to TTBN or to PDBN along o is equiva-

lent to applying elim-bel to the corresponding transformed network TBN along ordering

o0 = (o; u), where u is some ordering of the hidden variable uxi . 2

Theorem 19: [w� of TTBN and PDBN ]

Given a TTBN (respectively, a PDBN), and its corresponding TBN, then for any
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ordering o w�
o(G

M
TT ) = w�

o0(G
M
T ) (respectively, w�

o(G
M
PD) = w�

o0(G
M
T )) where o0 = (o; u)

extends o to TBN and u is some ordering of the hidden variable uxi .

Proof: Since variables uei in TBN are not connected to each other, and are con-

nected to exactly two other variables, and since they appear last in the ordering

(eliminated �rst), the width and the induced width of each uei is 2 (see Figure 3.5c),

which does not exceed w�
o(TTBN). Same holds for PDBN . 2

Algorithm VE1

A variable-elimination belief-updating algorithm VE1 for causally-independent net-

works [114] was derived directly from the factorization of the joint probability distri-

bution (expression 3.6). The algorithm takes as an input a causally-independent belief

network and an ordering of the input variables. The hidden variables are eliminated

implicitly using an operator 
 [114].

Remember that the child in a causally-independent family is called a convergent

variable. The operator 
 is de�ned on two functions f and g as follows [114]:

f 
 g(e1 = �1; :::; ek = �k ; Y ) =

X

f�1
1
;�2

1
j�1

1
��2

1
=�1g

:::
X

f�1
k
;�2

k
j�1

k
��2

k
=�kg

f(e1 = �11; :::; ek = �1k ; Y1) � g(e1 = �21; :::; ek = �2k ; Y2);

where e1; :::; ek are convergent variables that appear both in f and g, and Y = Y1[Y2

is the set of all the other variables appearing as arguments of f and g.

We now rederive VE1 for a network in Figure 3.11a. Assume that the task is to

�nd the belief in c in the absence of evidence (i.e., to �nd the marginal P (c)). Using

notation f i(e; ci) = P (uei ; ci) and the operator 
, the expression for P (c) is

X

b

X

a

X

fua
1
;ua
2
ja=ua

1
_ua

2
g

X

fub
1
;ub
2
jb=ub

1
_ub

2
g

X

fuc
1
;uc
2
jc=uc

1
_uc

2
g

X

x2

P (ua2jx2)P (u
b
x2
jx2)P (u

c
x2
jx2)�

�
X

x1

P (ua1jx1)P (u
b
2jx2)P (u

c
1jx1) = (3.12)

X

b

X

a

X

fua1 ;u
a
2 ja=u

a
1_u

a
2g

X

fub1;u
b
2jb=u

b
1_u

b
2g

X

fuc1;u
c
2jc=u

c
1_u

c
2g

f(ua2; u
b
x2
; ucx2)g(u

a
1; u

b
2; u

c
1) (3.13)
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can be written as follows:

P (c) =
X

b

X

a

(
X

x2

f2a (a; x2)f
2
b (b; x2)f

2
c (c; x2))
 (

X

x1

f1a (a; x1)f
1
b (b; x1)f

1
c (c; x1)):

(3.14)

VE1 computes this expression from right to left along a given ordering of the

input variables, and can be written as a bucket-elimination algorithm, where hidden

variables are eliminated implicitly inside the buckets of input variables. In each

bucket, VE1 applies the operator 
 to the appropriate functions �rst, and then sums

over the bucket's variable:

1. Bucket x1 : ff1a (a; x1); f
1
b (b; x1); f

1
c (c; x1)g !

hx1(a; b; c) =
P

x1=0 f
1
a (a; x1)f

1
b (b; x2)f

1
c (c; x1)! put in bucket of a.

2. Bucket x2 : ff1a (a; x2); f
2
b (b; x2); f

2
c (c; x2)g !

hx2(a; b; c) =
P

x1=0 f
2
a (a; x2)f

2
b (b; x2)f

2
c (c; x2)! put in bucket of a.

3. Bucket a : fhx1(a; b; c); hx2(a; b; c)g !

3.1. h(a; b; c) = hx1(a; b; c)
 hx2(a; b; c)

3.2. ha(b; c) =
P

a h(a; b; c)! put in bucket of b.

4. Bucket b : fh(a; b; c)g ! hb(c) =
P

b h
a(b; c)! put in bucket of c.

5. Bucket c : fhb(c)g ! P (c) = �hb(c); where � is a normalizing constant.

The computations above can be viewed as applying elim-bel to the transformed

network in Figure 3.11b along o0 that agrees with o = ( c; b; a; x2; x1) on the input

nodes and satis�es in addition certain constraints imposed by operator 
 (to be

discussed shortly). In our example the appropriate ordering o0 = (c; b; a; ucx1; u
c
x2
;

ubx1; u
b
x2
; uax1; u

a
x2
; x1, x2) is used (note that the operation hx1(a; b; c)
 hx2(a; b; c) in

step 3.1 is equivalent to summing over fuc1; u
c
2g; fu

b
1; u

b
2g; and fu

a
1; u

a
2g).

The implicit ordering restrictions of VE1 may sometimes worsen the algorithm's

performance. In the example above, the complexity of VE1 along o = (c; b; a; x1; x2)
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is O(d6) since in expression 3.13 the operator 
 computes a product of two functions

f and g de�ned on 6 variables (the resulting function corresponds to a clique on 6

hidden variables in the induced graph of the transformed network). On the other

hand, elim-bel applied along another ordering (c; b; a; x1; x2, ucx1; u
c
x2
; ubx1; u

b
x2
; uax1;

uax2) �rst restores the original CPTs P (ajx1; x2), P (bjx1; x2), and P (cjx1; x2) yielding

O(d5) complexity. Since VE1 is unable to eliminate hidden variables independently of

input variables (e.g., ua1 and ua2 cannot be eliminated before x1 and x2), it is inferior

to elim-bel. Formally,

Theorem 20: [ordering restrictions of VE1]

Given a belief network BN = (G;P ) and its ordering o, there exists a TBN =

(GT ; P; P
0) such that VE1 along o is equivalent to elim-bel applied to TBN along o0

satisfying the following conditions: 1. o0 agrees with o on input nodes; 2. a hidden

node u in the TBN appear in o0 before (is eliminated after) some input node x connected

to u in the induced graph of GT along o0; 3. o0 must agree with a depth-�rst traversal

order of the binary-tree of each family F .

Proof: The sequence of VE1's computations corresponds to variable-elimination

in some transformed network TBN. VE1 operates over the input variables; hidden

variables are eliminated implicitly using operator 
 within the buckets of the input

variables (in each bucket, 
 is applied �rst, then the bucket's variable is summed

out). Therefore, the ordering of the input variables is preserved, i.e. condition 1 is

satis�ed. Condition 2 is also obvious: to be eliminated by 
, a hidden variable umust

appear in the bucket of some input node x; this can happen only if u and x appear

as arguments of same function, either originally de�ned in the transformed network

TBN, or recorded by VE1. In both cases, u and x must be connected in the induced

graph of TBN. Finally, condition 3 follows from the de�nition of the operator 
. It

is easy to see that using 
 dynamically constructs a binary computation tree and its

traversal ordering, since each summation
P

fyl;ykjy=yl�ykg eliminates a pair (yl; yk) of

hidden variables and \creates" a new hidden variable y. This implies a depth-�rst
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traversal order of the emerging binary computation tree. 2

3.5.3 Summary

The impact of causal independence on belief updating can be summarized as follows:

1. The two belief-updating schemes exploiting causal independence, such as net-

work transformations [63, 84], and algorithm VE1 [114], can be viewed as ap-

plying algorithm ci-elim-bel along a speci�c variable ordering of a transformed

network.

