
Cluster-Based File Replication in Large-Scale Distributed Systems

Harjinder S. Sandhu and Songnian Zhou

Computer Systems Research Institute

University of Toronto, Toronto, ON, M5S 1A4

{hsandhu,zhou}@ csri.toronto.edu

Abstract

The increasing need for data sharing in large-scale

distributed systems may place a heavy burden on critical

resources such as file servers and networks. Our examina-

tion of the workload in one large commercial engineering

environment shows that wide-spread sharing of unstable

files among tens to hundreds of users is common. Tradi-

tional client-based file cacheing techniques are not scal-

able in such environments.

We propose Frolic, a scheme for cluster-based file

replication in large-scale distributed file systems. A clus-

ter is a group of workstations and one or more file servers

on a local area network. Large distributed systems may

have tens or hundreds of clusters connected by a back-

bone network. By dynamically creating and maintaining

replicas of shared files on the file servers in the clusters

using those files, we effectively reduce reliance on central

servers supporting such files, as well as reduce the dis-

tances between the accessing sites and data. We propose

and study algorithms for the two main issues in Frolic,

1) locating a valid file replica, and 2) maintaining con-

sistency among replicas. Our simulation experiments us-

ing a statistical workload model based upon measurement

data and real workload characteristics show that cluster-

based file replication can significantly reduce file access

delays and server and backbone network utilizations in

large-scale distributed systems over a wide range of work-

load conditions. The workload characteristics most criti-

cal to replication performance are: the size of shared files,

the number of clusters that modify a file, and the number

of consecutive accesses to files from a particular cluster.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM SIGMETRICS & PERFORMANCE ‘92-6 /92/R.l., USA

01992 ACM 0-89791-508-9/92/0005/0091 . ..$1.50

1 Introduction

Efficient mechanisms for data sharing are essential to the

performance of distributed file systems. Past research

has focused on data management in local area environ-

ments, using cacheing techniques for improving file sys-

tem performance. The success of distributed systems in

local area environments has lead to their growing domi-

nance in large-scale environments encompassing hundreds

to thousands of hosts. This suggests a need to focus more

research on the issues of efficient data sharing in large-

scale distributed environments.

Since a distributed file system ia essentially a means

of sharing resources, as distributed systems grow larger,

the amount of sharing may be expected to increase as

well. This places a heavy burden on critical resources

such as file servers and interconnection networks. Con-

temporary file systems, such as Sun’s Network File Sys-

tem (NFS) [SGK+85], are unable to respond adequately

to scale. Part of the reason for this is their reliance on

client-based cacheing and synchronization mechanisms in

which the client must contact the file server at file open

time to check the validity of its cached data. Such tech-

niques generate unnecessary network traffic and server

load in circumstances where typically a file has not been

updated since the last open by the client. Their scalabil-

ity is thus limited.

One approach to scalable file systems is the Andrew

File System (AFS) [HKM+ 88], intended to provide a uni-

fied computing environment for thousands of users. AFS

replaces the client-baaed cache validation scheme with a

call-back mechanism. Using call-back, it is the server’s re-

sponsibility to notify the clients whenever a file changes,

thus potentially eliminating unnecessary communication

between the client and file server. Additionally, AFS per-

forms whole file cacheing on client disks, and provides a

mechanism for read-only replication. Since the file cache

on local disk is typically larger than that in main mem-

ory, higher file access hit ratios may be expected. Within

the academic environment in which AFS was developed,

91. Performance Evaluation Review, vol. 20, No. 1, June 1992

the primary need is to provide transparent and efficient

file access throughout the system, as the users often move

from location to location. The AFS approach may pro-

vide scalability to hundreds or more workstations in this

type of environment.

A problem with AFS and other similar file systems is

that they were designed almost exclusively for academic

environments. Indeed, many of the past workload studies,

upon which most of the existing distributed file systems

are based, have concentrated on academic environments

[OCH+85][BHK+91], and the applicability of these stud-

ies to other environments is questionable. In particular, it

was found that read-only sharing of system files is com-

mon, but sharing of unstable user files is not, since in

these environments users typically work in small isolated

projects. Many commercial environments, on the other

hand, tend to be oriented towards large projects, with a

number of users working on a single project and actively

sharing files. The ability to share data widely in these en-

vironments may be limited by the ability of file systems

to respond adequately to scale under such circumstances.

We conducted a workload study in a large engi-

neering computing environment comprising thousands

of workstations for product development [SZ92]. Most

of the computing facilities in this environment are dis-

tributed across a number of sites in one metropolitan area.

Project-oriented workgroups are supported by clusters of

10-50 workstations and one or more file servers, and mul-

t iple clusters are joined by a variet y of backbone networks

and serial links. In our study, we concentrated on exam-

ining file system and network characteristics. Some of the

findings of this study show that the problems we had ex-

pected do indeed exist, but that they are far beyond our

expectations. For instance:

1.

2.

3.

4.

There is wide-spread sharing of user files, on the or-

der of hundreds of users situated at workstations

across multiple clusters. Such files include but are

not limit ed to source libraries, applications, simula-

tion input/output, and executable which are unsta-

ble (i.e., they may change from day to day or many

times a day in some cases).

Many very large files (up to several megabytes in

size) are also being shared widely, although a major-

ity of files are on the order of 10 Kbytes in size.

Data is geographically distributed. Users commonly

access data that exists in different sites around the

metropolitan area.

The amount of data

tention and delays on

nection networks.

sharing causes excessive con-

some file servers and intercon-

5. Although sharing is wide spread, write sharing across

multiple clusters is rare. Typically, one cluster is the

producer of data, while the other clusters accessing

that data act as consumers,

These observations would appear to be representative

of an important type of environment: large distributed

environments with a need for extensive wide-spread shar-

ing. The need for wide-spread sharing arises from the fact

that modern engineering and production environments of-

ten require large teams of people at different locations to

cooperate closely on the same project.

