
AND/OR Tree Search for Constraint Optimization

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum,dechter}@ics.uci.edu

Abstract. The paper presents and evaluates the power of a new frameworkfor
constraint optimization, based on the concept of AND/OR search trees. The virtue
of the AND/OR search tree representation is that its size maybe smaller than
that of a traditional OR search tree. We introduce a new generation of depth first
Branch-and-Bound algorithms that traverse an AND/OR search space and use the
Mini-Bucket approximation scheme to generate heuristics to guide the search.
Our preliminary experimental work shows that the new approach is competitive
and in many cases superior to state of the art systematic search algorithms that
explore the regular OR space.

1 Introduction

Constraint Satisfaction Problems (CSPs) provide a formalism for formulating many in-
teresting real world problems as an assignment of values to variables, subject to a set
of constraints. In Constraint Optimization Problems (COPs), some constraints (called
soft) are cost functions indicating preferences. The task of interest is to find a com-
plete assignment satisfying all hard constraints and minimizing the global cost. Solving
constraint problems is NP-hard. Therefore, general algorithms are likely to require ex-
ponential time in the worst case.

Most complete algorithms for solving constraint problems typically fall within one
of the following two categories:searchanddynamic programming. Search algorithms
transform a problem into a set of subproblems by selecting a variable and considering
the assignment of each of its domain values. The subproblemsare solved in sequence
applying recursively the same transformation rule (often referred to asconditioning).
These algorithms have a time complexity which is exponential in the number of vari-
ables, but can operate in polynomial space. Dynamic programming algorithms solve a
problem by a sequence of transformations that reduce the problem size, while preserv-
ing the solution space of the problem. The time and space complexity of these methods
is exponential in a topological parameter calledwidth (always less than or equal to the
number of variables). Due to their high space requirements,when the width is large, the
latter methods are often impractical.

In this paper we focus on search. We adopt a new perspective ofAND/OR search
space [17] that allows exploiting the problem structure by search algorithms and in par-
ticular by depth first Branch and Bound (BnB) algorithms. Thestructure of a problem
can dramatically influence the performance of a search algorithm. Whereas topologi-
cal properties of the problem cannot be incorporated into regular OR search trees, we



recently showed that they are naturally captured by an AND/OR search tree [9, 10].
Within the AND/OR framework, AND nodes generally root independent subproblems
that can be solved separately. For simplicity we develop ourwork for weightedCSP
(WCSP) problems, where costs are natural numbers and globalcosts are computed by
summing partial costs. The extension to other soft-constraint frameworks is straight-
forward. We introduce a new generation ofdepth firstAND/OR Branch and Bound
algorithms that traverse the AND/OR search tree and extend the Mini-Bucket approx-
imation scheme for computing a heuristic evaluation function to guide the search [10,
12, 16].

The Mini-Bucket approximation uses a controlling parameter which allows ad-
justable levels of accuracy and efficiency. Rather than computing and recording func-
tions on many variables as is often required by variable elimination algorithms, the
Mini-Bucket scheme partitions function computations intosubsets of bounded number
of variables,i (the so-calledi-bound), and records several smaller functions, instead.
It can be shown that it outputs alower bound(resp.upper bound) on the desired op-
timal value for the desired minimization (resp. maximization) task. This is a flexible
scheme that can trade off complexity for accuracy; as thei-bound increases, both the
complexity (which is exp(i)) and the accuracy increase (for details see [7]).

We experiment with random binary/non-binary CSPs as well asa number of real-
world benchmarks. Our results show that indeed in many casesthe Branch and Bound
over the AND/OR space takes advantage of the structural properties of the problem and
significantly improves over the traditional BnB. Impressive time savings are exhibited,
especially for smalli-bounds when all algorithms rely primarily on search, rather than
on pruning. However, if largeri-bounds are possible, the AND/OR algorithms using
pre-compiled heuristic information are overall superior.

The paper is organized as follows. Section 2 provides preliminaries and background
on the Mini-Bucket algorithms, generic depth first Branch and Bound strategy and the
Mini-Bucket based heuristics. In Section 3 we introduce thenew paradigm of AND/OR
search spaces. Section 4 is devoted to the depth first AND/OR Branch and Bound strat-
egy. Section 5 presents empirical evaluation, Section 6 relates previous work and Sec-
tion 7 concludes.

2 Preliminaries

2.1 Notations and Definitions

Constraint Networksprovide a framework for formulating real-world problems asa set
of constraints between variables. They are graphically represented by nodes correspond-
ing to variables and undirected edges corresponding to constraints between variables.

Definition 1 (Constraint Satifaction Problem). A Constraint Satisfaction Problem
(CSP) is defined by a set of variablesX = {X1, ..., Xn}, associated with a set of
discrete-valued domains,D = {D1, ..., Dn}, and a set of constraintsC = {C1, ..., Cm}.
Each constraintCi is a pair(Si, Ri), whereRi is a relationRi ⊆ Di1×...×Dik defined
on a subset of variablesSi = {Xi1, ..., Xik} called the scope ofCi, consisting of all tu-
ples of values for{Xi1, ..., Xik} which are compatible with each other. Aconstraint net-
work can be represented by a constraint graph that contains a nodefor each variable,



and an arc between two nodes iff the corresponding variablesparticipate in the same
constraint. Asolutionis an assignment of values to variablesx = (x1, ..., xn), xi ∈ Di,
such that each constraint is satisfied. A problem that has a solution is termedsatisfiable
or consistent.

Definition 2 (Constraint Optimization Problem). A finite Constraint Optimization
Problemis defined by a triple(X ,D,F), whereX andD are as in the CSP case, and
F is a set ofcost functionsF = {f1, ..., fm} which denote preferences among tuples.
A cost functionf is defined over its scopevar(f) and returns for each tuple a non-
negative cost. The objective function, also called theglobal cost functionis the sum
of all individual cost functions,F (X) =

∑m

i=1 fi(X). Thesolution is the complete
assignment that minimizes/maximizesF (X).

Problems with soft constraints can naturally be formulatedas COPs. Observe that,
without loss of generality, hard constraints can also be expressed in this model as func-
tions returning two values: 0 for allowed tuples and∞ for forbidden ones. In particular,
the Max-CSP problem can be formulated as a COP using only 0/1 constraints.

