
1

Distributed Systems
Middleware

Prof. Nalini Venkatasubramanian
Dept. of Information & Computer
Science
University of California, Irvine

Intro to Distributed Systems Middleware 2

ICS 280 - Distributed Systems
Middleware

Lecture 1 - Introduction to Distributed
Systems Middleware
Mondays, Wednesdays 3:30-5:00p.m.
Prof. Nalini Venkatasubramanian
nalini@ics.uci.edu

Intro to Distributed Systems Middleware 3

Course logistics and details

❚ Course Web page -
❙ http://www.ics.uci.edu/~ics243f

❚ Lectures - MW 3:30-4:50p.m, Course
Laboratories - machines on 3rd floor CS labs

❚ ICS 280 Reading List
❘ Technical papers and reports
❘ Reference Books

Intro to Distributed Systems Middleware 4

Course logistics and details

❚ Homeworks
❙ Paper summaries
❙ Survey paper

❚ Course Presentation
❚ Course Project

❙ Maybe done individually, in groups of 2 or 3(max)
❙ Potential projects on webpage

Intro to Distributed Systems Middleware 5

ICS 280 Grading Policy

❚ Homeworks - 30%
• 1 paper summary due every week
• (3 randomly selected each worth 10% of the final

grade). -

❚ Project Survey Paper - 10%
❚ Class Presentation - 10%
❚ Class Project - 50% of the final grade
❚ Final assignment of grades will be based on a

curve.

Intro to Distributed Systems Middleware 6

Lecture Schedule
❙ Weeks 1 and 2:

❘ Middleware and Distributed Computing Fundamentals
❘ Fundamentals of Concurrency
❘ General Purpose Middleware - Technical challenges
❘ Adaptive Computing

❙ Weeks 3 and 4: Distributed Systems Management
❘ Distributed Operating Systems
❘ Messaging and Communication in Distributed Systems
❘ Naming and Directory Services
❘ Distributed I/O and Storage Subsystems
❘ Distributed Resource Management

❙ Week 5 and 6: Distributed Object Models
❘ Concurrent Objects – Actors, Infospheres
❘ Common Object Services
❘ Synchronization with Distributed Objects
❘ Composing Distributed Objects

Intro to Distributed Systems Middleware 7

Course Schedule
❙ Weeks 7 and 8:Middleware Frameworks - Case Studies

❘ DCE
❘ CORBA, RT-CORBA
❘ Jini
❘ Espeak, XML based middleware

❙ Weeks 9 and 10: Middleware for Distributed Application
Environments

❘ QoS-enabled middleware
❘ Fault tolerant applications
❘ Secure applications
❘ Transaction Based applications
❘ Ubiquitous and Mobile Environments

Intro to Distributed Systems Middleware 8

Introduction

❚ Distributed Systems
❙ Multiple independent computers that appear as one
❙ Lamport’s Definition

❘ “ You know you have one when the crash of a
computer you have never heard of stops you from
getting any work done.”

❙ “A number of interconnected autonomous computers
that provide services to meet the information
processing needs of modern enterprises.”

Intro to Distributed Systems Middleware 9

Characterizing Distributed
Systems

❚ Multiple Computers
❙ each consisting of CPU’s, local memory, stable

storage, I/O paths connecting to the environment

❚ Interconnections
❙ some I/O paths interconnect computers that talk to

each other

❚ Shared State
❙ systems cooperate to maintain shared state
❙ maintaining global invariants requires correct and

coordinated operation of multiple computers.

Intro to Distributed Systems Middleware 10

Examples of Distributed
Systems

❚ Banking systems
❚ Communication - email
❚ Distributed information systems

❙ WWW
❙ Federated Databases

❚ Manufacturing and process control
❚ Inventory systems
❚ General purpose (university, office automation)

Intro to Distributed Systems Middleware 11

Why Distributed Computing?

❚ Inherent distribution
❙ Bridge customers, suppliers, and companies at

different sites.

❚ Speedup - improved performance
❚ Fault tolerance
❚ Resource Sharing

❙ Exploitation of special hardware

❚ Scalability
❚ Flexibility

Intro to Distributed Systems Middleware 12

Why are Distributed Systems
Hard?