Under conditions of wide-spread sharing of large un-

stable files, the traditional strategy of client cacheing from

central file server sites (as shown in Figure 1) is inade-

quate for two reasons. First, even a low cache miss rate

could be devastating to performance when tens or hun-

dreds of clients are accessing and potentially modifying

the same set of files. Not only must the server for these

files handle many file access requests, but the client-server

interaction required for coherence may become a serious

factor in file server response time. Server congestion may

be reduced by placing different actively shared files on

different servers, but such load balancing is likely to be

limited since it can only be done on groups of large files

and file access patterns typically change over time.

Ci - cached cOr)ies/bl ksof fde i

of file i

Figure 1: Traditional client cacheing from central servers.

The second reason for the inadequacy of traditional

client-based cacheing is that, in a large-scale distributed

environment, the distance between the requesting client

site and the file server may cause unreasonable latency,

since a data access may require traversing a complex in-

terconnection network and large geographical distances.

When a file is modified, the file server must send invali-

dation messages to possibly hundreds of clients over these

same potentially large distances. Even if cache misses are

infrequent, thousands of clients performing data access

from file servers outside of their cluster result in unman-

ageable loads on interconnection networks. This is some-

thing we observed in the our workload study environment.

Obviously, a better approach to scalable distributed file

92. Performance Evaluation Review, Vol. 20, No. 1, June 1992

systems is needed for such environments.

In this paper, we propose the use of dynamic cluster-

based file replication techniques to address these prob-

lems. In Section 3, we outline the important issues in

cluster-based file replication, and propose some solutions.

Section 4 presents a general workload model for studying

the performance of file replication. Section 5 presents

the results of simulation experiments that examine the

performance of cluster-based file replication. We identify

the critical parameters that impact the cost of replication

and examine the conditions under which replication will

perform well. Lastly, we compare the performance of the

various replication st rat egies outlined in Section 3.

2 The Frolic Approach

Large-scale distributed systems tend to have an inher-

ently clustered physical organization, as shown in Figure

2. The engineering computing environment discussed in

Section 1 is a typical example. File systems designed for

scalability y (AFS, for example) also assume such a system

architecture. Clustering is natural in such systems be-

cause it effectively overcomes the length and bandwidth

limitations of LANs, simplifies administration and main-

tenance, and exploits locality in resource sharing. The

scalability of such systems can be defined as the ability of

the file system to support tens (and eventually hundreds)

of clusters efficiently.

Single cluster

Figure 2: A clustered large-scale distributed system.

In the previous section, we outlined two major prob-

lems in large-scale distributed systems, namely, network

and file server congestion, and high access latency. The

source of these problems appear to be twofold: 1) for a

shared file, the many-to-one relationship between poten-

tially hundreds of clients and a single file server which

must synchronize access to that file, and 2) the distance

between the accessing site and data.

Our approach to scalability and performance in large

distributed file systems, called Frolic (for File Replica-

tion Over Large Interconnected Clusters), involves dy-

namically creating and maintaining replicas of files on

the jile servers within the clusters that access those files.

The general model is shown in Figure 3. It should be

noted that Frolic is only a software technique; the phys-

ical hardware configuration of the system is the same as

before. By replicating across clusters, we have effectively

changed the n to 1 client-server relationship to an n to

k to 1 client-server relationship (assuming there are n

clients in k clusters accessing the file). This alleviates the

problem of a central server being a potential bottleneck.

By maintaining replicas within clusters where they are

accessed, we also reduce access latency by insuring that

most file access requests may be satisfied locally, although

in some cases the local server will need to obtain a copy

of the file before replying to the client.

Ci - cachedcmieshlocks of file i

@@@

@b& 9$

+.1CJci&g

cluster

Em---- “

tile

ClienLs

. . .

File
Sewers

Ri - Replicas of file i Replicationto file sewersacrossclusters

Figure 3: Dynamic cluster-based file replication.

In Frolic, replication is performed on the file servers

and is transparent to client workstations. There are

two levels of operation in Frolic: intra-cluster and inter-

cluster. The protocol for client-server interaction within

the cluster does not need to be modified, so any strategy

for data management, cacheing, and cache validation may

be used within the cluster. The file servers, however, must

maintain consistency of the replicas among themselves.

Such a clear hierarchical separation allows the Frolic ap-

proach to be applicable to any existing distributed file

system. The next section examines replication strategies

and the synchronization of replicas among clusters.

3 Algorithms for Replication

Our model of the system consists of file servers, one per

cluster for simplicity, interacting with each other through

some arbitrary interconnection network. Replicas are cre-

ated and maintained cm the servers on demand, that is,

accesses to a file from another cluster causes a replica of

that file to be created in the accessing cluster. The details

of intra-cluster data management are ignored since they

93. Performance Evaluation Review, Vol. 20, No. 1, June 1992

do not affect the behavior or performance of the replica-

tion algorithms. The impact of network failures and data

loss is not discussed in this paper, since our primary fo-

cus is that of performance. Issues of availability and fault

tolerance in relation to cluster-based file replication may

be dealt with in some later work.

The workload in this model comprises file accesses

to shared files, and a background workload representing

the aggregate of all other activity in the system. Sha~ed

jides are those that are accessed from more than one clus-

ter during their lifetimes. A file access is a complete

open-close session, consisting of a file open, zero or more

read/write operations, and a file close operation. A file is

considered to be modified if one or more write operations

took place in the last access (i.e., open-close session) of

that file.

In the algorithms we describe here, a file can only be

modified by a single cluster at a time, this cluster being

denoted the owner of the file. Another cluster wishing

to modify the file must first acquire ownership of the file.

Although this may appear to be overly restrictive, this

rule can easily be relaxed without effecting performance

significantly, since we expect concurrent writing across

multiple clusters to be very rare. Enforcing this restric-

tion, on the other hand, affords us the luxury of being

able to avoid the concurrent writers problem completely.