2.2 Bucket and Mini-Bucket Elimination Algorithms

Bucket Elimination(BE) [6] is an algorithm for global optimization. Roughly, the al-
gorithm starts by partitioning the set of constraints inton buckets, one per variable.
Then variables are eliminated one by one. For each variableXi a new constraintfi is
computed using the functions in its bucket, summarizing theeffect of Xi on the rest
of the problem.fi is then placed in the bucket of the latest variable in its scope. The
cost of the best solution to the problem is obtained after processing the last bucket. The
bucket-elimination algorithm is time and space exponential in the induced-width of the
constraint graph.

Mini-Bucket Elimination(MBE) [7] is an approximation of BE that mitigates its
high time and space complexity. When processing variableXi, its bucket is partitioned
into mini buckets. Each mini-bucket is processed independently, producing bounded
arity functions that are cheaper to compute and store.

2.3 Solving COP

Branch and Bound(BnB) is a generalsearchschema for solving constraint optimiza-
tion tasks [15]. It traverses the search tree defined by the problem, where internal nodes
represent partial assignments and leaf nodes denote complete ones, which may or may
not be optimal. During the traversal, which is usuallydepth first, BnB maintains the
cost of the best solution found so far. In a minimization problem this is anupper bound
(ub) on the problem’s optimal cost. At each internal node, defined by its current par-
tial assignment̄xp, the algorithm computes alower bound function(lb(x̄p)), which
underestimates the cost of the best solution that can be found by extendinḡxp. When
ub ≤ lb(x̄p), the current best cost cannot be improved by extendingx̄p and the algo-
rithmbacktrackspruning the subtree below̄xp. Otherwise, the algorithm moves forward
and tries to instantiate the next variable in the ordering.



2.4 Using Bounded Inference to Guide Search

In general, the effectiveness of Branch and Bound greatly depends on the quality of
the lower bound functions. Naturally, more accurate lower bounds imply a higher com-
putational effort, hence the right trade-off between the computational overhead at each
search tree node and the pruning power exhibited during search may be hard to predict.
In the following, we overview a scheme for generating heuristic evaluation functions of
varying strengths using the Mini-Bucket approximation [7].

Static Mini-Bucket Heuristics. The idea was first introduced in [12] and showed
that the functions recorded by the Mini-Bucket algorithm can be used to assemble a
heuristic function that estimates the cost of the completion of any partial assignment to
a full solution, and therefore can serve as an evaluation function that can guide search.
Briefly, given an ordered set of augmented buckets generatedby the Mini-Bucket al-
gorithm and any partial assignmentx̄p, the heuristic functionh(x̄p) is defined as the
combination (i.e. summation or multiplication) of all the functions that were generated
in bucketsp + 1 throughn and reside in buckets1 throughp.

Dynamic Mini-Bucket Heuristics. This idea of partitioning-based heuristics can
be pushed one step further. Rather than pre-compiling the mini-bucket heuristic infor-
mation, it is possible to generate it during search. Specifically, given a set of ordered
buckets and any partial assignmentx̄p, the heuristic functionh(x̄p) is defined as the
bound (i.e. lower-bound for minimization, upper-bound formaximization) computed
by the Mini-Bucket algorithm (MBE(i)) algorithm subject to the current assignment,
restricted to bucketsp throughn.

3 AND/OR Search Trees Framework

We now move away from the traditional representation of the search space and intro-
duce a family of depth first Branch and Bound algorithms over arecently introduced
AND/OR search space paradigm for graphical models [9]. In this section we will give
an overview of the main idea and in the next section we will introduce the new AND/OR
Branch and Bound algorithm.

The classical way to do search (hereafter calledOR search) is to instantiate variables
following a static/dynamic linear ordering. This process defines a search tree, whose
nodes represent states in a the space of partial assignments. In contrast with inference
algorithms, the OR search space does not capture any of the structural properties of the
model. One way to capture such independencies is to introduceANDnodes into the OR
search space, which will decompose the problem into separate subproblems.

TheAND/OR search spaceis a well known problem solving approach developed in
the area of heuristic search [17, 18], that accommodates problem decomposition. The
states of the AND/OR space are of two types: OR states which represent alternative
ways of solving the problem, and AND states which usually represent problem de-
composition into independent subproblems, all of which need be solved. We will next
formally define the AND/OR search tree that applies for constraint networks.

The definition of an AND/OR search tree is guided by a tree structure that spans
the original constraint graph. We can use a simple DFS spanning tree. However, the



X

Y Z

T R L M

(a)

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

(b)

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

(c)

Fig. 1. OR vs. AND/OR search trees.

construction of the AND/OR tree can use a larger collection of spanning trees, called
pseudo-trees[11], which includes in particular the DFS spanning trees. Apseudo-tree
of a graph has the property that any arc of the graph that is notcontained in the pseudo-
tree is aback-arc(i.e. it connects a node to an ancestor in the tree).

Given a constraint graph and its pseudo-tree arrangementT , the associated AND/OR
tree is defined as follows. The AND/ORsearch treehas alternating levels of AND and
OR nodes. The OR nodes are labeledXi corresponding to variables. The AND nodes
are labeled〈Xi, v〉 and correspond to valuesv assigned to variableXi. The structure
of an AND/OR search tree is based on the underlying pseudo-treeT . The root of the
AND/OR search tree is an OR node, labeled with the root ofT . The children of an OR
nodeXi are AND nodes labeled with its possible value assignments〈Xi, v〉 which are
consistent along the path from the root. The children of an AND node〈Xi, v〉 are OR
nodes labeled with the children of variableXi in the pseudo-treeT . A solutionof an
AND/OR search treeG is not a path, but asubtreeS which: (1) contains the root node
of G; (2) if n ∈ S is an OR node then it contains one of its child nodes inG and if
n ∈ S is an AND node it contains all its children inG.