❚ Scale
❙ numeric, geographic, administrative

❚ Loss of control over parts of the system
❚ Unreliability of message passing

❙ unreliable communication, insecure communication,
costly communication

❚ Failure
❙ Parts of the system are down or inaccessible
❙ Independent failure is desirable

Intro to Distributed Systems Middleware 13

Design goals of a distributed
system
❚ Sharing

❙ HW, SW, services, applications
❚ Openness(extensibility)

❙ use of standard interfaces, advertise services,
microkernels

❚ Concurrency
❙ compete vs. cooperate

❚ Scalability
❙ avoids centralization

❚ Fault tolerance/availability
❚ Transparency

❙ location, migration, replication, failure, concurrency

Intro to Distributed Systems Middleware 14

A
pp

lic
at

io
n

D
ev

el
op

er

• Code Reusability
• Interoperability
• Portability
• Reduced
 Complexity

• Increased
 Complexity
• Lack of Mgmt.
 Tools
• Changing
 Technology

• Personalized Environment
• Predictable Response
• Location Independence
• Platform Independence

• Flexibility
• Real-Time Access
 to information
• Scalability
• Faster Developmt.
 And deployment of
 Business Solutions

ORGANIZATION

Sy
st

em
 A

dm
in

is
tra

to
r

END-USER

[Khanna94]

Intro to Distributed Systems Middleware 15

Classifying Distributed
Systems

❚ Based on degree of synchrony
❙ Synchronous
❙ Asynchronous

❚ Based on communication medium
❙ Message Passing
❙ Shared Memory

❚ Fault model
❙ Crash failures
❙ Byzantine failures

Intro to Distributed Systems Middleware 16

Computation in distributed
systems

❚ Asynchronous system
❙ no assumptions about process execution speeds and

message delivery delays
❚ Synchronous system

❙ make assumptions about relative speeds of processes
and delays associated with communication channels

❙ constrains implementation of processes and
communication

❚ Models of concurrency
❙ Communicating processes
❙ Functions, Logical clauses
❙ Passive Objects
❙ Active objects, Agents

Intro to Distributed Systems Middleware 17

Concurrency issues

❚ Consider the requirements of transaction based
systems
❙ Atomicity - either all effects take place or none
❙ Consistency - correctness of data
❙ Isolated - as if there were one serial database
❙ Durable - effects are not lost

❚ General correctness of distributed computation
❙ Safety
❙ Liveness

Intro to Distributed Systems Middleware 18

Communication in Distributed
Systems

❚ Provide support for entities to communicate
among themselves
❙ Centralized (traditional) OS’s - local communication

support
❙ Distributed systems - communication across machine

boundaries (WAN, LAN).
❚ 2 paradigms

❙ Message Passing
❘ Processes communicate by sharing messages

❙ Distributed Shared Memory (DSM)
❘ Communication through a virtual shared memory.

Intro to Distributed Systems Middleware 19

Message Passing
❙ Basic communication primitives

❘ Send message
❘ Receive message

❙ Modes of communication
❘ Synchronous

• atomic action requiring the participation of the sender
and receiver.

• Blocking send: blocks until message is transmitted out
of the system send queue

• Blocking receive: blocks until message arrives in receive
queue

❘ Asynchronous
• Non-blocking send:sending process continues after

message is sent
• Blocking or non-blocking receive: Blocking receive

implemented by timeout or threads. Non-blocking
receive proceeds while waiting for message. Message is
queued(BUFFERED) upon arrival.

Intro to Distributed Systems Middleware 20

Reliability issues

❚ Unreliable communication
❙ Best effort, No ACK’s or retransmissions
❙ Application programmer designs own reliability

mechanism

❚ Reliable communication
❙ Different degrees of reliability
❙ Processes have some guarantee that messages will be

delivered.
❙ Reliability mechanisms - ACKs, NACKs.

Intro to Distributed Systems Middleware 21

Reliability issues

❚ Unreliable communication
❙ Best effort, No ACK’s or retransmissions
❙ Application programmer designs own reliability

mechanism

❚ Reliable communication
❙ Different degrees of reliability
❙ Processes have some guarantee that messages will be

delivered.
❙ Reliability mechanisms - ACKs, NACKs.

Intro to Distributed Systems Middleware 22

Distributed Shared Memory

❚ Abstraction used for processes on machines that
do not share memory
❙ Motivated by shared memory multiprocessors that do

share memory

❚ Processes read and write from virtual shared
memory.
❙ Primitives - read and write
❙ OS ensures that all processes see all updates

❚ Caching on local node for efficiency
❙ Issue - cache consistency

Intro to Distributed Systems Middleware 23

Remote Procedure Call

❚ Builds on message passing
❙ extend traditional procedure call to perform transfer

of control and data across network
❙ Easy to use - fits well with the client/server model.
❙ Helps programmer focus on the application instead of

the communication protocol.
❙ Server is a collection of exported procedures on some

shared resource
❙ Variety of RPC semantics

❘ “maybe call”
❘ “at least once call”
❘ “at most once call”

Intro to Distributed Systems Middleware 24

Fault Models in Distributed
Systems

❚ Crash failures
❙ A processor experiences a crash failure when it

ceases to operate at some point without any warning.
Failure may not be detectable by other processors.