The only issue is that of ensuring that all replicas are

kept up-to-date. Notice as well that this restriction is

only enforced on replicas at the cluster level. If cluster

A is currently the owner of a file, any number of users

within that cluster may modify the file, using any type of

consistency mechanism, but no users in any other cluster

may do so until their cluster has acquired ownership. The

owner must keep track of all the clusters that have valid

replicas of a file. When ownership changes, this informa-

tion is passed on to the new owner of a file.

Synchronization of replicas is performed at file close

time. Our choice of file close consistency for synchroniza-

tion of replicas is motivated by the goal of performance.

The performance penalty of synchronizing replicas after

every write operation will be high, and the benefits com-

paratively negligible given that most applications do not

require such a high degree of consistency. AFS also uses

file close consistency semantics, but again it must be em-

phasked that, in our case, the consistency semantics are

applied only at the cluster level.

3.1 Issues h Replication

There are essentially two issues in file replication: 1) lo-

cating replicas, and 2) maintaining consistency among

replicas. Locating (i.e., finding) a replica is an issue be-

cause the file no longer resides at a single fixed place in

the distributed system, since replicas may be created and

destroyed over time. A file server that does not have a

replica of a particular file, or has an out-of-date copy of

the file, must have some way of locating a valid replica

of that file in order to obtain fresh data. The second is-

sue, that of consistency, is to ensure that all replica sites

are made aware of modifications to a file after that file

is closed. In this section, we shall discuss some alterna-

tives for dealing with both of these issues. Section 5.4

presents some simulation experiments that compare the

effectiveness of these techniques.

3.2 Locating Techniques

There are a number of possible techniques for dealing with

the issue of locating replicas, many of which have been

applied to Distributed Shared Memory algorithms and

are discussed by Li [Li89], and Stumm and Zhou [S Z90].

A analysis (more detailed than the one presented here) of

their application to cluster-based file replication can be

found in [San91].

●

●

●

●

Central Server. A single file server (the Central

Server) is made the master for a particular file or

file subsystem. The Central Server is responsible for

maintaining the most recent version of the file, and

for resolving conflicts and enforcing consistency. The

drawbacks of this method are: a) the Central Server

may become a bottleneck, and b) the cost of sending

all modifications of a file to the Central Server may

be substantial.

Distributed Management with Mutticast. We can sim-

plify the problem of locating a valid replica of a file

to that of locating the cluster that is the owner of

that file, since the owner is the only cluster guaran-

teed to have an up-to-date version. Since ownership

may change over time, the simplest solution would

be to multicast ownership change information to all

concerned file servers. This technique has the disad-

vantage that multicast is expensive over many geo-

graphically distributed sites.

Distributed Management with Dynamic Location. In

order to reduce overhead, we want to avoid inform-

ing all replica sites every time a change in ownership

occurs. A site wishing to locate the owner of a file

must then contact the site it thinks is the owner, and

that site in turn forwards the message to the site it

thinks is the owner, and so on until the current owner

is located. In the worst case, this forwarding tech-

nique requires searching through i$l — 1 sites for an

owner if there are IV replica sites.

Locating Server. This technique is a hybrid between

centralized and distributed management techniques.

94. Performance Evaluation Review, Vol. 20, No. 1, June 1992

The Locating Server is a server whose sole respon-

sibility is to keep track of the owner of a file. For

each ownership change, the Locating Server is noti-

fied, and subsequent locating requests are directed to

the Locating Server. Since the Locating Server han-

dlesonly trivial requests, it islesslikely to becomea

bottleneck than the Central Server described earlier.

Additionally, the task of the Locating Server maybe

distributed throughout the system for different sub-

domains of the file space,

3.3 Consistency Schemes

There are two basic techniques for the synchronization of

a replicated set of data: immediate update and invalida-

tion. With immediate update, modification of a file causes

all replicas to be updated as soon as the file is closed. The

drawback with this technique is the potential number of

wasted updates. That is, replicas may be updated many

times before they are actually used by another site and

the cost of sending updates after every modification may

be prohibitive. With invalidation, on the other hand, a

modification to a file causes all other replicas to be inval-

idated at file close time. Updates are then requested on

demand (i.e., at file open time) by a site with an invalid

replica, thus eliminating the problem of wasted updates.

However, invalidation also has drawbacks. First, requir-

ing replica sites to acquire updates on demand leads to

higher file access latency, whereas, with immediate up-

date, updates can be performed asynchronously. Second,

although we are not explicitly concerned with fault tol-

erance, it is obvious that the chances of losing data are

higher with invalidation, since, using this technique, it is

possible that only a single replica of the file exists at a

time.

A third technique, which we call pa?tial update, repre-

sents a compromise between invalidation and immediate

update. Using partial update, a site other than the cur-

rent owner is sent updates to the file, but all other sites

are invalidated. If the alternate site is selected to be one

that frequently accesses the file, then this may reduce av-

erage latency while incurring relatively low overhead cost.

Moreover, it has the additional advantage that the chance

of data loss is greatly reduced (compared to invalidation)

since now at least two sites will always have valid replicas.

4 Workload Model

In this section, we describe the workload model which

will be used as a basis for evaluating the benefits of Frolic

and the different replication algorithms. File servers, file

server disks, and networks constitute the only resources

in our system model. They are modeled as single server

queueing centres. Workstations are not modeled explic-

itly, but are represented only by the workload they gener-

ate on the rest of the system. The effects of workstation

cacheing are taken into account by reducing the effective

workload induced by workstations to the rest of the sys-

tem.

The workload model consists of file operations to

shared files and a background workload. Recall that, by

our definition, shared jiles are those that are accessed from

more than one cluster during their lifetime. The load gen-

erated by all operations not directly related to accesses to

shared files is represented as a background workload that

simply inflates the utilization of each of the resources.

