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Course logistics and details

❚ Course Web page -
❙ http://www.ics.uci.edu/~ics243f

❚ Lectures - MW 3:30-4:50p.m, Course
Laboratories - machines on 3rd floor CS labs

❚ ICS 280 Reading List
❘ Technical papers and reports
❘ Reference Books
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Course logistics and details

❚ Homeworks
❙ Paper summaries
❙ Survey paper

❚ Course Presentation
❚ Course Project

❙ Maybe done individually, in groups of 2 or 3(max)
❙ Potential projects on webpage
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ICS 280 Grading Policy

❚ Homeworks - 30%
• 1 paper summary due every week
• (3 randomly selected each worth 10% of the final

grade). -

❚ Project Survey Paper - 10%
❚ Class Presentation - 10%
❚ Class Project - 50% of the final grade
❚ Final assignment of grades will be based on a

curve.
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Lecture Schedule
❙ Weeks 1 and 2:

❘ Middleware and Distributed Computing Fundamentals
❘ Fundamentals of  Concurrency
❘ General Purpose Middleware - Technical challenges
❘ Adaptive Computing

❙ Weeks 3 and 4: Distributed Systems Management
❘ Distributed Operating Systems
❘ Messaging and Communication in Distributed Systems
❘ Naming and Directory Services
❘ Distributed I/O and Storage Subsystems
❘ Distributed Resource Management

❙ Week 5 and 6: Distributed Object Models
❘ Concurrent Objects – Actors, Infospheres
❘ Common Object Services
❘ Synchronization with Distributed Objects
❘ Composing Distributed Objects
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Course Schedule
❙ Weeks 7 and 8:Middleware Frameworks -  Case Studies

❘ DCE
❘ CORBA, RT-CORBA
❘ Jini
❘ Espeak, XML based middleware

❙ Weeks 9 and 10: Middleware for Distributed Application
Environments

❘ QoS-enabled middleware
❘ Fault tolerant applications
❘ Secure applications
❘ Transaction Based applications
❘ Ubiquitous and Mobile Environments
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Introduction

❚ Distributed Systems
❙ Multiple independent computers that appear as one
❙ Lamport’s Definition

❘ “ You know you have one when the  crash of a
computer you have never heard of stops you from
getting any work done.”

❙ “A number of interconnected autonomous computers
that provide services to meet the information
processing needs of modern enterprises.”
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Characterizing Distributed
Systems

❚ Multiple Computers
❙ each consisting of CPU’s, local memory, stable

storage, I/O paths connecting to the environment

❚ Interconnections
❙ some I/O paths interconnect computers that talk to

each other

❚ Shared State
❙ systems cooperate to maintain shared state
❙ maintaining global invariants requires correct and

coordinated operation of multiple computers.
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Examples of Distributed
Systems

❚ Banking systems
❚ Communication - email
❚ Distributed information systems

❙ WWW
❙ Federated Databases

❚ Manufacturing and process control
❚ Inventory systems
❚ General purpose (university, office automation)
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Why Distributed Computing?

❚ Inherent distribution
❙ Bridge customers, suppliers, and companies at

different sites.

❚ Speedup - improved performance
❚ Fault tolerance
❚ Resource Sharing

❙ Exploitation of special hardware

❚ Scalability
❚ Flexibility
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Why are Distributed Systems
Hard?

❚ Scale
❙ numeric, geographic, administrative

❚ Loss of control over parts of the system
❚ Unreliability of message passing

❙ unreliable communication, insecure communication,
costly communication

❚ Failure
❙ Parts of the system are down or inaccessible
❙ Independent failure is desirable
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Design goals of a distributed
system
❚ Sharing

❙ HW, SW, services, applications
❚ Openness(extensibility)

❙ use of standard interfaces, advertise services,
microkernels

❚ Concurrency
❙ compete vs. cooperate

❚ Scalability
❙ avoids centralization

❚ Fault tolerance/availability
❚ Transparency

❙ location, migration, replication, failure, concurrency
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Classifying Distributed
Systems

❚ Based on degree of synchrony
❙ Synchronous
❙ Asynchronous

❚ Based on communication medium
❙ Message Passing
❙ Shared Memory

❚ Fault model
❙ Crash failures
❙ Byzantine failures
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Computation in distributed
systems

❚ Asynchronous system
❙ no assumptions about process execution speeds and

message delivery delays
❚ Synchronous system

❙ make assumptions about relative speeds of processes
and delays associated with communication channels