Example 1.For illustration, consider the simple tree constraint network in Figure 1(a),
over domains{1,2,3} which represents a graph coloring problem. In this case the tree
rooted atX will also serve as the pseudo-tree arrangement (it is also a DFS tree). Once
variableX is assigned value 1, the search space it roots corresponds totwo independent
subproblems, one rooted byY (contains variablesY , T , R) and another one rooted
by Z (contains variablesZ, L, M ). These two subspaces do not interact. This can
be captured by viewing the assignment〈X, 1〉 as an AND state, having variables Y
and Z as descendants. The same decomposition can be applied to other assignments of
X. Applying the decomposition recursively toY andZ and the rest of the variables,
yields the AND/OR search tree in Figure 1(c). Notice that a full assignment of values
to variables in the AND/OR search space is not a path, but a subtree. A solution subtree
is highlighted in Figure 1(c).



4 AND/OR Tree Search for COP

The virtue of the AND/OR search tree representation is that its size can be far smaller
than the traditional OR tree representation (compare the number of states in Figure 1(b)
with that in 1(c)). It is bounded exponentially by the depth of the pseudo tree associated
with the original constraint graph. Therefore, any algorithm that traverses the AND/OR
search tree in a depth first manner is guaranteed to have a timebound exponential in the
depth of the pseudo-tree only and can operate in linear space.

At a certain stage of the search, the current partial solution that is pursued is rep-
resented by a partial solution subtreeSolT of the underlying AND/OR search tree
ST . Since we can only exploreST by repeated node expansions starting from the
root s, SolT must be connected, must contains and will have afrontier containing
all those nodes generated but not yet expanded. Moreover,SolT also contains anac-
tive pathP from the root, which corresponds to the current partial assignmentv̄i =
〈X1, v1〉, ..., 〈Xi, vi〉. Each search tree noden is characterized by anode valuev(n),
which represents the cost of the optimal solution to the subproblem associated with the
subtree rooted atn, subject to the current variable instantiation along the active path
from root ton. Each AND noden = 〈X, v〉 is associated with alabel l(n), represent-
ing the sum of all the cost functions for which variableX is contained in their scope
and whose scope is contained in the active path from root ton. Based on the values of
its successors, the value of a node can be computed recursively as follows:

Definition 3. For every noden in the search treeST we define itsvalueas follows:

v(n) =







l(n) if n is terminal AND node
minn′∈succ(n)v(n′) if n is OR node
l(n) +

∑

n′∈succ(n) v(n′) if n is AND node

wheresucc(n)are the successors ofn in the search tree andl(n) is thelabelof noden.

Therefore, for any given noden in ST , it is possible to compute its valuev(n) by
evaluating the subtree rooted atn from the bottom up, as follows. The value of a leaf
(terminal) AND node is equal to its label. The value of an internal OR node is obtained
by minimizing the values of its successors. The value of an internal AND node is the
sum of its own label and the values backed up by its successors.

Proposition 1. Given an AND/OR search treeST , the valuev(n) of a noden ∈ ST

represents the minimal cost solution to the subproblem rooted atn, subject to the current
variable instantiation along the path ton from the root. Ifn is the root ofST , thenv(n)
represents the minimal cost solution to the initial problem.

A depth firstAND/OR tree search algorithm (hereafter called DF-AO) expands al-
ternating levels of OR and AND nodes, starting from the root of T . When an OR node,
n = Xi is expanded, its successors are AND nodes represented by thevaluesv in vari-
ableXi’s domain. The algorithm associates each of the child nodes,n′ = 〈Xi, v〉 with
its labell(n′). The label is calculated as the sum of the cost functions inB(Xi), subject
to the instantiation along its path.B(Xi) denotes thebucketof variableXi (for details



see [6]). In other words, given the pathv̄i = 〈X1, v1〉, ..., 〈Xi, vi〉, noden′ = 〈Xi, vi〉
is labeled byl(n′) =

∑

f∈B(Xi)
f(v̄i). If B(Xi) is empty,l(n′) is set to 0. When an

AND node,n = 〈Xi, v〉 is expanded, its successors are OR nodes represented by the
children ofXi in T . There is no label associated with OR nodes.

At any search step, the algorithm attempts to evaluate the explicated portion of the
search space. This is typically triggered by a node whose descendants are all evaluated,
namely their values are already determined. An internal OR node minimizes the values
propagated back from its children, while an internal AND node computes the value
function by summing the label of the node, with the values backed up by its children.
The algorithm terminates when the root node is evaluated.

Since the DF-AO algorithm explores each node in the AND/OR search tree in a
depth first manner, exactly once, it follows that:

Theorem 1. Algorithm DF-AO is sound and complete for constraint optimization. The
complexity of DF-AO is linear space and timeO(nkm), wherem is the depth of the
pseudo tree arrangement of the constraint graph [9].

4.1 Specializing the AND/OR Tree Search Algorithm

The DF-AO algorithm must explore the entire AND/OR search space to find the optimal
solution and this may be prohibitive in practice. In the following we describe a way of
overcoming this problem by avoiding the exploration of unpromising portions of the
search space, using a depth first AND/OR Branch and Bound algorithm.

For this purpose, each noden in the AND/OR search tree is assigned a heuristic
estimateh(n), which underestimates the cost of the optimal solution of the subproblem
rooted atn, namelyv(n). During search, the OR nodes maintainupper boundson their
valuesv(n), while the AND nodes are associated withlower boundsof v(n). We start
by defining theinside/ousidecontext of the active pathP during search. Without loss
of generality, we assume thatP starts at the roots and terminates with an AND node.

Definition 4 (Inside/Outside of Active Path).Given the current partial solution sub-
tree SolT and its active pathP , the inside context of P, denotedin(P), contains all
the OR nodes that are evaluated and are children of AND nodes along P . Similarly,
theouside context of P, denotedout(P), contains all those OR nodes that belong to the
frontier ofSolT and are children of the AND nodes alongP .

Definition 5 (Upper Bound). Given the active pathP of the current partial solution
subtree and an OR noden ∈ P , we defineub(n) to be theupper boundon the cost of
the best solution of the subproblem rooted atn. Initially ub(n) is∞ and then, as search
progresses, it is reduced by the values that are succesivelypropagated back from the
AND children ofn.