Cacheing at the file server is represented implicitly in the

model by incorporating those requests which would result

in a file server cache hit into the background workload.

We use a statistical workload model whose parame-

ters are based upon three primary sources: a) measure-

ments and traces performed using a locally developed

tracing package called Snooper [ZS90], b) the case study

in which we examined the workload of a large-scale com-

mercial distributed environment [SZ92], c) and other pub-

lished work in the area. In general, we try not to limit

ourselves to observations of workload characteristics in

our workload study, as they constitute only a single data

point and would thus limit the generality of the results.

Instead, we define the most important workload parame-

ters and attempt to study replication under a wide range

of workload conditions by varying these parameters.

4.1 Service Demands

Our model considers the following types of file operations:

open, close, block read/write (BRW), replica update (or

just update), and server-to-server messages (for invalida-

tion and locating). The resource demands in the model

are based on measurements published by Molloy [M0190]

for a network of HP 9000’s, as well as measurements from

traces conducted at Toronto on a network of DEC Vaxen

[ZS90]. For the backbone network, measurements of the

service demand were not available, so we estimate a base

cost, and then perform simulation for a range of values to

determine the sensitivity of the results to this base cost.

Table 4.1 shows a matrix of service demands imposed

by each type of operation on each resource. We define a

local operation as being one which is handled within the

cluster in which it originated, and a remet e operation as

being one that transcends two clusters. For open, close,

and read fwrite, the service demand on each resource is

the aggregate of both the request and the reply phases of

the operation. For replicated files, if a local replica of a

file exists, then only local operations are needed. If the

local replica has become stale, a local open is preceded

95. Performance Evaluation Review, Vol. 20, No. 1, June 1992

by a replica update operation. If the replica is modified

during an open-close session, the other replicas are either

invalidated (using server-to-server messages) or updated

(using a replica update operation), depending on which

consistency mechanism is being used,

EzEi!EI

E
Local

BRW

open

close

Remote

BRW

open

close

replica

update

server-to-

server msg

local cluster

Lan

7
1

0.1

7
1

0.1

7

0.5 ;

15 27

10 3

4-

-.

--

4-

15 27

4-

BBn

Net

16

1

0.5

16

0.5

remote cluster

Lan

7
1

0.1

7

0.1

F—

15

40

4—

15

4.

disk

27

3

27

Table 1: Average service demands (in ms) per resource

for file operations. Block operations and replica update

are in 8 Kbyte units.

As an example of the service demand matrix param-

etrization, a local block read/write originating on a user

workstation and served by the file server within the same

cluster has the following service demands: 7 ms on the

LAN and 15 ms on the file server (for both the request

and the reply), and 27 ms on the file server disk for those

requests that result in a file server cache miss. A remote

BRW requires the same 7 ms on the local LAN, 16 ms on

the backbone network (BBn Net in the table), another 7

ms on the remote LAN, 15 ms on the remote file server,

and 27 ms on the remote disk. For simplicity, the partial

overlaps in the use of resources for file operations are not

simulated. Such overlaps have no effect on resource con-

tention, and we do not expect the relative results to be

affected by this simplification.

While most of these numbers are based upon actual

measurements, the cost of using the backbone network

was only estimated. We assume it to be 2.5 times the

cost of using a LAN to take into account the longer dis-

tances, multiple gateways, and often lower bandwidth of

backbone networks. In our experiments, this cost was

varied in order to determine the sensitivity of the results

to this parameter.

An important design issue in Frolic is whether to per-

form replica updates on a block basis or on a whole file

basis. Performing updates on a block basis implies that

the modified blocks of a file can be identified, so that only

those blocks need to be sent to update a stale replica.

Performing updates on a whole file basis means that the

entire file is transferred to a stale replica site. For the

sake of generality, we choose to study the whole file up-

date technique. If block updates are feasible, the perfor-

mance of cluster-based replication would be better. In

the service demand matrix, the unit cost of performing a

replica update is shown as the average cost of transferring

an 8 Kbyte block. The cost of replicating a file would be

this value multiplied by the number of 8 Kbyte blocks

in this file. In our workload study [SZ92], we found a

high variance among the average sizes of different types

of shared files: 8 Kbytes for executable, 22 Kbyt es for

object files, and 68 Kbytes for source libraries, In the

model, we choose a default average file size of 24 Kbytes

(for simplicity, we choose average file size to be a multi-

ple of the block size). In Section 5.3.1, we examine the

impact of choosing whole file transfer for replica update,

as well as the effect of varying the average file size.

A few other workload parameters need to be men-

tioned here. The first is workload intensity, which we

characterize by the number of accesses to shared files per

cluster per second. Our default value for workload in-

tensity is 2.0 accesses per cluster per second, estimated

from the request rate to files in the Snooper trace study

and the expected rate of access to shared files. Most of

our simulation experiments were conducted for a range of

workload intensities ranging from very light, where there

is almost no activity on the system, to very heavy.

A second parameter, related to the file size, is the

portion of the file accessed in a typical open-close session.

This was not examined in our workload study, so for an

initial estimate we rely on observations in other published

work that most of a file is accessed in a typical open-close

session [OCH+ 85] [Kur88]. Our initial estimate of the

portion accessed is an average of 16 Kbytes (2/3’s of an

average 24 Kbyte file), or 2 BRW’S. A multiple of the

block size is chosen for simplicity. In the experiments, we

examine the effects of varying the portion accessed from

a minimum of 8 Kbytes (one block) to the whole file.

The background workload, which includes all activ-

it ies not direct 1y related to shared files, is characterized

by an expected utilization on each of the system resources

in the absence of accesses to shared files. For the local

area case, the expected utilizations are about 30% on the

servers, 12% on the LAN’s, and about 80% on the disks.