❘ Failstop - processor fails by halting; detectable by
other processors.

❚ Byzantine failures
❙ completely unconstrained failures
❙ conservative, worst-case assumption for behavior of

hardware and software
❙ covers the possibility of intelligent (human) intrusion.

Intro to Distributed Systems Middleware 25

Other Fault Models in
Distributed Systems

❚ Dealing with message loss
❙ Crash + Link

❘ Processor fails by halting. Link fails by losing
messages but does not delay, duplicate or corrupt
messages.

❙ Receive Omission
❘ processor receives only a subset of messages sent to

it.
❙ Send Omission

❘ processor fails by transmitting only a subset of the
messages it actually attempts to send.

❙ General Omission
❘ Receive and/or send omission

Intro to Distributed Systems Middleware 26

Other distributed system
issues

❚ Concurrency and Synchronization
❚ Distributed Deadlocks
❚ Time in distributed systems
❚ Naming
❚ Replication

❙ improve availability and performance
❚ Migration

❙ of processes and data
❚ Security

❙ eavesdropping, masquerading, message tampering,
replaying

Intro to Distributed Systems Middleware 27

Client/Server Computing

❚ Client/server computing allocates application
processing between the client and server
processes.

❚ A typical application has three basic
components:
❙ Presentation logic
❙ Application logic
❙ Data management logic

Intro to Distributed Systems Middleware 28

Client/Server Models

❚ There are at least three different models for
distributing these functions:
❙ Presentation logic module running on the client

system and the other two modules running on one or
more servers.

❙ Presentation logic and application logic modules
running on the client system and the data
management logic module running on one or more
servers.

❙ Presentation logic and a part of application logic
module running on the client system and the other
part(s) of the application logic module and data
management module running on one or more servers

Intro to Distributed Systems Middleware 29

Distributed Computing Platform
• Application Support Services (OS,
 DB support, Directories, RPC)
• Communication Network Services
 (Network protocols, Physical devices)
• Hardware

Application Systems:
support enterprise systems

Enterprise Systems:
Perform enterprise activities

M
an

ag
em

en
t

an
d

Su
pp

or
t

N
et

w
or

k
M

an
ag

em
en

t

I n
t e

ro
pe

r a
b i

li t
y

Po
rt a

bi
l it

y
In

te
gr

at
io

n

Intro to Distributed Systems Middleware 30

Application Systems:

Enterprise Systems:
•Engineering systems
•Business systems

M
an

ag
em

en
t

an
d

Su
pp

or
t

N
et

w
or

k
M

an
ag

em
en

t

I n
t e

ro
pe

r a
b i

li t
y

Po
rt a

bi
l it

y
In

te
gr

at
io

n

• Manufacturing
• Office systems

User
Interfaces

Processing
programs

Data files &
Databases

Distributed Computing Platform
• Application Support Services

C/S Support Distributed
OS

Dist. Data
Trans. Mgmt.

Common Network Services
• Network protocols & interconnectivity

OSI
protocols SNATCP/IP

Intro to Distributed Systems Middleware 31

What is Middleware?

❚ Middleware is the software between the
application programs and the operating
System and base networking

❚ Middleware provides a comprehensive set of
higher-level distributed computing
capabilities and a set of interfaces to access
the capabilities of the system.

Intro to Distributed Systems Middleware 32

Distributed Systems
Middleware

❙ Enables the modular interconnection of distributed
software

❘ abstract over low level mechanisms used to
implement resource management services.

❙ Computational Model
❘ Support separation of concerns and reuse of services

❙ Customizable, Composable Middleware Frameworks
❘ Provide for dynamic network and system

customizations, dynamic
invocation/revocation/installation of services.

❘ Concurrent execution of multiple distributed systems
policies.