2. On polytrees, causally-informed algorithms can decrease the complexity of in-

ference from O(Ndm) to O(Nmd3), where N is the number of nodes in the

polytree, d is the domain size, and m bounds the parent set size.

3. Exploiting causal independence is most e�ective when w�(GM
T ) = w�(G).

4. Exploiting causal independence in k-n-networks yields O(dminfk;2ng) complexity

resulting in exponential savings when k > 2n.

5. Algorithm ci-elim-bel may be sometimes worse than elim-bel unless the order-

ing is carefully chosen. An ordering-correction procedure that avoids \bad"

orderings was presented.

6. Due to its ordering restrictions, VE1 cannot use the ordering-correction proce-

dure and may sometimes be exponentially worse than ci-elim-bel.

3.6 Optimization tasks: MPE, MAP, and MEU

In optimization problems, it is not always possible to take advantage of causal inde-

pendence since maximization and summation cannot be permuted, namely:

max
x

X

y

f(x; y) 6=
X

y

max
x

f(x; y):
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This restriction may not allow orderings that exploits CPT decomposition.

Consider the task of �nding a most probable explanation (MPE):

MPE = max
x1;:::;xN

Y

i

P (xijpai) = max
x1

F1 : : :max
xN

FN ;

where Fi =
Q
x P (xjpa(x)) is the product of all probabilistic components such that

either x = xi, or xi 2 pa(x). The bucket elimination algorithm elim-mpe sequentially

eliminates xi from right to left. For example, given the causally-independent family

in Figure 3.5a, having 3 parents c1, c2 and c3,

MPE = max
c1;c2;c3;e

P (c1)P (c2)P (c3)P (ejc1; c2; c3) =

= max
c1

P (c1)max
c2

P (c2)max
c3

P (c3)max
e

X

fy1;u
e
1je=y1�u

e
1g

P (ue1jc1)�

�
X

fue
2
;ue
3
jy1=ue2�u

e
3
g

P (ue2jc2)P (u
e
3jc3):

While belief updating task uses only the commutative and associative summation

operation, the MPE task involves both maximization and summation that cannot be

permuted. Therefore, the hidden variables must be summed out before maximizing

over c1, c2, and c3. This reconstructs the CPT on the whole family, so that causal

independence has no e�ect.

Nevertheless, the two other optimization tasks, MAP and MEU, can still bene�t

from causal independence, because they involve summation over a subset of the input

variables which can be permuted with summations over the hidden variables. By

de�nition,

MAP = max
x1;:::;xm

X

xm+1;:::;xN

Y

i

P (xijpai);

where X1; :::;Xk are the hypothesis variables. For example, given the network in

Figure 3.5a and hypothesis e,

MAP = max
e

X

c1;c2;c3

P (c1)P (c2)P (c3)P (ejc1; c2; c3):
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Decomposing the causally-independent P (ejc1; c2; c3) and rearranging the summa-

tion order yields:

max
e

X

c1

P (c1)
X

c2

P (c2)
X

c3

P (c3)
X

fy1;ue1je=y1�u
e
1
g

P (ue1jc1)
X

fue
2
;ue
3
jy1=ue2�u

e
3
g

P (ue2jc2)P (u
e
3jc3) =

= max
e

X

fy1;u
e
1
je=y1�u

e
1
g

X

fue
2
;ue
3
jy1=u

e
2
�ue

3
g

X

c1

P (c1)P (u
e
1jc1)

X

c2

P (c2)P (u
e
2jc2)

X

c3

P (c3)P (u
e
3jc3):

Clearly, the summations over the parents ci and the corresponding hidden variables

can be permuted. In general, a decomposition of the CPTs due to causal independence

can be exploited when (at least some) parents in the causally-independent family

are not included in the hypothesis. Clearly, the MAP task de�ned on a causally-

independent network can be formulated as the same task on a transformed network,

where the set of hypothesis variables remains the same.

Algorithm ci-elim-map is shown in Figure 3.13. Given a belief network BN, the

algorithm �rst computes a transformed network TBN where the families having a hy-

pothesis variable as a child are not transformed. Then variable-elimination algorithm

elim-map[23] for �nding MAP is applied to the TBN along an ordering o that starts

with the hypothesis variables.

Algorithm ci-elim-map(BN,e,H)

Input: A belief network BN = (G;P ), and evidence e,
and a subset of hypothesis variables H � X .
Output: An assignment h = argmaxa P (H = aje):
1. Compute a TBN s.t. the families where the child is
a hypothesis variable are not transformed.
2. Return elim-map(TBN,o,e,H), where o is an ordering
of TBN starting with the variables in H .

Figure 3.13: Algorithm ci-elim-map

Similarly to MAP, computing MEU requires summation over a subset of the vari-

ables and maximization over the rest of them. By de�nition,

MEU = max
x1;:::;xm

X

xm+1;:::;xN

Y

i

P (xijpai)U(x1; :::; xN);
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Figure 3.14: (a) a causally-independent belief network and (b) its transformed graph.

where x1; :::; xm are decision variables (usually denoted d1; :::; dm), xm+1; :::; xN are

chance variables, and U(x1; :::; xN) is a utility function. The utility is often assumed

to be decomposable: U(x1; :::; xN) =
P
r(xi), where r(xi) are individual utilities, or

rewards. A belief network with decision nodes and a utility function is also called an

in
uence diagram.

A bucket elimination algorithm elim-meu for computing the MEU was presented

in [23]. It makes a simplifying assumption that the decision variables have no parents,

and they can be placed at the beginning of the ordering. We will now show how causal

independence can be exploited using the following example.

Assume that c1 in Figure 3.14a is a decision variable (denote d = c1), and that

the utility function is decomposable, U(d; e; c2; c3) = r(d)+ r(e)+ r(c2)+ r(c3). Then

MEU = max
d

X

e;c2;c3

P (c2)P (c3)P (ejd; c2; c3)U(d; e; c2; c3):

Decomposing P (ejd; c2; c3) into pairwise sums according to some binary-tree trans-

formation yields:

max
d

X

e;c2;c3

P (c2)P (c3)
X

fy1 ;ue1je=y1�u
e
1
g

P (ue1jd)
X

fue
2
;ue
3
jy1=ue2�u

e
3
g

P (ue2jc2)P (u
e
3jc3)U(d; e; c2; c3):

Pushing the summations over c2 and c3 to the right and decomposing the sums over
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the pairs of hidden variables using new CPTs P 0(xjy; z) yields

max
d

X

e

X

y1

X

ue
1

P 0(ejy1; u
e
1)P (u

e
1jd)
X

ue
2

X

ue
3

P 0(y1ju
e
2; u

e
3)
X

c2

P (c2)P (u
e
2jc2)�

�
X

c3

P (c3)P (u
e
3jc3)U(d; e; c2; c3);

where P 0(ejy1; ue1) = 1 if e = y1�ue1 and 0 otherwise, and P
0(y1jue2; u

e
3) = 1 if y1 = ue2�u

e
3

and 0 otherwise. Using decomposability of the utility function, the summation over

c3 can be written as

X

c3

P (c3)P (u
e
3jc3)[r(d) + r(e) + r(c2) + r(c3)] =

= [
X

c3

P (c3)P (u
e
3jc3)](r(d) + r(e) + r(c2)) +

X

c3

P (c3)P (u
e
3jc3)r(c3) =

= [
X

c3

P (c3)P (u
e
3jc3)][r(d) + r(e) + r(c2) +

P
c3 P (c3)P (u

e
3jc3)r(c3)P

c3 P (c3)P (u
e
3jc3)

] =

= �c3(ue3)[r(d) + r(e) + r(c2) + �c3(ue3)];

where

�c3(ue3) =
X

c3

P (c3)P (u
e
3jc3); �

c3(ue3) =
�c3(u

e
3)

�c3(ue3)
; and �c3(ue3) =

X

c3

P (c3)P (u
e
3jc3)r(c3):

The next summation (over c2) can be computed similarly, and so is the next one over

c1.