These values correspond roughly to observations of local

area environments made by MoHoy [M0190] as well as in

our workload study [SZ92]. For the backbone network, we

estimated the background load utilization to be around

5~o. This agrees with observations in our workload study

in which the background networks had an average utiliza-

tion of 20-30~0 and 60-80% of this was due to file access

traffic,

96. Performance Evaluation Review, Vol. 20, No. 1, June 1992

4.2 File Reference Patterns

The file reference characteristics of an environment essen-

tially determine the effectiveness of any data management

scheme. For cluster-based replication, some of the most

important file reference parameters are:

1.

2.

3.

degree of sharing the number of clusters that access

a file over its lifetime.

number of writers: the number of clusters sharing a

file that will also modify it during its lifetime.

cluster locality the number of consecutive accesses

to a file from-a particular cluster before any other

cluster requests it.

For each of these characteristics, we derive a general

model for representing them and also arrive at some de-

fault parameters, shown in Table 2. In our simulation

experiments, we varied each of the parameters and at-

tempted to determine the sensitivity of the results to

these parameters.

The sharing patterns among clusters were examined

in our workload study, and it was found that while there

were a large number of files being shared, most files were

only accessed from a few clusters during the one week

examination period. The degree of sharing was found to

be hyper-geometrically distributed, with a large number

of files being shared among two clusters, fewer files be-

ing shared among three clusters, fewer still being shared

among four clusters, and so on. In our workload study,

the shared files we classified are mostly user files such as

source libraries, applications, and execut ables. Although

system files, such as those in ‘/bin’, are widely used, they

are of less interest since they are read-only, so that once

replicated they will not cause any further transfer or con-

sistency overhead. We model the degree of sharing using

a hyper-geometric distribution whose mean and variance

are parameters in our workload model. The default mean

is set to 4 (which is higher than the average degree of

sharing for a set of source files in our workload study).

Past workload studies in local area environments have

noted the read-mostly aspect of files [OCH+85] [BHK+ 9 I]

[BR90] [Kur88]. This observation appears to hold true for

larger environments as well, with those files that are writ-

ten to being modified usually by only one cluster during

its lifetime. In our workload study, we observed that for

files which are modified, they are usually modified by only

a single cluster/writer (recall that if a cluster is a writer,

any number of users within that cluster may modify the

file). Few files have two writers, and fewer still have three.

The number of writers per file is also modeled as a hyper-

geometric distribution (hyper-geometric being chosen so

that we could vary both the mean and the variance of

the distribution and study their impacts). In our model,

since we are interested primarily in unstable shared files,

all files have at least one writer. The default mean for the

number of writers distribution is 2, which is higher than

what we observed in our workload study. We chose this

mean to be higher than expected in order that we do not

create an inherent bias towards replication. Experiments

in Section 5.3.2 examine the effect of different numbers of

writers per file.

For cluster locality, we set the default value to 4 ac-

cesses per cluster and later varied this value in the exper-

iments. No measurements of cluster locality were avail-

able, so this default value is only an estimate. Section

5.3.2 examines the impact of cluster locality on file repli-

cat ion.

Parameter Default Value

Number of clusters I 10
Workload intensity 2 opens jsecjcluster

Average File Size 24 Kbytes

Average Portion Accessed 16 Kbytes

Average degree of sharing 4 clusters

Averaee number of writers 2 writers Der file

I Avera~e demee of localitv I 4 accesses per cluster I

Table 2: Default workload parameters.

Table 2 shows a summary of the default parameters.

Each of these parameters was varied in our experiments.

However, while one parameter was being varied, all others

were set to the default values shown in this table. The

duration of time simulated for the experiments is about

6 hours. The workload is uniform over this time period

(i.e. burstiness in the workload was not modeled).

5 Simulation and Results

In this section, we present the results of a series of simula-

tion experiments studying the performance of Frolic, and

comparing the different replication algorithms. The simu-

lator is implemented in Csim [Sch88], a C-based process-

oriented simulation tool, and uses the workload model

described in the previous section. We first compare the

performance of Frolic to that of a non-replicated file sys-

tem using the default parameters shown in Table 2. We

then present some experiments designed to determine the

behavior of file replication over a range of workload con-

ditions. While a number of techniques for locating and

consistency have been discussed, all of the experiments

use the Locating Server technique coupled with invalida-

tion for consistency. Section 5.4 presents a comparison of

97. Performance Evaluation Review, Vol. 20, No. 1, June 1992

the performance of the different replica management and

consistency schemes presented in Sections 3.2 and 3.3.

The primary measure of performance is the average

file access time, which is the sum of the durations of all

file operations in an open-close session, including the open

request, a number of read/write operations, and the close

request. This is equivalent to the real-time duration of

an open-close session with the time between operations

removed. When replication algorithms are used, access

time also includes the time required for a possible update

(file transfer) when a new replica is required at the local

cluster or a replica has become stale. Synchronization at

file close time (i.e., invalidation of replicas) does not di-

rectly contribute to the access time, since it is performed

asynchronously with respect to file access. However, an

increase in the number or cost of synchronization oper-

ations will increase network and server utilization, and

that will in turn affect the average access time. The ben-

efit of using file access time as a response time measure

is that factors which do not directly contribute to the

relative performance of file replication are excluded.

The no replication case used for comparison in these

experiments is based upon a simplified model of tradi-

tional client cacheing from a central server, in which file

access requests to access blocks of a file arrive at the server

for that file from the workstations. The hardware config-

uration of the system is assumed to be the same, and files

are distributed across the system such that a file may ex-

ist with equal probability on any one of the clusters that

share that file. The effects of cacheing at the workstations

is taken into account implicitly by adjusting the workload

intensity according to the expected workstation cache hit

ratio.