For illustration, consider the AND/OR tree fragment in Figure2. Initially, the upper
bound at the OR noden = X is ub(n) = ∞. After exploring the subtree rooted at
n′ = 〈X, 0〉, the valuev(n′) is available andub(n) becomesmin(∞, v(n′)) = v(n′).
Similarly, after exploring the second subtree rooted atn′′ = 〈X, 1〉, the upper bound
ub(n) is updated tomin(v(n′), v(n′′)).



0

X

1

B

0 1

A C

AND

OR

AND

OR

Fig. 2. Upper/Lower bounds computation

Definition 6 (Lower Bound). Given the active pathP of the current partial solution
subtree and an AND noden ∈ P , thelower bound lb(n)on the cost of the best solution
of the problem rooted atn is:

lb(n) =

{

h(n) if n is terminal AND node
max(h(n), l(n) +

∑

n′∈succ(n) e(n′)) if n is non-terminal AND node

wheresucc(n)are the successors ofn, l(n) is the label of noden, h(n) stands for the
heuristic estimate of the valuev(n). For any of the OR successorsn′ ∈ succ(n), e(n′)
is either: 1) the valuev(n′) if n′ ∈ in(P ), or 2) the estimateh(n′) if n ∈ out(P ), or
3) the lower boundlb(n′′), wheren′′ is the AND successor ofn′ on the active path.

In other words, for any given AND noden along the active pathP (that is a non-
terminal AND node), it is possible to compute a lower boundlb(n) on the cost of the
solution rooted atn, bottom up, starting at the heuristic estimate associated with the tip
node ofP (that is a terminal AND node) and working upward along the path, until the
desired lower bound is computed atn.

At any stage of the lower bound propagation, a test could be conducted to find out
if the current partial solution subtree can be extended along its active pathP to a better
solution. Specifically, if the lower boundlb(n) computed at some AND noden along
the active path is greater than or equal to the current upper boundub(m) maintained at
its OR parentm, then the active path is guaranteed not to lead to a better solution and
the search can be safely discontinued below the tip node ofP .

Theorem 2 (Pruning Rule).LetP be the current active path such that it starts at the
root nodes = X1 and ends at some AND nodet = 〈Xi, vi〉. Let n = 〈Xj , vj〉 be an
arbitrary AND node on the path and letm = Xj be its OR parent.

1. The valuelb(n) is a lower bound on the cost of the solution rooted atm.
2. If lb(n) ≥ ub(m) then it is safe to prune the subtree rooted at the tip nodet.

Example 2.Figure 2 shows a portion of an AND/OR search tree rooted atX . The
CLOSED list contains the shaded nodes and the AND node〈B, 1〉 is currently at the
top of the OPEN list. The active pathP is highlighted. The current upper bound at node
B is ub(B) = v(〈B, 0〉). Similarly, the upper bound at nodeX is ub(X) = v(〈X, 0〉).
The tip node〈B, 1〉 and the subtree below it can be pruned if eitherlb(〈B, 1〉) ≥ ub(B)
or lb(〈X, 1〉) ≥ ub(X). First we calculatelb(〈B, 1〉) = h(〈B, 1〉). If the pruning test



ALGORITHM : dynamic-AOMB(C, T )
Input: A cost networkC = (X ,D,F). A pseudo-treeT rooted atX1. Bucket data structure
along a depth-first traversal ofT . v̄ denotes the partial instantiation on the path from root to the
current AND node.
Output: Minimal cost solution.
(1) Initialize OPEN← {X1} (X1 is an OR node); CLOSED← φ

(2) Get the first noden in OPEN
(3) Expand noden, generating all its immediate successors,succ(n), as follows:

(a) if (n is an OR node, i.e.n = Xi) then
succ(n)← {n′ = 〈Xi, v〉|v ∈ domain(Xi)}
foreach (n′ ∈ succ(n)) do

l(n′) =
∑

f∈B(Xi)
f(v̄) (initialize local information)

h(n′) = MBE(Xi, v) (assign heuristic estimates)
h(n) = minn′∈succ(n)h(n′)
ub(n) =∞ (initialize upper bound)

(b) if (n is an AND node, i.e.n = 〈Xi, v〉) then
foreach (na ∈ ancestors(n)) do

if (na is an AND nodena = 〈Xj , vj〉) then
Evaluatelb(na) using Definition 6 and letm be the OR parent ofna

if (lb(na) ≥ ub(m)) then
Removen from OPEN (prune a subtree)
goto Step (2)

succ(n)← {n′ = Y |Y ∈ ChildrenT (Xi)}
(c) Add succ(n) on top of OPEN
(d) Removen from OPEN and place it on CLOSED

(4) Propagate bottom-up node values, as follows:
(a) For a terminal AND noden = 〈X, v〉, v(n) = l(n)
(b) For a non-terminal OR noden = X, such thatsucc(n) are all evaluated:

v(n) = minn′∈succ(n)v(n′)
(c) For a non-terminal AND noden = 〈X, v〉 such thatsucc(n) are all evaluated:

v(n) = l(n) +
∑

n′∈succ(n)
v(n′)

ub(m) = min(ub(m), v(n)) (update the upper bound at the OR parentm of n)
(d) If the root node has been evaluated,return v(X1)
(e) Remove portion of CLOSED that is not relevant

(5) gotoStep (2)

Fig. 3. dynamic-AOMB algorithm for Constraint Optimization

at nodeB fails, we move upward along the active path and calculatelb(〈X, 1〉) =
max(h(〈X, 1〉), l(〈X, 1〉) + v(A) + h(C) + lb(〈B, 1〉)).