Algorithm ci-elim-meu for computing MEU in causally-independent networks is

shown in Figure 3.15. Since causal independence is not de�ned for decision nodes,

the transformed network transforms only the families of chance nodes. As with ci-

elim-bel and ci-elim-map, ci-elim-meu �rst selects a transformed network TBN. Then

elim-meu [23] is applied along some ordering o that starts with the decision nodes.

This algorithm partitions into buckets all the network components (including the

utility components). Then it processes chance nodes, from last to �rst, computing

the new �- and �-functions. Finally, the buckets of the decision nodes are processed

by maximization and an optimal assignment to those nodes is generated.
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Algorithm ci-elim-meu(BN,U, e)

Input: A belief network BN = (G;P ), a decomposed utility
function U = fr1(x1); :::; rn(xn)g, and evidence e.
Output: An assignment d to the set of decision variables D
that maximizes the expected utility.
1. Compute a TBN (transform only families of chance nodes).
2. Return elim-meu(TBN,U,o,e), where o is an ordering
of TBN starting with the decision nodes.

Figure 3.15: Algorithm ci-elim-meu

A trace of elim-meu [23] applied to the transformed network in Figure 3.14b along

o = (d, e, y1, ue1, u
e
2, u

e
3, c2, c3) is shown below. In each bucket we will have probability

components �i and utility components �j . We compute a new pair of � and � in each

bucket, as demonstrated below, and place them in the appropriate lower buckets:

1. Bucket c3 : fP (c3); P (ue3jc3); r(c3)g !

�c3(ue3) =
P

c3 P (c3)P (u
e
3jc3);

�c3(ue3) =
�c3 (u

e
3)

�c3(ue3)
;

where �c3(ue3) =
P

c3 P (c3)P (u
e
3jc3)r(c3). Put �

c3(ue3) and �c3(ue3) into bucket of

ue3.

2. Bucket c2 : fP (c2); P (ue2jc2); r(c2)g !

�c2(ue2) =
P

c2 P (c2)P (u
e
2jc2);

�c2(ue2) =
�c2 (u

e
2)

�c2(ue2)
;

where �c2(ue2) =
P

c2 P (c2)P (u
e
2jc2)r(c2). Put �

c2(ue2) and �c2(ue2) into bucket of

ue2.

3. Bucket ue3 : fP
0(y1jue2; u

e
3); �

c3(ue3); �
c3(ue3)g !

�u
e
3(y1; ue2) =

P
ue
3
P 0(y1jue2; u

e
3)�

c3 (ue3),

�u
e
3(y1; ue2) =

�ue
3
(y1;ue2)

�
ue
3 (y1;ue2)

;

where �u
e
3(y1; ue2) =

P
ue3
P 0(y1jue2; u

e
3)�

c3(ue3)�
c3(ue3): Put �

ue
3(y1; ue2) and �

ue3(y1; ue2)

into bucket of ue2.
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4. Bucket ue2 : f�
ue
3(y1; ue2); �

ue
3(y1; ue2)g !

�u
e
2(y1) =

P
ue
2
�u

e
3(ue2),

�u
e
2(y1) =

�ue
2
(y1)

�
ue
2(y1)

, where �u
e
2(y1) =

P
ue
2
�u

e
3(y1; ue2)�

ue
3(y1; ue2): Put �

ue
2 (y1) and

�u
e
2(y1) into bucket of y1.

5. Bucket ue1 : fP (u
e
1jd); P

0(ejy1; ue1)g !

�u
e
1(y1; d; e) =

P
ue1
P (ue1jd)P

0(ejy1; ue1): Put �
ue
1(y1; d; e) into bucket of y1.

6. Bucket y1 : f�u
e
1(y1; d; e); �u

e
2(y1); �u

e
2(y1)g !

�y1(d; e) =
P

y1 �
ue1 (y1; d; e)�

ue2(y1),

�y1(d; e) =
�y1 (d;e)

�y1(d;e)
, where �y1(d; e) =

P
y1 �

ue1(y1; d; e)�u
e
2(y1)�u

e
2(y1): Put �y1(d; e)

and �y1(d; e) in the bucket of e.

7. Bucket e : f�y1(d; e); �y1(d; e)g !

�e(d) =
P

e �
y1 (d; e),

�e(d) = �e(d)
�e(d)

, where �e(d) =
P

e �
y1 (d; e)�y1(d; e): Put �e(d) and �e(d) in the

bucket of d.

8. Bucket d : fr(d); �e(d); �e(d)g !

MEU = maxd �e(d)[r(d) + �e(d)];

dmax = arg maxd �e(d)[r(d) + �e(d)]:

Return MEU and dmax.

Theorem 21: The complexity of ci-elim-map and ci-elim-meu is O(Nmdw
�

o+1),

where w�
o is the e�ective induced width along ordering o. 2

For each algorithm, the transformed graph GT can be inspected a priori to deter-

mine the bene�ts of causal independence.
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3.7 Exploiting evidence in CI-networks

Causal independence o�ers additional bene�ts in the presence of evidence. In some

cases (e.g., for noisy-OR and noisy-AND CPTs) this may lead to exponential perfor-

mance improvement.

Recall that the speci�cation of a causally-independent CPT includes deterministic

conditional probabilities, or functional constraints, of the form y = y1 � ::: � yn. An

observation of y imposes additional constraints on the hidden variables yi. For exam-

ple, if the operation � is logical AND, then y = y1^ : : : ^yn and evidence y = 1 imply

yi = 1, for i = 1; :::; n. Similarly, in the case of logical OR, observation y = 0 implies

yi = 0, for i = 1; :::; n. Another example: given that all variables are integers from

0 to 10, and given that y = y1 + :::+ yn, an observation y = 2 imposes a constraint

y1+ :::+ yn = 2 which restricts the domain of each yi to f0; 1; 2g, and rules out some

of the remaining combinations of yi. The examples above demonstrate the feasibility

of constraint propagation known as enforcing relational arc-consistency [37] (see Ap-

pendix B for more details). We will focus on a special case when an observation of y

implies a single value of each yi (as is the case for noisy-OR and noisy-AND), namely

on evidence propagation.

The procedure Propagate evidence is presented in Figure 3.16. Given a belief

network that includes deterministic (constraints), and a set of observations e, the

procedure processes constraints that includes an observed variable, deducing as many

new observations as possible, until no new observations can be deduced. This pro-

cedure parallels arc-consistency [78, 43, 22] in binary constraint networks, or unit

propagation in propositional theories [19].