❙ constrains implementation of processes and
communication

❚ Models of concurrency
❙ Communicating processes
❙ Functions, Logical clauses
❙ Passive Objects
❙ Active objects, Agents
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Concurrency issues

❚ Consider the requirements of transaction based
systems
❙ Atomicity - either all effects take place or none
❙ Consistency - correctness of data
❙ Isolated - as if there were one serial database
❙ Durable - effects are not lost

❚ General correctness of distributed computation
❙ Safety
❙ Liveness
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Communication in Distributed
Systems

❚ Provide support for entities to communicate
among themselves
❙ Centralized (traditional) OS’s - local communication

support
❙ Distributed systems - communication across machine

boundaries (WAN, LAN).
❚ 2 paradigms

❙ Message Passing
❘ Processes communicate by sharing messages

❙ Distributed Shared Memory (DSM)
❘ Communication through a virtual shared memory.
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Message Passing
❙ Basic communication primitives

❘ Send message
❘ Receive message

❙ Modes of communication
❘ Synchronous

• atomic action requiring the participation of the sender
and receiver.

• Blocking send: blocks until message is transmitted out
of the system send queue

• Blocking receive: blocks until message arrives in receive
queue

❘ Asynchronous
• Non-blocking send:sending process continues after

message is sent
• Blocking or non-blocking receive: Blocking receive

implemented by timeout or threads.  Non-blocking
receive proceeds while waiting for message. Message is
queued(BUFFERED) upon arrival.
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Reliability issues

❚ Unreliable communication
❙ Best effort, No ACK’s or retransmissions
❙ Application programmer designs own reliability

mechanism

❚ Reliable communication
❙ Different degrees of reliability
❙ Processes have some guarantee that messages will be

delivered.
❙ Reliability mechanisms - ACKs, NACKs.
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Distributed Shared Memory

❚ Abstraction used for processes on machines that
do not share memory
❙ Motivated by shared memory multiprocessors that do

share memory

❚ Processes read and write from virtual shared
memory.
❙ Primitives - read and write
❙ OS ensures that all processes see all updates

❚ Caching on local node for efficiency
❙ Issue - cache consistency
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Remote Procedure Call

❚ Builds on message passing
❙ extend traditional procedure call to perform transfer

of control and data across network
❙ Easy to use - fits well with the client/server model.
❙ Helps programmer focus on the application instead of

the communication protocol.
❙ Server is a collection of exported procedures on some

shared resource
❙ Variety of RPC semantics

❘ “maybe call”
❘ “at least once call”
❘ “at most once call”
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Fault Models in Distributed
Systems

❚ Crash failures
❙ A processor experiences a crash failure when it

ceases to operate at some point without any warning.
Failure may not be detectable by other processors.

❘ Failstop - processor fails by halting; detectable by
other processors.

❚ Byzantine failures
❙ completely unconstrained failures
❙ conservative, worst-case assumption for behavior of

hardware and software
❙ covers the possibility of intelligent (human) intrusion.
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Other Fault Models in
Distributed Systems

❚ Dealing with message loss
❙ Crash + Link

❘ Processor fails by halting.  Link fails by losing
messages but does not delay, duplicate or corrupt
messages.

❙ Receive Omission
❘ processor receives only a subset of messages sent to

it.
❙ Send Omission

❘ processor fails by transmitting only a subset of the
messages it actually attempts to send.

❙ General Omission
❘ Receive and/or send omission
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Other distributed system
issues

❚ Concurrency and Synchronization
❚ Distributed Deadlocks
❚ Time in distributed systems
❚ Naming
❚ Replication

❙ improve availability and performance
❚ Migration

❙ of processes and data
❚ Security

❙ eavesdropping, masquerading, message tampering,
replaying
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Client/Server Computing

❚ Client/server computing allocates application
processing between the client and server
processes.

❚ A typical application has three basic
components:
❙ Presentation logic
❙ Application logic
❙ Data management logic
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Client/Server Models

❚ There are at least three different models for
distributing these functions:
❙ Presentation logic module running on the client

system and the other two modules running on one or
more servers.

❙ Presentation logic and application logic modules
running on the client system and the data
management logic module running on one or more
servers.

❙ Presentation logic and a part of application logic
module running on the client system and the other
part(s) of the application logic module and data
management module running on one or more servers
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Distributed Computing Platform
• Application Support Services (OS, 
  DB support, Directories, RPC)
• Communication Network Services
   (Network protocols, Physical devices)
• Hardware

Application Systems:
support enterprise systems

Enterprise Systems:
Perform enterprise activities
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Application Systems:

Enterprise Systems:
•Engineering systems
•Business systems
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Distributed Computing Platform
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What is Middleware?