Figure 3 describes a specialized version of an AND/OR tree search algorithm that
uses partitioning-based heuristic functions to guide the search. The algorithm, hereafter
refered to asdynamic-AOMB traverses the AND/OR search tree in a depth first man-
ner, starting from the root nodes = X1. A list OPEN simulates the recursion stack. The
list CLOSED maintains the search frontier andsucc denotes the set of successors of a
node in the search tree. When expanding an OR noden = Xi (Step 3a), the algorithm



calculates a heuristic estimateh(·) for each of the possible value extensionsXi = v

and orders the corresponding AND successors in decreasing order of their estimates
(value ordering). For this purpose, we use the Mini-Bucket approximation, restricted to
the subproblem rooted atXi (i.e. dynamic mini-bucket heuristics), but any other lower
bounding function can be applied. Pruning occurs when the algorithm attempts to ex-
pand an AND noden = 〈Xi, v〉 (Step 3b). The lower bound functionlb(.) of n and
all of its AND ancestors along the active pathP is revised from the bottom up, using
Definition 6. Search is discontinued belown as soon aslb(na) ≥ ub(m), wherena is
some AND ancestor ofn (includingn) andm is its OR parent. In Step 4, when the algo-
rithm moves backward, propagating the nodes values, it alsoupdates the upper bounds
maintained at the OR nodes, according to Definition 5 (Step 4c).

The static mini-bucket heuristicscan also be incorporated within the AND/OR
search algorithm presented in Figure 3, yielding a new algorithm, calledstatic-AOMB.
It is possible to show that the independencies captured by the pseudo-tree associated
with the network’s graph are also present in the augmented bucket structure generated
by the mini-bucket algorithm. As a consequence, those functions can be used to create
heuristic estimates in a similar manner they were used in theregular OR search space
(more details in [12, 8, 16]).

5 Empirical Evaluation

We have evaluated the performance of our AND/OR algorithms for solving the Max-
CSP task on over-constrained binary random CSP. A binary random CSP class is char-
acterized by〈N, K, C, T 〉, whereN is the number of variables,K is the number of
values per variable,C is the number of constraints andT is the constrainttightnessde-
fined as the ratio of forbidden value pairs. The constrained variables and the forbidden
value pairs are randomly selected. Using this model, we havetested on connectivity
regions where non-degenerated pseudo-trees (e.g. chains)could be constructed. Specif-
ically, we have experimented on the following problem classes:〈20, 5, 100, t〉 (medium
connectivity) and〈50, 5, 80, t〉 (sparse problems). For each problem class and each pa-
rameter setting we generated samples of 20 instances.

Each problem is solved by four algorithms using partitioning-based heuristic in-
formation:s-BBMB, d-BBMB, s-AOMB andd-AOMB. s-BBMB [12] uses static MB
heuristics and is restricted to a static variable ordering.d-BBMB is our new depth first
Branch and Bound algorithm that uses dynamic MB heuristics at each node of the search
space. It is also restricted to a static variable ordering. These two algorithms explore the
traditional OR space.s-AOMB/d-AOMB use static/dynamic MB heuristics and explore
a static AND/OR search tree.

The pseudo-tree was computed as follows. We used themin-fill heuristic for com-
puting the induced graph. It places variables with the smallestfill set (i.e. the number of
induced edges that need be added to fully connect the neighbors of a node) at the end
of the ordering, connects all of its neighbors, removes the variable from the graph and
repeats the whole procedure. Thepseudo-treeassociated with the induced graph was
created as a DFS traversal of the induced graph, starting with the variable that initiated
themin-fill ordering, always preferring as successor of a node the earliest adjacent node



s-AOMB s-AOMB s-AOMB s-AOMB PFC-RDAC
d-AOMB d-AOMB d-AOMB d-AOMB PFC-MRDAC
s-BBMB s-BBMB s-BBMB s-BBMB PFC-MPRDAC
d-BBMB d-BBMB d-BBMB d-BBMB

i=2 i=4 i=6 i=8
% / time / nodes % / time / nodes % / time / nodes % / time / nodes

N=20, K=5, C=100, T=40%, w*=12, H=15.15
40 / 152.2 / 2.4M 100 / 53.32 / 1.4M100 / 8.138 / 250K100 / 3.657 / 29K 100 / 0.316 / 36.3K
100 / 12.62 / 14K 100 / 14.3 / 1.8K 100 / 41.69 / 290 70 / 119.8 / 73 100 / 0.284 / 21K
20 / 158.9 / 6.2M 100 / 26.31 / 1.4M100 / 3.126 / 181K 100 / 3.135 / 30K 100 / 0.318 / 21K
100 / 12.68 / 38K 100 / 16.3 / 4.9K 100 / 48.21 / 714 70 / 121.6 / 106

N=20, K=5, C=100, T=60%, w*=12, H=15.4
0 / 180 / 2.4M 30 / 150.3 / 4M 95 / 53.31 / 1.8M 100 / 9.742 / 200K100 / 1.249 / 137K
95 / 61.5 / 72K 100 / 26.88 / 3.3K 95 / 70.56 / 481 60 / 146.3 / 81 100 / 1.101 / 79.7K
0 / 180 / 6.3M 95 / 82.63 / 4.1M 100 / 7.508 / 424K 100 / 3.874 / 74K 100 / 1.18 / 79.7K

100 / 53.62 / 180K100 / 20.82 / 6.6K 100 / 69.1 / 1K 35 / 153.9 / 129

Table 1. MAX-CSP (medium connectivity). Each table entry reports the average percentage of
exactly solved instances (%), average CPU time in seconds (time) and average number of search
tree nodes expanded (nodes). 180 seconds time limit.

s-AOMB s-AOMB s-AOMB s-AOMB PFC-RDAC
d-AOMB d-AOMB d-AOMB d-AOMB PFC-MRDAC
s-BBMB s-BBMB s-BBMB s-BBMB PFC-MPRDAC
d-BBMB d-BBMB d-BBMB d-BBMB

i=2 i=4 i=6 i=8
% / time / nodes % / time / nodes % / time / nodes % / time / nodes

N=50, K=5, C=80, T=60%, w*=7.75, H=15.5
70 / 88.65 / 1.2M 100 / 3.093 / 76K 100 / 0.131 / 2.4K 100 / 0.731 / 87 100 / 3.142 / 227K
100 / 4.17 / 10.7K 100 / 0.791 / 250 100 / 0.838 / 80 100 / 1.717 / 53 100 / 1.849 / 92K

0 / 180 / 6.5M 75 / 68.19 / 2.8M 100 / 2.743 / 146K100 / 0.744 / 1.1K 100 / 2.307 / 92K
75 / 74.32 / 444K 100 / 1.788 / 1.2K 100 / 0.634 / 80 100 / 1.673 / 50