3.7.1 Noisy-OR networks

In this section we focus on evidence propagation in noisy-OR networks, a particular

class of causally-independent networks. The algorithms discussed below exploit the

fact that, given z = x _ y, an observation z = 0 implies x = 0 and y = 0. In
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Propagate evidence(D; e)

Input: A belief network (G;P ), where P includes
deterministic CPTs (constraints), and evidence e = f(xi = ai)ji = 1; :::; kg.
Output: Extended set of observations e0.
1. Initialization: e0  e

2. While e0 is not empty, let (x = a) 2 e0,
e0  e0 � f(x = a)g
for each constraint C that includes x

if C and x = a imply y = b /* y is a variable in C */
e0  e0 [ (y = b)

3. Return e0.

Figure 3.16: Procedure Propagate evidence

some cases, this leads to an exponential speed-up in inference. The algorithms can be

generalized for any operator � having the property that given z = x�y, an observation

z = a implies singleton assignments x = b and y = c. As mentioned before, logical

AND has this property. Another examples are the operations MAX and +, when a

is the minimal value in the domain of the variables.

Consider as an example the class of Binary-Node 2-layer Noisy-OR (BN2O) net-

works used in the QMR-DT medical database [90]. A fully-connected BN2O net-

work with k diseases and n �ndings is a k-n-network, where the top-layer nodes di,

i = 1; :::; k, represent diseases, and the bottom-layer nodes fj, j = 1; :::; n represent

�ndings (see Figure 3.17a). The assignment fi = 0 is a negative �nding, while the

assignment fi = 1 is a positive �nding.

The complexity of inference in a fully-connected BN2O network using algorithm

ci-elim-bel is O(exp(minfk; 2ng)) (theorem 17). This complexity may be reduced by

evidence propagation, especially in the presence of negative observations.

Example 12: Consider a BN2O network in Figure 3.17a and its transformed net-

work in Figure 3.17b. Assume the query P (d1jf1 = 0; f2 = 0). Evidence propagation

in the transformed network assigns the value 0 to the nodes y1, u
1
3, y2, and u23, and,

consequently, to the nodes u11, u
1
2, u

2
1, and u22. Since all instantiated variables are
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Figure 3.17: (a) A BN2O network; (b) its transformed network.

processed �rst, the rest of the variables can be processed by elim-bel as follows:

1. Bucket d3:fP (u31 = 0jd3); P (u32 = 0jd3)g !

hd3 =
P

d3 P (u
3
1 = 0jd3)P (u32 = 0jd3) is a constant.

2. Bucket d2:fP (u21 = 0jd2); P (u22 = 0jd2)g !

hd2 =
P

d2 P (u
2
1 = 0jd2)P (u

2
2 = 0jd3) is a constant.

3. Bucket d1: fP (u11 = 0jd1); P (u12 = 0jd1)g !

P (d1je) = �P (u11 = 0jd1)P (u12 = 0jd1), where � is a normalization constant.

Note that normalization in bucket d1 makes computing the constants in the buckets

of d3 and d2 unnecessary. Thus, the complexity is linear in the number of hidden

variables u1i , which equals the number of �ndings. On the other hand, the complexity

of elim-bel applied to the original network is (at least) exponential in the number of

diseases, since they form a clique in the moral graph.

The e�ect of negative evidence propagation on the complexity of ci-elim-bel is

summarized in the following theorem:

Theorem 22: Given a BN2O network BN having k diseases, n �ndings, and evi-

dence e that consists of p positive and (n�p) negative �ndings, applying algorithm ci-

elim-bel augmented with Propagate evidence on the transformed network TBN takes
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O(2minfk;2pg) time and space.

Proof: Evidence propagation assigns 0 to all hidden variables associated with

negative �ndings in a transformed network. Assume that those hidden variables are

last in the ordering. Namely, for each fi = 0, the algorithm replaces uij by 0 in each

component P (dj juij). As mentioned before, instantiating a variable in a (moral) belief

network is equivalent to removing it from the network. Therefore, all negative �ndings

and their corresponding hidden variables can be now removed from the transformed

network, leaving only positive �ndings in the lower layer. The result is a k-p-network,

which yields the complexity of O(2minfk;2pg). 2

3.7.2 Quickscore algorithm: an overview

In this section, we review algorithm Quickscore [60] for BN2O networks, which has

better complexity bound for BN2O than ci-elim-bel achieves even when augmented

by evidence propagation. Subsequently, we extend Quickscore to general noisy-OR

networks.

As shown in [60], Quickscore takes O(2p) time, where p is the number of positive

�ndings in a BN2O network. Note that for k < p ci-elim-bel is superior and takes

O(2k) time assuming that fi nodes are processed �rst. Therefore, an algorithm for

inference in BN2O networks should incorporate both approaches:

1. if k < p, run ci-elim-bel;

2. otherwise, run Quickscore.

The complexity of this modi�ed scheme is O(2minfk;pg), which is better than the

complexity O(2minfk;2pg) of ci-elim-bel augmented by Propagate evidence.

Generally, a variable elimination algorithm decomposes the sum in the equation

(3.2) into a product of linear number of functions, where computing each function

is exponential in the number of its arguments. Alternatively, Quickscore algorithm

decomposes the sum into exponential number of summands, each computed in linear

time. Following [60], we next rederive algorithm Quickscore.
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Consider a BN2O network for k diseases and n �ndings, where p �ndings are

positive and the rest of them are negative. Let F+ denote the set of positive �ndings,

and let F� denote the set of negative �ndings. Then

P (d1jF
+; F�) = �

X

d2;:::;dk

kY

i=1

P (di)
Y

fj2F�

P (fj = 0jd1; :::; dk)
Y

fl2F+

P (fl = 1jd1; :::; dk) =

= �
X

d2;:::;dk

kY

i=1

P (di)P
�P+; (3.15)

where � is a normalization constant, and where

P� =
Y

fj2F�

P (fj = 0jd1; :::; dk) =
Y

fj2F�

kY

i=1

P (uji = 0jdi); (3.16)

and

P+ =
Y

fl2F+

P (fl = 1jd1; :::; dk) =
Y

fl2F+

(1�
kY

i=1

P (uli = 0jdi)) =

=
X

F 022F+

(�1)jF
0j
Y

fl2F 0

kY

i=1

P (uli = 0jdi): (3.17)

The notation 2S is a shorthand for the power set of S, i.e. the set of all possible

subsets of S. Then

P� � P+ =
X

F 022F+

(�1)jF
0j

kY

i=1

Y

fj2F 0[F�

P (uji = 0jdi); (3.18)

and, consequently,

P (d1jF
+; F�) = �

X

d2;:::;dk

kY

i=1

P (di)P
�P+ =

�
X

F 022F+

(�1)jF
0j
X

d2;:::;dk

kY

i=1

[P (di)
Y

fj2F 0[F�

P (uji = 0jdi)] =

= �
X

F 022F+

(�1)jF
0j

kY

i=1

X

di

[P (di)
Y

fj2F 0[F�

P (uji = 0jdi)]: (3.19)

117



Computing each component

P (di)
Y

fj2F 0[F�

P (uji = 0jdi)

is linear in jF 0 [ F�j � n, so that computing each

kY

i=1

X

di

[P (di)
Y

fj2F 0[F�

P (uji = 0jdi)] (3.20)

is O(kn) and the total complexity of computing P (d1jF+; F�) is O(kn2p), since
P

di

introduces only a constant factor equal to the maximum domain size of di, and since

the outer sum
P

F 022F+ has 2jF
+j = 2p summands.