Intro to Distributed Systems Middleware 33

Application Program

Middleware
Service 1

API
Middleware

Service 3

API
Middleware

Service 2

API

Modularity in Middleware
Services

Intro to Distributed Systems Middleware 34

Useful Middleware Services

❙ Naming and Directory Service
❙ State Capture Service
❙ Event Service
❙ Transaction Service
❙ Fault Detection Service
❙ Trading Service
❙ Replication Service
❙ Migration Service

Intro to Distributed Systems Middleware 35

Types of Middleware Services

❚ Component services
❙ Provide a specific function to the requestor
❙ Generally independent of other services
❙ Presentation, Communication, Control, Information

Services, computation services etc.

❚ Integrated Sets
❚ Integration frameworks

Intro to Distributed Systems Middleware 36

Integrated Sets Middleware

❚ An Integrated set of services consist of a set of
services that take significant advantage of each
other.

❚ Example: DCE

Intro to Distributed Systems Middleware 37

Distributed Computing
Environment (DCE)

❚ DCE is from the Open Software Foundation
(OSF), and now X/Open, offers an environment
that spans multiple architectures, protocols, and
operating systems.
❙ DCE supported by major software vendors.

❚ It provides key distributed technologies,
including RPC, a distributed naming service, time
synchronization service, a distributed file system,
a network security service, and a threads
package.

Intro to Distributed Systems Middleware 38

Operating System Transport Services

DCE Threads Services

DCE Remote Procedure Calls

DCE
Distributed

Time Service

DCE
Directory
Service

Other Basic
Services

DCE Distributed File Service

Applications

DCE
Security
Service

M
an

ag
em

en
t

DCE

Intro to Distributed Systems Middleware 39

Integration Frameworks
Middleware

❚ Integration frameworks are integration
environments that are tailored to the needs of a
specific application domain.

❚ Examples
❙ Workgroup framework - for workgroup computing.
❙ Transaction Processing monitor frameworks
❙ Network management frameworks

Intro to Distributed Systems Middleware 40

Distributed Object Computing

❚ Combining distributed computing with an object
model.
❙ Allows software reusability
❙ More abstract level of programming
❙ The use of a broker like entity that keeps track of

processes, provides messaging between processes
and other higher level services

❙ Examples
❘ CORBA
❘ JINI
❘ E-SPEAK
❘ Note: DCE uses a procedure-oriented distributed

systems model, not an object model.

Intro to Distributed Systems Middleware 41

Issues with Distributed
Objects

❙ Abstraction
❙ Performance
❙ Latency
❙ Partial failure
❙ Synchronization
❙ Complexity

Intro to Distributed Systems Middleware 42

Techniques for object
distribution

❙ Message Passing
❘ Object knows about network; Network data is

minimum

❙ Argument/Return Passing
❘ Like RPC. Network data = args + return result +

names

❙ Serializing and Sending Object
❘ Actual object code is sent. Might require

synchronization. Network data = object code + object
state + sync info

❙ Shared Memory
❘ based on DSM implementation
❘ Network Data = Data touched + synchronization info

Intro to Distributed Systems Middleware 43

CORBA

❚ CORBA is a standard specification for developing
object-oriented applications.

❚ CORBA was defined by OMG in 1990.
❚ OMG is dedicated to popularizing Object-

Oriented standards for integrating applications
based on existing standards.

Intro to Distributed Systems Middleware 44

The Object Management
Architecture (OMA)

Application
Objects

Object Request
Broker

Common
facilities

Object Services

Intro to Distributed Systems Middleware 45

OMA

❚ ORB: the communication hub for all objects
in the system

❚ Object Services: object events, persistent
objects, etc.

❚ Common facilities: accessing databases,
printing files, etc.

❚ Application objects: document handling
objects.

Intro to Distributed Systems Middleware 46

Clock Synchronization in
Distributed Systems

❚ Clocks in a distributed system drift:
❙ Relative to each other

❘ Logical Clocks are clocks which are synchronized
relative to each other.

❙ Relative to a real world clock
❘ Determination of this real world clock may be an

issue
❘ Physical clocks are logical clocks that must not

deviate from the real-time by more than a certain
amount.

Intro to Distributed Systems Middleware 47

Synchronizing Logical Clocks

❚ Need to understand the ordering of events
❚ Notion of time is critical
❚ “Happens Before” notion.

❙ E.g. Concurrency control using timestamps

❚ “Happens Before” notion is not straightforward
in distributed systems
❙ No guarantees of synchronized clocks
❙ Communication latency

Intro to Distributed Systems Middleware 48

Event Ordering

❚ Lamport defined the “happens before” (=>)
relation
❙ If a and b are events in the same process, and a

occurs before b, then a => b.
❙ If a is the event of a message being sent by one

process and b is the event of the message being
received by another process, then a => b.