N=50, K=5, C=80, T=80%, w*=7.65, H=15.8
5 / 176.6 / 3.4M 100 / 12.81 / 310K100 / 0.716 / 18K 100 / 0.632 / 491 100 / 17.87 / 1M
95 / 28.37 / 56K 100 / 1.327 / 287 100 / 1.152 / 101 100 / 1.713 / 55 100 / 10.87 / 422K
0 / 180 / 6.1M 70 / 82.23 / 3.9M 95 / 23.01 / 1.1M 100 / 0.686 / 4.8K100 / 13.21 / 422K

45 / 117.1 / 636K 100 / 1.776 / 902 100 / 1.113 / 115 100 / 1.441 / 55

Table 2.MAX-CSP (sparse problems). Each table entry reports the average percentage of exactly
solved instances (%), average CPU time in seconds (time) andaverage number of search tree
nodes expanded (nodes). 180 seconds time limit.

in the induced graph. The variable ordering used by the algorithms (except the ones
that have dynamic variable ordering) was the one resulted from a DFS traversal of the
pseudo-tree arrangement.

Tables 1 and 2 show results for experiments with two classes of problems. Each ta-
ble contains two horizontal blocks, each corresponding to aparticular constraint tight-
ness (T). For each class we also report the average induced width (w*) and the av-
erage height of the pseudo-tree (H). In each column, indexedby the i-bound of the
mini-bucket heuristic, we have results fors-AOMB(i), d-AOMB(i), s-BBMB(i), d-
BBMB(i), as well as for three algorithms based on PFC [13]. Each entry in the table
gives the percentage of problems that were solved exactly within a time bound, the av-
erage CPU time in seconds required for solving these problems, as well as the average
number of search tree nodes expanded (we only report AND nodes for AOMB). We
have highlighted the best performance point in each row and in each column.

We observe that for the first problem class (Table 1), the algorithms based on the
AND/OR search tree are inferior to those exploring the regular OR space. This, we



d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB s-AOMB
d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB s-BBMB

network (N,C)w* H i=2 i=4 i=6 i=8 i=10 i=12 i=16
time / nodes time / nodes time / nodes time / nodestime / nodestime / nodes time / nodes

54b (31,144) 11 20 6.922 / 15.4K 1.359 / 1.8K 0.625 / 346 0.157 / 47 0.14 / 31 0.188 / 31 -
8.485 / 28.2K 0.406 / 836 0.562 / 445 0.453 / 148 0.141 / 31 0.203 / 31 -

404 (100,610)19 41 3.156 / 4.8K 0.281 / 303 0.328 / 257 0.125 / 100 0.141 / 100 0.172 / 114 -
- / 5.7M 234.8 / 3.3M23.22 / 26.5K 4.234 / 3K 1.219 / 774 1.906 / 1K -

503b (99,390) 8 35 116.3 / 2.9M 5.406 / 9.1K 0.813 / 1.5K 0.156 / 149 0.062 / 99 0.063 / 99 -
- / 9M 8.969 / 8.8K 2.718 / 2.5K 0.094 / 99 0.094 / 99 0.109 / 99 -

505 (240,200222 67 - - - - - - 225.1 / 5.8M
- - - - - - - / 11.5M

Table 3.Results for SPOT5 benchmarks. 1 hour time limit.

speculate, is because the expected gain H=15 vs. N=20 is small and does not offset
the overhead in AND nodes in the AND/OR space. The best performance is offered
by the PFC class of algorithms. However, for the second class(Table 2) the AND/OR
algorithms clearly pay off, offering the best performance and outperforming the PFC
class. Here, the induced-width is low, so the performance with largei is likely to be
similar to Bucket Elimination.

Our real-life domain consists of several problem instancesfrom the SPOT5 bench-
mark [3]. These are over-constrained real scheduling problems for Earth observing
satellites. The original problem formulation associates apositive real-valued weight
with each variable. The task is to find a partial feasible assignment (i.e. meets all rele-
vant constraints) which maximizes the sum of the weights. However, for our purpose,
we only consider a Max-CSP variant, namely finding a completeassignment to vari-
ables that violates the least number of constraints. For each problem instance we provide
the name (model), the size as number of variables (N) and number of constraints (C), the
induced width of the constraint graph (w*) and the height of the corresponding pseudo-
tree arrangement (H). Table 3 compares primarily the dynamic versions of AOMB and
BBMB on several hard enough instances, whereas the last column of the table com-
pares the static versions of those two algorithms,s-AOMB ands-BBMB respectively.
We observe a clear dominance of the AND/OR algorithms over the regular OR ones.
For instance, when solving problem instance 404,d-AOMB(2) required only 3.156 sec-
onds whereasd-BBMB(2) exceeded its time limit of one hour. The same observation
can be made for the static case, wheres-AOMB(16) is superior tos-BBMB(16) on the
most difficult problem instance (i.e. 505). We did not compare with PFC algorithms
because the problem instances involve both binary and ternary constraints.

5.1 Belief Networks

We also experimented with optimization tasks defined over belief networks.Belief Net-
works(BN) [19] provide a formalism for reasoning about partial beliefs under condi-
tions of uncertainty. They are defined as directed acyclic graphs over nodes representing
variables of interest. The arcs signify the existence of direct causal influences between
linked variables. Formally, a BN is defined by a triple(X, D, P ), whereX andD are
as in the CSP formalism, andP is a set of functions. A functionpi = P (Xi|pai),
encodes aconditional probability distributionof variableXi given its parents (in the
graph)pai. The belief network represents a joint probability distribution overX having



s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB
d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB
s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB
d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB

BBBT BBBT BBBT BBBT BBBT BBBT
i=2 i=4 i=6 i=8 i=10 i=12

% / time / nodes % / time / nodes % / time / nodes % / time / nodes % / time / nodes % / time / nodes

N=100, K=2, P=2, C=90, w*=16.3, H=25.8
58 / 121.6 / 4M 95 / 34.07 / 1.1M 100 / 8.659 / 269K100 / 2.368 / 72.5K100 / 0.776 / 26.5K100 / 0.188 / 6.3K