Now recall that O(22p) complexity of ci-elim-bel (theorem 22 for k > 2p) is the

result of performing O(p) quadratic operations over the pairs of hidden variables that

correspond to p positive evidence nodes (the details are given in the proof of the

theorem 17). On the other hand, Quickscore requires only O(2p) time since it does

not have hidden variables, but performs 2p summations. In the next section, we

generalize the formula used by Quickscore to the case of arbitrary noisy-OR networks

and incorporate it into algorithm NOR-elim-bel.

3.7.3 Algorithm NOR-elim-bel

Assume a noisy-OR network de�ned on n nodes x1,...,xn, where the �rst k nodes

are not observed. The next p nodes are positive �ndings F+ = fxk+1; :::; xk+pg, and

the rest of the nodes are negative �ndings F� = fxk+p+1; :::; xng. As usual, � is a

normalization constant, uij denotes a hidden variable associated with node xi and its

j-th parent, and 2S denotes the power set of S. Then P (x1je), where e = F� [ F+,

can be computed as

P (x1je) = �
X

x2:::xk

PP�P+;

where

P =
kY

i=1

P (xijpa(xi));
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P� =
Y

xj2F�

P (xj = 0jpa(xj)) =
Y

xj2F�

Y

xm2pa(xj)

P (ujm = 0jxm);

and

P+ =
Y

xl2F+

P (xl = 1jpa(xl)) =
Y

xl2F+

(1�
Y

xq2pa(xl)

P (ulq = 0jxq)) =

=
X

F 022F
+

(�1)jF
0j
Y

xl2F 0

Y

xq2pa(xl)

P (ulq = 0jxq) =
X

F 022F
+

(�1)jF
0jP 0;

and where

P 0 =
Y

xl2F 0

Y

xq2pa(xl)

P (ulq = 0jxq):

The �rst two terms, P and P�, can be moved inside the summation
P

F 022F+ in

the last term, P+. Also, the summation
P

x2:::xk
can be performed after

P
F 022F+ ,

namely:

P (x1je) = �
X

x2:::xk

PP�
X

F 022F+

(�1)jF
0jP 0 = �

X

F 022F+

(�1)jF
0j
X

x2:::xk

PP�P 0 =

= �
X

F 022F+

(�1)jF
0jPF 0 ;

where

PF 0 =
X

x2:::xk

PP�P 0 =

=
X

x2:::xk

kY

i=1

P (xijpa(xi))[
Y

xj2F�

Y

xm2pa(xj)

P (ujm = 0jxm)][
Y

xl2F 0

Y

xq2pa(xl)

P (ulq = 0jxq)] =

=
X

x2:::xk

kY

i=1

P (xijpa(xi))
Y

xj2F�[F 0

Y

xm2pa(xj)

P (ujm = 0jxm): (3.21)

Note that the last expression is equivalent to joint probability distribution of x1

together with the negative observations for the nodes in F� [F 0, and positive obser-

vations for the nodes in F+ � F 0, namely the joint

P (x1; fxi = 0jxi 2 F� [ F 0g; fxj = 1jxj 2 F+ � F 0g); (3.22)

which can be computed using a bucket-elimination algorithm. In particular, we can

use elim-bel, preprocessed by evidence propagation. The algorithm elim-bel will be
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Algorithm NOR-elim-bel

Input: A noisy-OR network BN , and evidence e = F� [ F+,
where F� is the set of 0-valued nodes and F+ is the set of 1-valued nodes.

Output: Bel(x1) = P (x1je).
Initialization:
1. Bel(x1) 0
2. TBN  a transformed network of BN

3. For each F 0 2 2F
+

4. e0  F� [ fxi = 0jxi 2 F 0g [ fxi = 1jxi 2 F+ � F 0g

5. e00  e0 [ fuij = 0jxi 2 F
0 [ F�g /* evidence propagation */

6. o0  an ordering of nodes in TBN s.t. observed nodes e00 are last
7. PF 0  elim-bel(TBN ; o0; e00)

8. Bel(x1) Bel(x1) + (�1)jF
0jPF 0

Return Bel(x1).

Figure 3.18: Algorithm NOR-elim-bel

invoked 2p times, once for each F 0 2 2F
+

yielding algorithm NOR-elim-bel in Figure

3.18. Note, that step 5 of the algorithm is equivalent to the evidence propagation.

It is easy to see that for BN2O networks, NOR-elim-bel coincides with Quickscore:

the product of P (xijpa(xi)) is simply P (di) where di are the upper-layer nodes ex-

cluding the query node d1.

Theorem 23: Given a transformed network TBN of a noisy-OR belief network BN,

an evidence e = F+ [ F�, where F+ and F� are positive and negative observations,

respectively, and an ordering o of TBN, the complexity of the algorithm NOR-elim-bel

is O(nm � 2jF
+j+w�

o ), where n is the number of nodes in BN, m is the largest family

size in BN, and w�
o is the induced width of TBN along o.

Proof: Network transformation in step 2 takes O(nm) time (see theorem 13). The

for-loop (steps 3-8) is executed once for each F 0 2 2F
+

, i.e. 2jF
+j times. Within the

loop, steps 4-6 can be performed in linear time. Since evidence propagation of F�

results in a smaller set of observations then the evidence propagation of F� [F 0, the
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set of nodes in o is a superset of the nodes in o0 (step 6). Assume that o and o0 agree on

their common nodes, then w�
o � w�

o0 . Therefore, step 7 that runs elim-bel(TBN ,o',e")

takes no more than O(nm �2w
�

o ) time, thus yielding the total complexity of O(nm 2w
�

o

2jF
+j) = O(nm 2jF

+j+w�

o ): 2

Given a particular evidence, we can decide upfront whether to use NOR-elim-bel

or the regular ci-elim-bel by comparing the exponents in the corresponding complexity

bounds, namely, comparing jF+j+ w�
o to w

�
e .

3.8 Conclusions

This chapter investigated the impact of causal independence on probabilistic infer-

ence. Our contributions are:

� We showed the connection between the previously existing approaches to belief

updating in causally-independent networks, such as network transformations

[63, 84] and variable-elimination algorithm VE1 [114]. Each of those methods

is a special cases of inference over binary-tree transformed networks. The or-

dering restrictions of VE1 may sometimes lead to a unnecessary complexity

increase. We describe a general variable-elimination scheme, called ci-elim-bel,

that improves VE1 by accommodating any variable ordering over the trans-

formed networks.

� We extended the causally-informed algorithms to other probabilistic tasks, such

as �nding a most probable explanation (MPE), �nding a maximum a posteriori

hypothesis (MAP), and �nding the maximum expected utility (MEU). Surpris-

ingly, while causal independence can signi�cantly reduce the complexity of belief

updating and �nding MAP and MEU, it has, generally, no e�ect on MPE.

� We showed that the complexity of causally-informed algorithms for tasks such

as belief updating, �nding MAP and MEU is exponential in the induced width

of a transformed network, called the e�ective induced width. The e�ective
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induced width does not exceed the induced width of the original network's

moral graph and may be as small as the induced width of the unmoral graph.

Consequently, exploiting causal independence reduces complexity, often by an

exponential factor.

� We augmented algorithm ci-elim-bel with evidence propagation using relational

arc-consistency, and also incorporated this approach into a new algorithm NOR-

elim-bel for noisy-OR networks, which generalizes algorithm Quickscore for

BN2O networks [60].

We identi�ed several network topologies, such as poly-trees, \source-sink" multiply-

connected networks, and k-n-networks, where exploiting causal independence leads to

an exponential complexity reduction relative to standard causally-blind algorithms.