5.1 The Benefits of Replication

In the first set of experiments, the simulation was run

with and without replication for varying workload inten-

sities. The workload intensity is controlled by the arrival

rate of access requests per cluster to shared files. The

values of all other parameters are the defaults described

in Table 2 in the previous section.

Figure 4 shows a comparison of the file replication

and no replication case for different workload intensities.

9070 confidence intervals are shown as vertical bars in

the graph. We also show, for the sake of comparison,

the unrealizable pure-local case. Pure-local is when all

accesses are satisfied locally (within the cluster), and no

inter-cluster interaction is required. It is in a sense a

lower bound on access time for any cluster-based data

management strategy,

Given our workload assumptions, file replication ap-

pears to improve file access times for any workload in-

tensity. At low workload intensity, the increase in the

400<

300

k“

no replication

Access
Frolic

:1; 200 _ -- __ +..____+._ -----+ ----
--

100 pure-local (unretizable)

.1 1 2 3 4

Workload intensity (fde accesses/see/cluster)

Figure 4: Performance of file replication for varying work-

load intensities.

percentage of file accesses that are local due to replica-

tion causes a significant reduction in average file access

times. This is shown as well by Table 3, which shows the

percentage of local and remote file opens for files shared

among clusters, as well as the percentage of file opens that

require update and synchronization operations before and

after replication of these files.

Local Remote Update and Synch-

Algorithm Access Access local Access ronize

no replicate 23% 77%

replication 84% 3.0% 13.% 3.0%

Table 3: Percentages of shared file accesses that are local,

remote, or requiring Update or Synchronize.

Without replication, the percentage of local opens is

low. Given that our mean degree of sharing is 4, and as-

suming that each of the clusters accesses the file with the

same frequency, we would expect about 1/4 of the opens

to be local, since only one of the clusters actually has a

copy of the file locally. With replication, the percentage

of local opens increases dramatically. The correspond-

ing overhead due to consistency requirements is relatively

low; only 13’?70 of opens in our simulation require updates

at file open time. The synchronization traffic (of per-

forming invalidation at file close time) is even lower; only

370 of opens required synchronization operations. The

3% percent remote accesses for the replication case is due

to the fact that replication is triggered only after a few

initial requests for remote files.

As the workload intensity increases, there is a signif-

icant increase in average file access time without repli-

cation, but the replication case is not affected much at

all. Again, the reason for this is the localization of file

access traffic, and the low synchronization overhead. In

98. Performance Evaluation Review, vol. 20, No, 1, June 1992

Net
Util

0.8 –

0.6 –

0.4 – ----

0.2 –

o~
.1 .5 I 2 3 4

Workload intensity (fde accesses/see)

Figure 5: Backbone network utilization for varying work-

load intensities.

the no replication case, the increase in workload intensity

causes dramatic increase in backbone network utilization

(Figure 5). Theincreased backbone network utilization

in turn induces greater file access latency. Using repli-

cation, there is a smaller increase in backbone network

traffic.

Reduction in backbone network load, however, is not

the primary cause of performance improvements under

moderate load, This is illustrated in Table 4 which shows

file access times with different backbone network costs

(the default cost was 16 ins). This table indicates that

even when network delays and congestion are negligible

(e.g., a service demand of 1.6 ms),-replication still per-

forms better than the no replication case. This perfor-

mance gain can only be attributed to the implicit load

balancing of file servers with replication, and the result-

ing reduction in file server congestion.

Backbone Network Cost

I Ahzorithm 11.6ms18ms l16ms132msl,
no replication 232 250 288 909

dedication 188 192 202 238
1 r I

%-immovement
I

19% 23% 30% 74%

Table 4: File access times for varying backbone network

costs.

5.2 The Effects of Scale

It is apparent that, based upon our default workload pa-

rameters, using replication improves performance signifi-

cantly for any workload intensity. In fact, wit bout repli-

cation, the system becomes unusable under high workload

intensity. This is shown in our next experiment as well

(Figure 6). Here we study the effect of system scale on

file replication, by increasing the number of clusters from

to 30 (from the default of 10).

no replication
[1OWsharing)

Frolic
(ins) I :-o!.+.! mg)...”

200

i

.X

Frolic (low sharing)

x x

100
pure-leeaI (wealizsble)

I I I I I
0.1 1 2 3 4

Workload intensity (accesses/see/cluster)

Figure 6: Performance for a larger system (30 clusters).

The effect of increasing the number of clusters in the

system is similar to that of increasing the workload inten-

sity. Since it is unclear how the degree of sharing is cor-

related to system scale, we consider two bounding cases.

The case in which the average degree of sharing increases

by the same factor as system scale (high sharing) is shown

along with the case in which the average degree of sharing

remains constant as scale increases (low sharing). Com-

paring Figure 6 with the 10 cluster system shown in Fig-

ure 4, it becomes evident that the overhead for file repli-

cation is not affected severely by an increase in scale. On

the other hand, without replication, the system becomes

unusable for workload intensities higher than 3 accesses

per cluster per second. These observations were appar-

ent in our workload study environment as well, where the

scale of the system and amount of file sharing contributes

to very high peak utilizations on backbone networks and

file servers.

5.3 Analysis of Workload Sensitivity

5.3.1 File Size and the Portion Accessed

In the next set of experiments, we consider file replication

under a range of workload conditions. We first examine

file size and the portion of the file accessed in a typical

open-close session. File size is critical to replication per-

formance in that it directly impacts the cost of updating

stale replicas, due to our assumption that replica updates

are performed on a whole file basis. The portion of a file

accessed is also important because replication will only

be beneficial if sufficient data in a file is used in a typical

access.

Figure 7 shows the case in which we vary the average

portion of a file accessed in a typical open-close session.

We compare the performance of the no replication case

99. Performance Evaluation Review, Vol. 20, No. 1, June 1992

with that of Frolic for several different average file sizes.

Note that the performance of the no replication case de-

pends only on the number of blocks of a file accessed, and

not on the size of the file.