100 / 9.583 / 29.3K100 / 0.992 / 1.7K 100 / 0.520 / 731 100 / 0.365 / 381 100 / 0.382 / 225 100 / 0.531 / 181
1 / 179.9 / 9M 57 / 108.9 / 6.4M 96 / 24.19 / 1.6M 99 / 5.54 / 363K 100 / 2.606 / 179K 100 / 0.34 / 25K

70 / 85.04 / 229K 100 / 2.045 / 2.8K 100 / 0.616 / 698 100 / 0.467 / 387 100 / 0.465 / 229 100 / 0.653 / 191
41 / 136.2 / 29.4K 98 / 31.71 / 6.4K 100 / 6.354 / 1,058 100 / 1.848 / 245 100 / 1.474 / 135 100 / 1.623 / 112

N=100, K=2, P=2, C=98, w*=18.2, H=27.7
26 / 162.2 / 5.1M 87 / 64.19 / 2.1M 99 / 15.97 / 481K 100 / 5.868 / 172K 100 / 1.625 / 52K 100 / 0.689 / 22.6K

100 / 25.77 / 63.1K100 / 2.673 / 4.1K100 / 1.277 / 1.3K 100 / 0.962 / 615 100 / 1.044 / 356 100 / 1.415 / 243
0 / 180.0 / 8.9M 43 / 131.3 / 7,4M 85 / 47.36 / 2,8M 95 / 18.22 / 1,2M 96 / 11.54 / 712K 100 / 3.344 / 222K

70 / 80.48 / 215K 100 / 4.774 / 8K 100 / 1.520 / 1.6K 100 / 1.016 / 631 100 / 1.046 / 360 100 / 1.462 / 253
17 / 162.6 / 33K 74 / 80.59 / 14.2K 97 / 23.53 / 3,265 99 / 11.07 / 848 99 / 7.392 / 298 100 / 5.057 / 144

Table 4.MPE (medium connectivity): Average number of exactly solved instances (%), average
CPU time in seconds (time) and average number of search tree nodes expanded (nodes). 180
seconds time limit.

s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB
Network d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB
(# vars, w* H s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB

avg dom, d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB
max dom) i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

time / nodes time / nodes time / nodes time / nodes time / nodes time / nodes time / nodes time / nodes time / nodes
- / 5.1M - / 10.7M - / 11.4M 266.1 / 5.4M 1.094 / 5.2K 9.361 / 410

Barley 7 17 - / 281.6K 144.9 / 39.9K 13.60 / 976 49.11 / 639 49.28 / 122 95.44 / 99
(48,8,67) - / 12.8M - / 9M - / 6.8M 541.9 / 7.3M 1.642 / 6.7K 9.774 / 523

- / 2.1M - / 829.5K 34.75 / 5.7K - / 56.8K 57.06 / 143 107.1 / 100
479.1 / 5.1M 149.8 / 822K 0.312 / 43

Mildew 4 15 91.47 / 19.5K 36.73 / 1.7K 1.781 / 35
(35,17,100) - / 7.9M 31.72 / 282K 0.297 / 76

152.9 / 64.9K 42.83 / 3K 1.86 / 71
292.3 / 3.3M 39.27 / 480K 17.10 / 255K 3.768 / 62.2K 2.549 / 39.1K 2.736 / 37.6K 2.361 / 11.3K 10.30 / 6.3K 18.34 / 1.4K

Munin1 11 24 78.31 / 223K 15.42 / 9.7K 12.49 / 2.3K 14.51 / 802 17.65 / 433 44.04 / 349 47.57 / 605 77.45 / 387 101.7 / 378
(189,5,21) - / 2.9M - / 3.2M - / 4.3M - / 3.7M - / 4M - / 3.9M 105.4 / 376K 111.2 / 366K 19.34 / 1.9K

- / 311K - / 327K - / 185K 14.90 / 804 17.47 / 437 43.11 / 352 48.63 / 661 78.50 / 427 100.6 / 417
- / 1.9M - / 3.6M - / 5.6M 2.984 / 32.9K 0.906 / 7.4K 0.641 / 1K

Munin2 7 35 - / 3.1M - / 952K - / 270.1K 48.47 / 3.9K 35.11 / 1.1K 6.203 / 1K
(1003,5,21) - / 424K - / 581K - / 137K - / 137.8K - / 135.1K - / 170K

- / 25K - / 75K - / 64.2K - / 16.3K 121.5 / 1.2K 101.9 / 1K
- / 2.9M - / 3.1M 5.844 / 53.8K 0.64 / 6.8K 0.61 / 5.3K 0.875 / 1K

Munin3 7 25 - / 2.3M 91.5 / 62.6K 4.578 / 5.9K 3.515 / 3.8K 4.328 / 3.1K 3.282 / 1K
(1044,5,21) - / 371K - / 405K - / 172K - / 432K - / 364.9K 38.94 / 1K

- / 25.2K - / 82.4K - / 38.3K - / 23.7K 166.8 / 3.1K 49.89 / 1K

Table 5. Results for experiments with 5 real world belief networks. Time until completion (sec-
onds) and number of nodes. 600 seconds time limit.

the product formPB(X) =
∏n

i=1 P (Xi|pai). One popular query over belief networks
is finding themost probable explanation(MPE), that is finding a complete assignment
to all variables having maximum probability, given some evidencee: P (x1, ..., xn) =
maxx1,...,xn

∏n

i=1 P (xi, e|pai).
However, the classical MPE problem can be reformulated as a constraint optimiza-

tion problem. Each original conditional probability tableP (Xi|pai) is replaced by a
cost functionfi(Xi, pai) = −log(P (Xi|pai)), defined over the same scope. The global
cost function that has to be maximized becomesF (X) =

∑n

i=1 fi(X).
We have evaluated the performance of our algorithms on random uniform belief

networks. They were generated as in [16], using parameters〈N, K, C, P 〉, where N is
the number of variables, K is the domain size, C is the number of conditional probability
tables (CPTs) and P is the number of parents in each CPT. [16] provides an extensive



empirical study of the BBMB/BBBT classes of algorithms, forsolving the Bayesian
MPE problem. It was observed that over a wide range of problemclasses, both random
and real-world benchmarks, that BBMB/BBBT algorithms are superior to a number of
state-of-the-art solvers. BBBT [8, 16] is a regular BnB algorithm that uses MBTE-based
heuristics, dynamically at each search node. Unlike the BBMB class, it is not restricted
to a static variable ordering.