Empirical evaluation is necessary to assess the ultimate virtues of the methods dis-

cussed.
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Chapter 4

Approximate inference

4.1 Introduction

Automated reasoning tasks such as constraint satisfaction and optimization, proba-

bilistic inference, decision-making, and planning are generally hard (NP-hard). One

way to cope with this computational complexity is to identify tractable problem

classes. Another way is to design algorithms that compute approximate rather than

exact solutions.

Although approximation within given error bounds is also known to be NP-hard

[86, 98], there are approximation strategies that work well in practice. One approach

advocates anytime algorithms. These algorithms can be interrupted at any time

producing the best solution found thus far [20, 8]. Another approach is to identify

problem classes that can be solved approximately within given error bounds, thus

applying the idea of tractability to approximation.

In this chapter we present a family of parameterized algorithms that allow a


exible trade-o� between accuracy and e�ciency and that can be combined in an

anytime algorithm. We provide conditions under which the approximation algorithms

�nd an exact solution and identify regions of good performance.

The class of mini-bucket approximation algorithms we propose imports the idea of
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local inference from constraint networks to probabilistic reasoning and combinatorial

optimization using the bucket-elimination framework. Bucket-elimination is a unify-

ing algorithmic scheme that generalizes non-serial dynamic programming to enable

complex problem-solving and reasoning activities. Among the algorithms that can be

expressed as bucket-elimination are directional-resolution for propositional satis�abil-

ity [36], adaptive-consistency for constraint satisfaction [33], Fourier and Gaussian

elimination for linear inequalities [74], dynamic-programming for combinatorial opti-

mization [7], as well as many algorithms for probabilistic inference [26].

In all these areas problems are represented by a set of variables and by a set of

dependencies (e.g., constraints, cost functions, and probabilities) that can be cap-

tured by a graph. The algorithms infer and record new dependencies which amounts

to adding new edges to the graph. Generally, representing a dependence among k

variables (k is called arity of a dependence ) requires enumerating O(exp(k)) tuples.

As a result, the complexity of inference is time and space exponential in the arity

of the largest dependence recorded which corresponds to the size of largest clique

created in the graph and is known as induced-width.

Local inference approximation algorithms like i-consistency [44, 22] bound the

computational complexity by restricting to i the arity of recorded dependencies.

Known special cases are arc-consistency (i = 2) and path-consistency (i = 3) [78,

43, 22]. Indeed, the recent success of constraint-processing algorithms can be at-

tributed primarily to this class of algorithms, either used as stand-alone, incomplete

algorithms, or incorporated within backtracking search [28, 29]. The idea and bene�t

of local consistency algorithms are demonstrated in Figure 4.1. The �gure shows that

while exact algorithms may record arbitrarily large constraints, i-consistency algo-

rithms decide consistency of smaller subproblems, recording constraints of size i or

less.

In this chapter we present and analyze a local inference approximation scheme

for probabilistic tasks of belief updating, �nding the most probable explanation, �nd-

ing the maximum a posteriori hypothesis, and for optimization tasks in general. We

124



E

A

B C

D

E
F

G

A

B C F

G

D

i=3

<
1 2 1 2,

A

B C

D

E
F

G

1,2

1, 2

=

1, 2

=

A

B C

D

E
F

G
Global consistency

local consistency
approximations

A

B C

D

E
F

i=4

G

i-CONSISTENCY

PATH-CONSISTENCY

i=2

ARC-CONSISTENCY

Figure 4.1: From global to local consistency: algorithm i-consistency and its partic-
ular cases path-consistency (i=3) and arc-consistency (i=2).

identify regions of completeness and demonstrate promising empirical results obtained

both on randomly generated networks and on realistic domains such as medical diag-

nosis and probabilistic decoding.

For the necessary de�nitions and preliminaries, the reader is referred to the section

3.2 of the previous chapter. This chapter is organized as follows. In the next three

sections we present and analyze the mini-bucket approximation for the probabilistic

inference tasks of �nding a most probable explanation (MPE), belief-updating (BEL)

and �nding a most probable a posteriori hypothesis (MAP). Section 4.5 presents the

mini-bucket algorithm for optimization problems. Section 4.6 identi�es cases of com-

pleteness, Section 4.7 discusses extensions to anytime algorithms and heuristic search

and Section 4.8 discusses related work. In Section 4.9 empirical evaluation is car-

ried out for the MPE task. Encouraging results are obtained on randomly generated

noisy-OR networks, on the CPCS networks for medical diagnosis [90], and on classes
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of probabilistic decoding problems. Section 4.10 provides concluding remarks and

discusses the future work.

4.2 Approximating the MPE

As we saw in Section 2, the complexity of bucket-elimination is determined by the

complexity of processing each bucket and is time and space exponential in the number

of variables in the bucket, w� + 1, where w� is the induced-width of the network's

moral graph along the elimination ordering. Consequently, the algorithm is infeasible

when w� is large, primarily due to memory requirements.

Since the complexity of processing a bucket is tied to the arity of the functions

being recorded, we propose to approximate these functions by a collection of smaller-

arity functions. Let h1; :::; ht be the functions in the bucket of Xp, and let S1; :::; St

be the sets of variables on which those functions are de�ned. When elim-mpe pro-

cesses the bucket of Xp, the function hp = maxXp�
t
i=1hi is computed. Since, for two

non-negative functions Z(x) and Y (x), maxx Z(x) � Y (x) � maxx Z(x) � maxx Y (x),

a simple approximation idea is to compute an upper bound on hp by \migrating"

the maximization inside the multiplication. Namely, gp = �t
i=1maxXp hi is an upper

bound on hp, since it replaces each hi in �t
i=1hi by maxXp hi. Maximization is now

applied separately to smaller-arity functions hi, yielding a lower complexity. This idea

can be generalized to any partitioning of a set of functions h1; :::; ht into subsets that

we will call mini-buckets. Namely, let Q = fQ1; :::; Qrg be a partitioning into mini-

buckets of the functions h1; :::; ht in Xp's bucket. The mini-bucket Ql contains the

functions hl1; :::; hlr. The complete algorithm elim-mpe computes hp = maxXp �
t
i=1hi,

which can be rewritten as hp = maxXp �
r
l=1�lihli. By migrating the maximization

operator into each mini-bucket we compute: gpQ = �r
l=1maxXp �lihli. The functions

maxXp �lihli are placed separately into their highest-variable buckets and the algo-

rithm proceeds with the next variable. Note that functions without arguments (i.e.,

constants) are placed in the lowest bucket. The product of constants collected in the
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Figure 4.2: The idea of mini-bucket approximation.

�rst bucket is an upper bound on the MPE.

The idea of mini-bucket partitioning is demonstrated in Figure 4.2. The bucket

of variable X having n functions is split into two mini-buckets of size r and (n� r),

r � n. This decreases the complexity exponentially, from O(exp(n)) to O(exp(r)) +

O(exp(n� r)). Clearly, as the mini-buckets get smaller both the complexity and the

accuracy decrease. This yields a family of approximation algorithms having adjustable

trade-o� between accuracy and e�ciency.

De�nition 9: Given two partitionings Q
0

and Q
00

over the same set of elements, Q
0

is a re�nement of Q
00

if and only if for every set A 2 Q
0

there exists a set B 2 Q
00

such that A � B.

Proposition 2: If Q
00

is a re�nement of Q
0

in the bucket of Xp, then hp � gp
Q
0 � gp

Q
00 .