❚ Middleware is the software between the
application programs and the operating
System and base networking

❚ Middleware provides a comprehensive set of
higher-level distributed computing
capabilities and a set of interfaces to access
the capabilities of the system.
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Distributed Systems
Middleware

❙ Enables the modular interconnection of distributed
software

❘ abstract over low level mechanisms used to
implement resource management services.

❙ Computational Model
❘ Support separation of concerns and reuse of  services

❙ Customizable, Composable Middleware Frameworks
❘ Provide for dynamic network and system

customizations, dynamic
invocation/revocation/installation of services.

❘ Concurrent execution of multiple distributed systems
policies.
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Application Program

Middleware
Service 1

API
Middleware

Service 3

API
Middleware

Service 2

API

Modularity in Middleware
Services
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Useful Middleware Services

❙ Naming and Directory Service
❙ State Capture Service
❙ Event Service
❙ Transaction Service
❙ Fault Detection Service
❙ Trading Service
❙ Replication Service
❙ Migration Service
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Types of Middleware Services

❚ Component services
❙ Provide a specific function to the requestor
❙ Generally independent of other services
❙ Presentation, Communication, Control, Information

Services, computation services etc.

❚ Integrated Sets
❚ Integration frameworks
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Integrated Sets Middleware

❚ An Integrated set of services consist of a set of
services that take significant advantage of each
other.

❚ Example: DCE
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Distributed Computing
Environment (DCE)

❚ DCE is from the Open Software Foundation
(OSF), and now X/Open, offers an environment
that spans multiple architectures, protocols, and
operating systems.
❙ DCE supported by major software vendors.

❚ It provides key distributed technologies,
including RPC, a distributed naming service, time
synchronization service, a distributed file system,
a network security service, and a threads
package.
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Operating System Transport Services

DCE Threads Services

DCE Remote Procedure Calls

DCE
Distributed

Time Service

DCE
Directory
Service

Other Basic
Services

DCE Distributed File Service

Applications
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Integration Frameworks
Middleware

❚ Integration frameworks are integration
environments that are tailored to the needs of a
specific application domain.

❚ Examples
❙ Workgroup framework - for workgroup computing.
❙ Transaction Processing monitor frameworks
❙ Network management frameworks
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Distributed Object Computing

❚ Combining distributed computing with an object
model.
❙ Allows software reusability
❙ More abstract level of programming
❙ The use of a broker like entity that keeps track of

processes, provides messaging between processes
and other higher level services

❙ Examples
❘ CORBA
❘ JINI
❘ E-SPEAK
❘ Note: DCE uses a procedure-oriented distributed

systems model, not an object model.
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Issues with Distributed
Objects

❙ Abstraction
❙ Performance
❙ Latency
❙ Partial failure
❙ Synchronization
❙ Complexity
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Techniques for object
distribution

❙ Message Passing
❘ Object knows about network; Network data is

minimum

❙ Argument/Return Passing
❘ Like RPC.  Network data = args + return result +

names

❙ Serializing and Sending Object
❘ Actual object code is sent.  Might require

synchronization. Network data = object code + object
state + sync info

❙ Shared Memory
❘ based on DSM implementation
❘ Network Data = Data touched + synchronization info



Intro to Distributed Systems Middleware 43

CORBA

❚ CORBA is a standard specification for developing
object-oriented applications.

❚ CORBA was defined by OMG in 1990.
❚ OMG is dedicated to popularizing Object-

Oriented standards for integrating applications
based on existing standards.
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The Object Management
Architecture (OMA)

Application
Objects

Object Request
Broker

Common
facilities

Object Services



Intro to Distributed Systems Middleware 45

OMA

❚ ORB: the communication hub for all objects
in the system

❚ Object Services: object events, persistent
objects, etc.

❚ Common facilities: accessing databases,
printing files, etc.

❚ Application objects: document handling
objects.
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Clock Synchronization in
Distributed Systems

❚ Clocks in a distributed system drift:
❙ Relative to each other

❘ Logical Clocks are clocks which are synchronized
relative to each other.