❙ If X =>Y and Y=>Z then X => Z.
If a => b then time (a) => time (b)

Intro to Distributed Systems Middleware 49

Causal Ordering

❚ “Happened Before” also called causal ordering
❚ Possible to draw a causality relation between 2

events if
❙ They happen in the same process
❙ There is a chain of messages between them

Intro to Distributed Systems Middleware 50

Logical Clocks

❚ Monotonically increasing counter
❚ No relation with real clock
❚ Each process keeps its own logical clock Cp used

to timestamp events

Intro to Distributed Systems Middleware 51

Causal Ordering and Logical
Clocks

❚ Cp is incremented before each event.
❙ Cp = Cp + 1

❚ When p sends a message m, it piggybacks a
logical timestamp t = Cp.

❚ When q receives (m,t) it computes:
❙ Cq = max(Cq,t) before timestamping the message

receipt event.

❚ Results in a partial ordering of events.

Intro to Distributed Systems Middleware 52

Intro to Distributed Systems Middleware 53

Total Ordering

❚ Extending partial order to total order

❚ Global timestamps:
❙ (Ta, Pa) where Ta is the local timestamp and Pa is

the process id.
❙ (Ta,Pa) < (Tb,Pb) iff

❘ (Ta < Tb) or ((Ta = Tb) and (Pa < Pb))

❙ Total order is consistent with partial order.

time Proc_id

Intro to Distributed Systems Middleware 54

Physical Clocks

❚ How do we measure real time?
❙ 17th century - Mechanical clocks based on

astronomical measurements
❘ Solar Day - Transit of the sun
❘ Solar Seconds - Solar Day/(3600*24)

❙ Problem (1940) - Rotation of the earth varies (gets
slower)

❙ Mean solar second - average over many days

Intro to Distributed Systems Middleware 55

Atomic Clocks

❚ 1948
❙ counting transitions of a crystal (Cesium 133) used as

atomic clock
❙ TAI - International Atomic Time

❘ 9192631779 transitions = 1 mean solar second in
1948

❙ UTC (Universal Coordinated Time)
❘ From time to time, we skip a solar second to stay in

phase with the sun (30+ times since 1958)
❘ UTC is broadcast by several sources (satellites…)

Intro to Distributed Systems Middleware 56

Accuracy of Computer Clocks

❚ Modern timer chips have a relative error of
1/100,000 - 0.86 seconds a day

❚ To maintain synchronized clocks
❙ Can use UTC source (time server) to obtain current

notion of time
❙ Use solutions without UTC.

Intro to Distributed Systems Middleware 57

Berkeley UNIX algorithm

❚ One daemon without UTC
❚ Periodically, this daemon polls and asks all the

machines for their time
❚ The machines respond.
❚ The daemon computes an average time and

then broadcasts this average time.

Intro to Distributed Systems Middleware 58

Decentralized Averaging
Algorithm

❚ Each machine has a daemon without UTC
❚ Periodically, at fixed agreed-upon times, each

machine broadcasts its local time.
❚ Each of them calculates the average time by

averaging all the received local times.

Intro to Distributed Systems Middleware 59

Clock Synchronization in DCE

❚ DCE’s time model is actually in an interval
❙ I.e. time in DCE is actually an interval
❙ Comparing 2 times may yield 3 answers

❘ t1 < t2
❘ t2 < t1
❘ not determined

❙ Each machine is either a time server or a clerk
❙ Periodically a clerk contacts all the time servers on its

LAN
❙ Based on their answers, it computes a new time and

gradually converges to it.

Intro to Distributed Systems Middleware 60

The Network Time Protocol

❚ Enables clients across the Internet to be
synchronized accurately to the UTC
❙ Overcomes large and variable message delays
❙ Statistical techniques for filtering can be applied

❘ based on past behavior of server

❙ Can survive lengthy losses of connectivity
❙ Enables frequent synchronization
❙ Provides protection against interference
❙ Uses a hierarchy of servers located across the

Internet (Primary servers connected to a UTC time
source).

Intro to Distributed Systems Middleware 61

Intro to Distributed Systems Middleware 62

Time Manager Operations

❚ Logical Clocks
❙ C.adjust(L,T)

❘ adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

❙ C.read
❘ returns the current value of clock C

❚ Timers
❙ TP.set(T) - reset the timer to timeout in T units

❚ Messages
❙ receive(m,l); broadcast(m); forward(m,l)