Proof: Given a partitioning of Q = fh1; :::; htg into Q1 = fh1; :::; hrg and

Q2 = fhr+1; :::; htg.

hp = max
Xp

(�i2Q1
hi)(�j2Q2

hj): (4.1)
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The approximating function, gp, for this partitioning is:

gpQ = (max
Xp

�i2Q1
hi) � (max

Xp

�j2Q2
hj): (4.2)

Thus, gpQ is derived from hp by replacing the second product in hp, �j2Q2
hj , by

maxXp �j2Q2
hj. Consequently, hp � gpQ. In general, given Q0 = fQ0

1; :::; Q
0
mg, by

induction on the number of mini-buckets m,

gpQ0 =
mY

j=1

(max
Xp

�l2Q0

j
hl); (4.3)

and, consequently, hP � gpQ0.

By de�nition, given a re�nementQ00 = fQ00
1; :::; Q

00
kg of a partitioning Q

0 = fQ0
1; :::;

Q0
mg, each mini-bucket i 2 f1; :::; kg of Q00 belongs to some mini-bucket j 2 f1; :::;mg

of Q0. In other words, each mini-bucket j of Q0 is further partitioned into the corre-

sponding mini-buckets of Q00 as follows: Q0
j = fQ00

j1
; :::; Q00

jl
g. Then

gpQ00 =
kY

i=1

(max
Xp

�l2Q00

i
hl) =

mY

j=1

Y

Q00

i
�Q0

j

(max
Xp

�l2Q00

i
hl) �

mY

j=1

(max
Xp

�l2Q0

j
hl) = gpQ0; (4.4)

which concludes the proof. 2

The mini-bucket approximation algorithm approx-mpe(i,m) is described in Figure

4.3a. It has two parameters that control the partitioning.

De�nition 10: Let H be a collection of functions h1; :::; ht de�ned on subsets of

variables S1; :::; St, respectively. We will say that a function f is subsumed by a

function h if any argument of f is also an argument of h. A partitioning of h1; :::; ht

is canonical if any function f subsumed by other functions is placed into the bucket

of one of those subsuming functions. A partitioning Q into mini-buckets is an (i;m)-

partitioning if, and only if, (1) it is canonical, (2) at most m non-subsumed functions

participate in each mini-bucket, (3) the total number of variables in a mini-bucket

does not exceed i, and (4) the partitioning is re�nement-maximal, namely, there is

no other (i;m)-partitioning that it re�nes.
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Not every combination of i and m yields a feasible partitioning. However, it is

easy to see that:

Proposition 3: If the bound i on the number of variables in a mini-bucket is not

smaller than the maximum family size, then, for any value of m > 0, there exists an

(i;m)-partitioning of each bucket.

Proof: For m = 1, each mini-bucket contains one family. The arity of the recorded

functions will only decrease and thus in each bucket an (i; 1)-partitioning always ex-

ists. Any (i;m)-partitioning that satis�es conditions 1-3 (but not necessarily condition

4), always includes all (i; 1)-partitionings satisfying conditions 1-3. Therefore, the set

of (i;m)-partitionings satisfying conditions 1-3 is never empty, and there exists an

(i;m)-partitioning satisfying conditions 1-4. 2

Although the two parameters i and m are not independent they do allow a 
exible

control of the mini-bucket scheme. The properties of the mini-bucket algorithms are

summarized in the following theorem.

Theorem 24: Algorithm approx-mpe(i;m) computes an upper bound to the MPE.

Its time complexity is O(m � exp(2i)) and its space complexity is O(m � exp(i)), where

i � n and m � 2i. For m = 1, the algorithm is time and space O(m �exp(jF j)), where

jF j is the maximum family size.

Proof: Since approx-mpe(i,m) computes an upper bound in each bucket it yields

an overall upper bound on the resulting MPE. The complexity of approx-mpe(i,m)

can be derived as follows. Processing a bucket is linear in the number of its mini-

buckets. Since in each mini-bucket there are at most m functions having arity of

at most i (i.e., of size at most exp(i)), multiplication takes at most O(m � exp(2i))

time-wise and O(exp(i)) space-wise. The number of mini-buckets is bounded by 2i,

the number of subsets of size i. For m = 1, each mini-bucket contains only one family

and perhaps some subsumed functions. The arity of the recorded functions will only

decrease, thus yielding time and space complexity of O(m � exp(jF j)), where jF j is

maximum family size. 2
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In general, as m and i increase we get more accurate approximations. However, a

clear hierarchy can only be obtained relative to the partial order of re�nement.

Example 13: Figure 4.3b illustrates how algorithms elim-mpe and approx-mpe(i,m)

for i = 3 and m = 2 process the network in Figure 4.3a along the ordering (A; E;D;

C;B). First, all functions are partitioned into buckets that are the same for both

algorithms. The exact algorithm elim-bel sequentially processes the variables B, C,

D, and E, recording the new functions (shown in boldface) hB(a; d; c; e), hC(a; d; e),

hD(a; e), and hE(a). Then, in the bucket of A, it computes MPE = maxa P (a)hE(a).

Subsequently, an MPE assignment (A = a0; B = b0; C = c0, D = d0, E = 0) where

E = 0 is an evidence is computed for each variable from A to B by selecting a value

that maximizes the product of functions in the corresponding buckets conditioned

on the previously assigned values. Namely, a0 = arg maxa P (a)hE(a), e0 = 0, d0 =

arg maxd hC(a0; d; e = 0), and so on.

On the other hand, the approximation algorithm approx-mpe(3,2) runs as follows.

Since the bucket of B includes �ve variables it is split into two mini-buckets fP (ejb; c)g

and fP (dja; b); P (bja)g, each containing no more than 3 variables, as shown in Fig-

ure 4.3b (tie-breaking is arbitrary when selecting mini-buckets). The new functions

hB(e; c) and hB(d; a) are computed separately in each mini-bucket and are placed

in their highest-variable buckets. In each of the remaining buckets the number of

variables is not larger than 3 and therefore no mini-bucket partitioning occurs. An

upper bound on the MPE value is computed by maximizing over A the product of

functions in A's bucket. A suboptimal MPE tuple is computed similarly to MPE

tuple by assigning a value to each variable that maximizes the product of functions

in the corresponding bucket, given the assignments to the previous variables.

Note, that approx-mpe(3,2) does not produce new functions on more than i � 1

(i.e., 2) variables, while the exact algorithm elim-mpe records a function on 4 variables.

The probability of the tuple generated by approx-mpe provides a lower bound on

the MPE and can be computed using the joint-probability's product form. Thus,
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Algorithm approx-mpe(i,m)

Input: A belief network BN = (G;P ), an ordering o, evidence e.
Output: An upper and a lower bounds on the MPE given evidence e.
1. Initialize: Partition P = fP1; :::; Png into buckets bucket1, : : :, bucketn, where

bucketp contains all matrices h1; h2; :::; ht whose highest-index variable is Xi.
2. Backward: for p = n to 1 do
� If Xp is observed (Xp = a), replace Xp by a in each hi and put the result
in its highest-variable bucket (put constants in bucket1).
� Else for h1; h2; :::; ht in bucketp do

Generate an (i;m)-mini-bucket-partitioning, Q
0

= fQ1; :::; Qrg.

for each Ql 2 Q
0

containing hl1 ; :::hlt, compute hl = maxXp�
t
i=1hli and add it

to the bucket of the highest-index variable in Ul  
St
i=1 Sli � fXpg, where

Sli is the set of arguments of hli (put constants in bucket1).