Table 4 shows experiments with random uniform networks having N=100, K=2,
P=2. The results are reported in a similar fashion. We observe the same trend as in the
previous experiments. AND/OR search algorithms are superior to the OR algorithms,
for all reportedi-bounds. The time savings are again more dramatic for smalli-bounds.
This may be significant because smalli-bounds require restricted space.

We also experimented with 5 real world belief networks from the Bayesian Network
Repository1. We ran one instance of each network in order to compute the most prob-
able explanation, without any evidence. Each algorithm wasallowed 10 minutes (600
secs) to prove optimality of the solution. Table 5 summarizes the results. We observe
again the same trend,d-AOMB is superior for smalli-bounds (e.g. Barley, Mildew,
Munin1, Munin3), whiles-AOMB dominates for largeri-bounds. We conclude that
for the MPE domain and for medium connected and sparse beliefnetworks, the algo-
rithms based on the AND/OR tree representation of the searchspace provide the best
performance.

6 Related Work

The idea of exploiting structural properties of the problemin order to enhance the per-
formance of search algorithms in constraint satisfaction is not new. Freuder and Quinn
[11] introduced the concept of pseudo-tree arrangement of aconstraint graph as a way
of capturing independencies between subsets of variables.Pseudo-tree search [11] is
conducted over a pseudo-tree arrangement of the problem which allows the detection of
independent subproblems that are solved separately. Dechter’s graph-based backjump-
ing algorithm [5] uses a DFS spanning tree to extract knowledge about dependencies
in the graph. The notion of DFS-based search was also used by Collin et al. [4] for
a distributed constraint satisfaction algorithm. Bayardoand Miranker [2] reformulated
the pseudo-tree search algorithm in terms of backjumping and showed that the depth of
a pseudo-tree arrangement is always within a logarithmic factor off the induced width
of the graph. Larrosa et al. [14] introduced BnB search that exploits a pseudo-tree ar-
rangement of the constraint graph to boost the Russian Doll search for WCSP.

7 Conclusions

The paper investigates the impact of the AND/OR search paradigm for graphical mod-
els on Branch-and-Bound algorithms. Since the depth of an AND/OR search tree can
be shown to be smaller than the depth of an equivalent OR search tree, search algo-
rithms that explore an AND/OR space can exhibit exponentialsavings when compared

1 http://www.cs.huji.ac.il/labs/compbio/Repository



with their OR space counterparts. We propose two new algorithms,s-AOMB and d-
AOMB, which extend recent schemes of Branch-and-Bound withmini-bucket heuris-
tics, s-BBMB and d-BBMB, to the new AND/OR search framework. Our empirical
work was concentrated on the Max-CSP task in constraint processing and the MPE
problem in belief networks, and shows that for some problem classes the new AND/OR
scheme improves dramatically over the regular OR space algorithms, especially when
the structure of the problem facilitates the construction of pseudo-trees with relatively
small heights.

Our approach leaves room for future improvements, which arelikely to make it
more effective in practice. For instance, it can be modified to traverse an AND/OR
graph, rather than a tree, which would facilitate caching. We did not study the effect
of the ordering in which the independent subproblems are solved. Similarly, we used a
rather simple scheme of generating pseudo-tree arrangements, probably having highly
non-optimal height. All these issues represent out currentand future work.

References

1. Arnborg, S. A. 1985. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability. BIT 25:2–23.

2. Bayardo, R. J. and Miranker, D. P. 1995. On the space-time trade-off in solving constraint
satisfaction problems. In Fourteen IJCAI-95.

3. Bensana, E., Lemaitre, M. and Verfaillie, G. 1999. Earth observation satellite management. In
Constraints 4 (1999), 293-299 .

4. Collin, Z., Dechter, R. and Katz, S. 1991. On the feasibility of distributed constraint satisfac-
tion. In Proceedings of IJCAI-91.

5. Dechter, R. 1990. Constraint networks - a survey. In Encyclopedia of AI, 1990.
6. Dechter, R. 1999. Bucket elimination: A unifying framework for reasoning. Artificial Intelli-

gence, 113:41–85.
7. Dechter, R. and Rish, I. 2003. Mini-Buckets: A general scheme for approximating inference.

In Journal of ACM.
8. Dechter, R., Kask, K. and Larrosa, J. 2001. A general scheme for multiple lower bound com-

putation in constraint optimization. In Proceedings of CP-01.
9. Dechter, R. 2004. AND/OR Search Spaces for Graphical Models. Technical Report.
10. Dechter, R. and Mateescu, R. 2004. Mixtures of deterministic and probabilistic networks. In

Proceedings of UAI-04.
11. Freuder, E.C. and Quinn, M.J. 1985. Taking advantage of stable sets of variables in constraint

satisfaction problems. In Proceedings of IJCAI-85.
12. Kask, K. and Dechter, R. 1999. Branch and Bound with Mini-Bucket heuristics. In IJCAI-99.
13. Larrosa, J. and Meseguer, P. 1999. Partition-based lower bound for Max-CSP. In CP-99.
14. Larrosa, J., Meseguer, P. and Sanchez, M. 2002. Pseudo-tree search with soft constraints. In

Proceedings of ECAI-02.
15. Lawler, E.L. and Wood, D.E. 1966. Branch-and-bound methods: A survey.Operations Re-

search14(4), 699-719.
16. Marinescu, R., Kask, K., Dechter, R. 2003. Systematic vs. non-systematic search algorithms

for solving the MPE task in Bayesian networks. In Proceedings of UAI-03.
17. Nillson, K.L. 1980. Principles of Artificial Intelligence. Tioga, Palo Alto, CA.
18. Pearl, J. 1984. Heuristics: Intelligent search strategies for computer problem solving.

Addison-Welsey, 1984.
19. Pearl, J. 1988. Probabilistic Reasoning in IntelligentSystems. Morgan Kaufmann, 1988.