600 I I

500

u ‘“ ~

no replication

,.”

Access 400
,,.’

Time
.x’.,.

(ins) 300 ,,, ,,, X.. ,,X’””””
Frolic (64Kbyte files) ,..

200
+

.::. _._.i.&=:2.:.L%......”x.””....”. ””x.””
Frolic (24 Kbyte fdes)

Frohc (4S Kbyte fdes)

‘oo~
8 16 24 32 40 48

Portion (Kbytes) of file accessed

well for most files,

5.3.2 Cluster Locality and

The next experiment shows the

and the number of writers per

Number of Writers

effects of cluster locality

file (nw in the graphs).

The file size and portion accessed are both set to their

default values.

Files in the simulation are classified according to their

degree of cluster locality, and by the number of clusters

which write to that file during the file’s lifetimes. The

same files are examined with and without replication.

Figure 8 shows the result of this experiment. Again, the

no replication case is unaffected by both the degree of

cluster locality and the number of writers.

400 I

I Frolic for fdes with number of writers (nw)

Figure 7: Varying portion accessed and average file size,

The results in Figure 7 indicate that replication per-

forms significantly better than the no replication case for

most combinations of the file size and portion of the file

accessed. In the no replication case, increasing the aver-

age amount of data accessed from all files quickly satu-

rates the backbone network, and results in poor perfor-

mance. With replication however, access times are much

better for files of up to 48 Kbyte’s in size. For large

average file sizes (e.g., 64 Kbytes), replication performs

worse when very little of the file is used in a typical access.

However, for 64 Kbyte files, if more than 24 Kbytes of the

file is used in a typical access, replication is significantly

better than the no replication case.

If we view this same graph (Figure 7) from the point

of view of increasing file size for a fixed portion accessed, it

is evident that the performance of file replication degrades

as average file size increases. This serves to illustrate an

important point: that whole file transfer on update may

lead to poor performance for large files. The alternative

is to identify the modified blocks of the file and transfer

only those to the stale replica sites. We noted earlier that

cluster-based replication would probably perform better

if block-based updates were used, but we chose to model

whole file updates because this was more general, The ad-

ditional complexity (in file system design) of block-based

updates may be warranted if there is a significant number

of large files that are shared.

It should be noted as well that we do not expect aver-

age file sizes to be as high as 64 Kbytes. In our workload

study [S Z92], we observed that although there are many

files over one Megabyte in size, the mean of the file size

distribution is quite low; most files are on the order of 10

to 16 Kbytes. Thus, given these types of workload condi-

tions, using whole file update with replication would work

); nw 4
300 – ‘“,. no replication

Access ;. “,

1234567 8

degree of cluster locality

Figure 8: Varying number of writers (nw) and degree of

locality.

Replication of read-only files is always beneficial, but

read-only files were not considered in these simulations.

More writers per file means that files are likely to be up-

dated more often, and more synchronization is required.

A decrease in the degree of locality (and thus an increase

in the synchronization and update traffic) has a similar

effect; more synchronizat ion will occur when locality is

lower. However, Figure 8 shows that, unless average clus-

ter locality is very low (less than two) and the number

of writers is higher than four, replication results in a sig-

nificant reduction in file access times. This illustrates

the robustness of the replication techniques for varying

degrees of locality and numbers of writers per file.

The next experiment shows the influence of cluster

locality and file size upon file access time. The average

portion of a file accessed is set back to its default value

of 16 Kbytes. The results are shown in Figure 9.

The results follow intuitively from our earlier experi-

ments. Smaller files (24 Kbyt es or less) benefit from repli-

cat ion even for low cluster 10calit y. The performance for

larger files is dependent on having sufficient cluster local-

ity in file access, For a 64 Kbyte file, for instance, repli-

100. Performance Evaluation Retiew, VO1. 2(-), No. 1, June 1992

Access

Time

(ins)

300

200

\ \ Frolic with ffle sizes 24-64 Kbytes\

64K’ x. .,

‘%. . no replication,.
--%-

“’x. -.%-
x... .,,, -. %---

48K .X
-.. x.. .,,.

X --- *--.+--- *- .x..

24K
-- %----*---

‘oo~
1234567 8

degree of cluster locality

Figure 9: Varying file sizes and cluster locality.

cation becomes beneficial if the cluster locality is higher

than about four, given that only about 16 Kbytes of that

file are actually touched during a typical file access.

In our workload study, we found that the single writer

mode of sharing was most common (recall observation 5 in

Section 1), and that most files were generally small. Thus,

based upon our experiments, we conclude that unless lo-

cality is poor or the number of writers high, cluster-based

file replication will improve performance significantly.

5.4 A Comparison of Consistency and

Locating Algorithms

Now we examine the trade-offs between using invalida-

tion, immediate update, or partial update for consistency.

These options were discussed in Section 3.3. A compari-

son of these algorithms is shown in Figure 10.

210-

200-
Access

Time

(ins) 190.

180-

x

immediate update .”

&--*_,...”--
*---

.x’,.
~,..

I I I I I
.1 1 2 3 4

Workload intensity (accesses/see)

-1

Figure 10: A comparison of the Consistency techniques.

The results are again intuitive. For low workload in-

tensity, immediate update is better since the benefit of

always having valid local replicas at file open time out-

weighs the additional overhead of wasted updates. For

moderate to heavy workloads, however, the opposite is

true. The demand on network bandwidth causes a signif-

icant increase in file access times when immediate update

is used, so that invalidation appears more desirable. Par-

tial update falls in between the two extremes.

The only surprising aspect of this graph is that the

difference in performance between invalidation and im-

mediate update is not more than 5 to 15 percent for most

workload intensities. The reason for this is that the degree

of sharing between clusters is generally low (only about

four clusters typically share a file), so that the difference

in performance between these two techniques is low as

well. For more wide-spread sharing among clusters, we

would see a larger difference.