3. Forward: for p = 1 to n, given X1 = x
opt
1 ; :::; Xp�1 = x

opt
p�1,

assign a value xoptp to Xp that maximizes the product of all functions in bucketp.

4. Return the assignment xopt = (xopt1 ; :::; xoptn ), a lower bound L = P (xopt),
and an upper bound U =

Qt
i=1 h

i on the MPE, where hi are constants in bucket1.

(a) Algorithm approx-mpe(i,m).

A

E

D

C

B

Eh 

E = 0 h D

h C

h B

MPE

max
B

P(e|b,c)   P(d|a,b) P(b|a)

P(c|a)

P(a)

(a,d,c,e)

(a,d,e)

(a,e)

(a)

Complexity: O(exp(4))

max
B

h B
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MPE( )Upper boundU  =

E = 0
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P(b|a)P(d|a,b)P(e|b,c)

P(c|a)

P(a)

h C

DhhE

(e,c)

(d,a)

(e,a)

(a) (a)

Mini-buckets Max variables

Complexity:
O ( exp(3) )

in a mini-bucket

(b) A trace of elim-mpe (c) A trace of approx-mpe(3,2).

Figure 4.3: (a) Algorithm approx-mpe(i,m) and the performance comparison of (b)
elim-mpe and (c) approx-mpe(3,2).
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algorithm approx-mpe(i,m) computes an interval [L;U ] containing the MPE.

4.3 Approximating belief update

As shown in Section 3.2 the bucket-elimination algorithm elim-bel for belief assessment

is identical to elim-mpe except that maximization is replaced by summation. Let

e be a set of observations. Algorithm elim-bel �nds P (x1; e) and then computes

P (x1je) = �P (x1; e) where � is the normalization constant. This procedure has

only a backward phase (see Figure 3.2a). When processing the bucket of Xp, we

multiply all its matrices, h1; :::; ht, de�ned over subsets S1; :::; St, and sum over Xp.

The computed function is hp : Up ! <, where hp =
P

Xp
�t
i=1hi, and Up = [iSi�Xp.

Once all the buckets are processed, the updated probability P (x; e) is available in the

bucket of X1.

The mini-bucket idea can be applied to belief updating as follows. Let Q0 =

fQ1; :::; Qrg be a partitioning into mini-buckets of the functions h1; :::ht in Xp's

bucket. The exact algorithm elim-bel computes hp =
P

Xp
�t
i=1hi, which can be

rewritten as hp =
P

Xp
�r
l=1�lihli. If we follow the MPE approximation precisely

and migrate the summation operator into each mini-bucket, we will compute fpQ0 =

�r
l=1

P
Xp

�lihli. This, however, is an unnecessarily large upper bound of hP since

each �lihli is replaced by
P

Xp
�lihli. Instead, we process the �rst mini-bucket sepa-

rately and get hp =
P

Xp
(�l1hl1) � (�

r
l=2�lihli). Subsequently, instead of bounding a

function of X by its sum over X, we can bound i > 1, by its maximum over X, which

yields gpQ0 = (
P

Xp
�l1hl1) � (�

r
l=2maxXp �lihli). Clearly,

Proposition 4: For every partitioning Q, hp � gpQ � fpQ. Also, if Q
00

is a re�nement

partitioning of Q
0

, then hp � gp
Q
0 � gp

Q
00 . 2

The proof is similar to the one for MPE.

In summary, an upper bound gp of hp can be obtained by processing one of Xp's

mini-buckets by summation and the rest by maximization. We can also compute a
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Algorithm approx-bel-max(i,m)

Input: A belief network BN = (G;P ), an ordering o, and evidence e.
Output: an upper bound on P (x1; e).
1. Initialize: Partition P = fP1; :::; Png into buckets

bucket1, : : :, bucketn, where bucketp contains all
matrices h1; h2; :::; ht whose highest-index variable is Xi.

2. Backward: for p = n to 1 do
� If Xp is observed (Xp = a), replace Xp by a in each hi and put the result
in its highest-variable bucket (put constants in bucket1).
� Else for h1; h2; :::; ht in bucketp do

Generate an (i;m)-mini-bucket-partitioning, Q
0

= fQ1; :::; Qrg.

for each Ql 2 Q
0

, containing hl1 ; :::hlt, do
If l = 1 compute hl =

P
Xp

�t
i=1h1i

Else compute hl = maxXp�
t
i=1hli

Add hl to the bucket of the highest-index variable in Ul  
St
i=1 Sli � fXpg,

where Sli is the set of arguments of hli (put constants in bucket1).
3. Return the product of functions in the bucket of X1,

which is an upper bound on P (x1; e) (denoted g(x1)).

Figure 4.4: algorithm approx-bel-max(i,m)

lower bound, or the mean value by applying to each mini-bucket (i > 1) the min

or the mean operator, respectively. Algorithm approx-bel-max(i,m) that uses the

maximizing elimination operator is described in Figure 4.4. Algorithms approx-bel-

min and approx-bel-mean can be obtained by replacing the operator max by min and

by mean, respectively.

4.3.1 Normalization

Note that aprox-bel-max computes an upper bound on P (x1; e) but not on P (x1je).

If an exact value of P (e) is not available, deriving a bound on P (x1je) from a bound

on P (x1; e) may not be easy. For example, g(x1)
sumx1g(x1)

, where g is the upper bound

on P (x1; e), is not necessarily an upper bound on P (x1je). However, we can derive

a lower bound f on P (e) using approx-bel-min (in this case the observed variables

133



initiate the ordering), and then compute g(x1)
f

as an upper bound on P (x1je).

4.4 Approximating the MAP

Algorithm elim-map for computing the MAP presented in [24] is a combination of

elim-mpe and elim-bel; some of the variables are eliminated by summation, the rest by

maximization. Consequently, its mini-bucket approximation is a mix of approx-mpe

and approx-bel-max.

Given a belief network, a subset of hypothesis variables A = fA1; :::; Akg and

some evidence, the problem is to �nd an assignment to the hypothesized variables

that maximizes their probability given evidence e. Formally, we wish to compute

max
�ak

P (�akje) = (max
�ak

X

�xn
k+1

�n
i=1P (xi; ejxpai))=P (e) (4.5)

when x = (a1; :::; ak; xk+1; :::; xn). Since P (e) is a normalization constant, this is

equivalent to computing P (�akje). The bucket-elimination algorithm for MAP, elim-

map [24], assumes only orderings in which the hypothesized variables appear �rst

and thus are processed last by the algorithm. The algorithm has a backward phase

as usual but its forward phase is relative to the hypothesis variables only. The

application of the mini-bucket scheme to elim-map is a straightforward extension to

approx-mpe and approx-bel-max. We partition each bucket to mini-buckets as before.

If the bucket's variable is a summation variable we apply the rule we have in approx-

bel-max in which one mini-bucket is approximated by summation and the rest by

maximization. When the algorithm reaches the hypothesis buckets their processing

is identical to that of approx-mpe. Algorithm approx-map(i,m) is described in Figure

4.5.

Example 14: We will next demonstrate the mini-bucket approximation for MAP

on an example inspired by probabilistic decoding [77, 45] 1. Consider a belief network

1Probabilistic decoding is discussed in more details in Section 4.9.5.
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Algorithm approx-map(i,m)
Input: A belief network BN = (G;P ), a subset of variables A = fA1; :::; Akg,
an ordering of the variables, o, in which the A's appear �rst, and evidence e.
Output: An upper bound on the MAP and an assignment A = a.
1. Initialize: Partition P = fP1; :::; Png into buckets buck