❙ Relative to a real world clock
❘ Determination of this real world clock may be an

issue
❘ Physical clocks are logical clocks that must not

deviate from the real-time by more than a certain
amount.
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Synchronizing Logical Clocks

❚ Need to understand the ordering of events
❚ Notion of time is critical
❚ “Happens Before” notion.

❙ E.g. Concurrency control using timestamps

❚ “Happens Before” notion is not straightforward
in distributed systems
❙ No guarantees of synchronized clocks
❙ Communication latency
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Event Ordering

❚ Lamport defined the “happens before” (=>)
relation
❙ If a and b are events in the same process, and a

occurs before b, then a => b.
❙ If a is the event of a message being sent by one

process and b is the event of the message being
received by another process, then a => b.

❙ If X =>Y and Y=>Z then X => Z.
If a => b then time (a) => time (b)
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Causal Ordering

❚ “Happened Before” also called causal ordering
❚ Possible to draw a causality relation between  2

events if
❙ They happen in the same process
❙ There is a chain of messages between them



Intro to Distributed Systems Middleware 50

Logical Clocks

❚ Monotonically increasing counter
❚ No relation with real clock
❚ Each process keeps its own logical clock Cp used

to timestamp events
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Causal Ordering and Logical
Clocks

❚ Cp is incremented before each event.
❙ Cp = Cp + 1

❚ When p sends a message m, it piggybacks a
logical timestamp t = Cp.

❚ When q receives (m,t) it computes:
❙ Cq = max(Cq,t) before timestamping the message

receipt event.

❚ Results in a partial ordering of events.
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Total Ordering

❚ Extending partial order to total order

❚ Global timestamps:
❙ (Ta, Pa) where Ta is the local timestamp and Pa is

the process id.
❙ (Ta,Pa) < (Tb,Pb) iff

❘ (Ta < Tb) or   ( (Ta = Tb) and (Pa < Pb))

❙ Total order is consistent with partial order.

time Proc_id
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Physical Clocks

❚ How do we measure real time?
❙ 17th century - Mechanical clocks based on

astronomical measurements
❘ Solar Day - Transit of the sun
❘ Solar Seconds - Solar Day/(3600*24)

❙ Problem (1940) - Rotation of the earth varies (gets
slower)

❙ Mean solar second - average over many days
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Atomic Clocks

❚ 1948
❙ counting transitions of a crystal (Cesium 133) used as

atomic clock
❙ TAI - International Atomic Time

❘ 9192631779 transitions = 1 mean solar second in
1948

❙ UTC (Universal Coordinated Time)
❘ From time to time, we skip a solar second to stay in

phase with the sun (30+ times since 1958)
❘ UTC is broadcast by several sources (satellites…)
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Accuracy of Computer Clocks

❚ Modern timer chips have a relative error of
1/100,000 - 0.86 seconds a day

❚ To maintain synchronized clocks
❙ Can use UTC source (time server) to obtain current

notion of time
❙ Use solutions without UTC.
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Berkeley UNIX algorithm

❚ One daemon without UTC
❚ Periodically, this daemon polls and asks all the

machines for their time
❚ The machines respond.
❚ The daemon computes an average time and

then broadcasts this average time.
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Decentralized Averaging
Algorithm

❚ Each machine has a daemon without UTC
❚ Periodically, at fixed agreed-upon times, each

machine broadcasts its local time.
❚ Each of them calculates the average time by

averaging all the received local times.
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Clock Synchronization in DCE

❚ DCE’s time model is actually in an interval
❙ I.e. time in DCE is actually an interval
❙ Comparing 2 times may yield 3 answers

❘ t1 < t2
❘ t2 < t1
❘ not determined

❙ Each machine is either a time server or a clerk
❙ Periodically a clerk contacts all the time servers on its

LAN
❙ Based on their answers, it computes a new time and

gradually converges to it.
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The Network Time Protocol

❚ Enables clients across the Internet to be
synchronized accurately to the UTC
❙ Overcomes large and variable message delays
❙ Statistical techniques for filtering can be applied

❘ based on past behavior of server

❙ Can survive lengthy losses of connectivity
❙ Enables frequent synchronization
❙ Provides protection against interference
❙ Uses a hierarchy of servers located across the

Internet (Primary servers connected to a UTC time
source).
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Time Manager Operations

❚ Logical Clocks
❙ C.adjust(L,T)

❘ adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

❙ C.read
❘ returns the current value of clock C

❚ Timers
❙ TP.set(T) - reset the timer to timeout in T units

❚ Messages
❙ receive(m,l); broadcast(m); forward(m,l)