The last set of experiments compare the performance

of the different replica management techniques that were

discussed in Section 3.2. The results were again somewhat

surprising in that the difference in the performance of

the algorithms is almost indistinguishable (and therefore

not shown). There are several reasons for this. First,

as mentioned earlier, the degree of sharing is generally

low, with only a few clusters sharing a file. Second, most

files have very few clusters that modify them during their

lifetimes, so that file ownership is fairly stable. When

there is only a single writer per file, for instance, all of the

different replica management techniques behave similarly.

Lastly, the predominant cost in replication is the cost of

updating stale replicas. Locating the owner is relatively

inexpensive since it requires sending only small messages

and thus places small service demands on resources.

6 Conclusions

In this paper, we proposed Frolic, a scheme for cluster-

based file replication in large-scale distributed systems.

The motivation for this work was based upon the obser-

vation that traditional approaches to data management in

large-scale environments will perform poorly under condl-

tions of wide-spread sharing of unstable files. In our work-

load study [SZ92], we found that in the environment that

we studied, wide-spread sharing of unstable files among

tens or hundreds of users situated across multiple clusters

was common. This may be typical of many other large

engineering computing environments as well.

Using simulation techniques and a statistical work-

load model, we showed that cluster-based file replication

can significantly improve performance in such environ-

ments. The default workload parameters were extracted

from measurements and characterization of real workload,

but the experiments show that replication is beneficial un-

der a wide range of workload conditions. File replication

has several benefits: 1) it reduces reliance on critical re-

sources such as backbone networks and central file servers;

2) it reduces the distance between the accessing site and

101. Performance Evaluation Review, Vol. 20, No. 1, June 1992

the data; and 3) it balances the load on file servers. Our

experiments show that reduction of file server load and

access latency is the primary benefit of file replication

under light to moderate load, whereas reduction in net-

work congestion is the primary reason for greater benefits

under heavy load.

We identified several aspects of the workload most

critical to file replication performance: the file size and

the portion of the file accessed, the number of writers per

file, and the cluster locality of replicated data. In general,

file replication will perform well when enough of the file

is accessed in a typical open-close session, the number of

writers per file is small, and the cluster locality of replicas

is sufficiently high.

Lastly, we examined a number of different algorithms

for dealing with the issue of locating replicas and main-

taining replica consistency. Our results did not show

any significant performance advantage to using one locat-

ing technique over another, mainly because the degree of

sharing among clusters was generally low and the predom-

inant mode of access was a single cluster modifying the file

and many clusters reading it. For consistency schemes,

we found that invalidation performed better than imme-

diate update under moderate to high workload intensity,

due to the elimination of wasted updates,

Frolic is a practical technique for distributed file sys-

tem design; we plan to do an implementation study of

it in a distributed environment. The Frolic approach to

scalable distributed file systems has the advantage over

other designs (such as AFS) in that: a) the disk space

requirements are low, since there is only a single replica

per cluster; b) no particular model of data management

within the cluster is imposed; hence, Frolic can be im-

plemented on top of an existing distributed file system;

and c) the natural clustering inherent to large-scale dis-

tributed systems is used.

Acknowledgments

We would like to thank the referees of this paper for their

many valuable comments. Harjinder Sandhu was sup-

ported in part by an Ontario Graduate Scholarship.

References

[BHK+91]

[BR90]

M. Baker, J. Hartman, M. Kupfer, K. Shirriff,

and J. Ousterhout. Measurements of a dis-

tributed file system. In Proc. 13th ACM

Symposium on Operating System Principles.

ACM, October 1991.

P. Biswas and K.K. Ramakrishnan. File ac-

cess characterization of VAX/VMS environ-

[HKM+88]

[Kur88]

[Li89]

[M0190]

[OCH+85]

[San91]

[Sch88]

[SGK+85]

[SZ90]

[SZ92]

[ZS90]

ments. In 1 (lth Int. Conf. on Distributed

Computing Systems, November 1990.

John Howard, M. Kazar, S. Menees,

D. Nichols, M. Satyanarayanan, R. Side-

botham, and M. West. Scale and performance

in a distributed file system. ACM Transac-

tions on Computer Systems, 6(1), February

1988.

Q. Kure. Optimization of File Migration in

Distributed Systems. PhD thesis, University

of California Berkeley, 1988.

K. Li. Memory coherence in shared vir-

tual memory systems. ACM Transactions on

Computer Systems, Vol 7, No 4, November

1989.

M. Molloy. Validation of MVA models for

client/server systems. Hewlett-Packard, 1990.

J. Ousterhout, H. Da Costa, D. Harrison,

J. Kunze, M. Kupfer, and J. Thompson. A

trace-driven analysis of the Unix 4.2 BSD file

system. In Proc. 10th ACM Symposium on

Operating System Principles. ACM, Decem-

ber 1985.

H.S. Sandhu. File replication and per-

formance in large-scale distributed systems.

Master’s thesis, University of Toronto, Jan-

uary 1991.

H. Schwetman. Using CSIM to model com-

plex systems. In Proceeding of the 1988 Win-

ter Simulation Conference, 1988.

R. Sandberg, D. Goldberg, S. Kleiman,

D. Walsh, and B. Lyon. Design and imple-

mentation of the Sun network file system. In

Useniz Conference and Exhibition, Portland,

OR, Summer 1985.

M. Stumm and S. Zhou. Algorithms imple-

menting distributed shared memory. Com-

puter, May 1990.

H,S, Sandhu and S. Zhou. A case study of file

system workload in a large-scale distributed

environment. Technical report, University of

Toronto, 1992. In preparation.

S. Zhou and C. Siebenmann. Snooper user

guide, January 1990, University of Toronto.

102. Performance EvaIuatjon Review, VO1. 20, No. 1, June 1992

