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 Abstract

In this paper, we address the problem of data placement in a grid based multimedia environment, where the resource providers, i.e. servers, are intermittently available. The goal is to optimize the system performance by admitting maximum number of users into the system while ensuring user Quality of Service (QoS). Effective utilization of storage resources is key for providing continuous availability of data to end-users despite server downtimes. We define and formulate various placement strategies that determine the degree of replication necessary for video objects by using a cost-based optimization procedure based on a priori predictions of expected subscriber requests under various time-map scenarios and QoS demands. We also devise methods for dereplication of videos based on changes in popularity and server usage patterns. Our performance results indicate the benefits obtained the judicious use of dynamic placement strategies. 
1. Introduction

Global grid infrastructures [FK98, A99] enable the use of idle computing and communication resources distributed in a wide-area environment; and upon a properly managed grid system infrastructure, multimedia applications that provide delivery of multimedia information are especially well suited, since much of information is read-only, coherence of multiple replicas is not an issue. However, systems on a computational grid are not continuously available. 
We define “intermittently available” system as those in which servers and service providers may not be available all the time, e.g. grid-based systems might provide resources/services for only a few hours a day.  Effective load management in an intermittently available multimedia environment requires:

· Resource discovery and scheduling mechanisms that will ensure the continuity of data to the user while servers are intermittently available.

· Data placement mechanisms to ensure that popularly requested information is replicated such that the data is always available.

We have addressed the first issue in [HV02]. In this paper, we focus on the second topic. 
Generally, a placement policy for a multimedia (MM) system will address: (a) how many replicas needed for each MM object; (b) where to replicate, which servers the replicas should be created on; (c) when to make replicas. Given the network bandwidth constraints of each server, these decisions directly affect the system performance, i.e. the acceptability of concurrent requests for different MM objects. A bad placement policy will definitely deteriorate the system performance, in that it causes more replicas only to occupy the storage resources but not in service for requests; less replicas to be in service. So, the ideal placement policy is to provide the system the adaptability for the request pattern, that is, to own the capability of adjust the mapping of replicas on the servers according to the run-time request pattern. Previous work has addressed issues in data placement for servers that are continuous available [CGL99] [LD: no year]. But, in our system model, the servers are intermittently available, so it brings more complexities to the data placement problems, as besides the request pattern, the network bandwidth factors of the servers, we also need to take the time map of each server into account. In the remainder of this paper, without losing generality, we generalize the MM objects to video objects. 
In this paper, we define and formulate 3 static placement strategies to initialize the mapping of replicas on servers, 2 dynamic placement strategies either to satisfy an individual incoming request, or to determine the degree of replication necessary for popular videos for overall system requests by using a cost-based optimization procedure based on a priori predictions of expected subscriber requests [image: image21.emf]adaptive placement effects compared with static 
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under various time-map scenarios. To optimize storage utilization, we also devise methods for dereplication of videos based on changes in their popularities and in server usage patterns. 

The rest of this paper is organized as follows. We illustrate the system architecture in Section 2. Section 3 introduces the different placement strategies in such an intermittently available environment. Section 4 details the dynamic placement process, especially elaborate the algorithm of pseudo replication and pseudo dereplication. We evaluate the performance of the proposed approaches in Section 5 and conclude in Section 6 with future research directions. 
2. System Architecture 
The envisioned system consists of clients and multimedia servers distributed across a wide area network.  The distributed servers provide resources to store the multimedia data that can be streamed or downloaded to clients at suitable QoS levels.  The resources provided include high capacity storage devices (e.g. hard-disks), processor, buffer memory, and high-speed network interfaces for real-time multimedia retrieval and transmission. Servers may be intermittently available and the time map of servers containing available server times is predetermined.  However, the availability of resources on servers can vary dynamically; furthermore, due to replication and dereplication of video objects, the stored data can change dynamically. To accommodate a large number of video objects, the environment includes tertiary storage
.

Clients issue requests for multimedia information that may be replicated across servers.  Client requests can vary significantly; hence requests are parameterized to specify the data resource requirements and service characteristics – i.e. earliest start time, latest finish time, service duration, and whether the service required is continuous or discontinuous etc.  The key component of the infrastructure is a brokerage service.  All incoming requests from clients are routed to the broker that determines whether or not to accept the request based on current system conditions and request characteristics.  Specifically, the broker: 

(a) discovers the appropriate set of resources to handle an incoming request;

(b) coordinates resource reservation and schedules these requests on the selected resources.  

(c) initiates replication and dereplication of multimedia objects to cater to changes in request pattern and load conditions. 
[image: image22.wmf]Several kinds of information are required to ensure effective resource provisioning – this includes server resource availabilities, server time maps, replica maps, network conditions etc. This information is held in a directory service (DS) that is accessed and updated suitably by the broker.  Using state information in the DS, the broker determines a candidate sever or a set of servers that can satisfy the request. Once a solution for the incoming request (i.e. scheduled servers and times) has been determined, the broker will update the directory service to reflect the allocated schedule. The goal is to improve the overall system performance, in order to facilitate more requests.  If the broker determines that more than one server must provide the desired service, it transforms the single user request to multiple requests that will execute on the different servers. The service provided may be continuous or discontinuous; and can be finished without or with some delay.   In the typical mode of operation, the servers guarantee the provision of appropriate quality of service to each request, once resources have been reserved. 

3. Placement Strategies 
Given the time map and server resource configurations, an effective placement strategy will determine the optimal mapping of replicas to servers, so that the overall system performance is improved and accepted requests will be guaranteed QoS. Specifically, a placement policy for a multimedia (MM) system will address: (a) how many replicas needed for each MM object; (b) where to replicate, which servers the replicas should be created on; (c) when to make replicas. Placement decisions can be made statically in advance or dynamically changed at runtime based on request arrival patterns. We propose a family of static and dynamic placement policies (as in Fig 2) that can be used in intermittently available environments. Compared with the on-demand placement strategy, which tries to satisfy an incoming request, the time-aware predictive placements are to improve the overall request acceptance based on a prediction of the requests for a following period of time. Especially, we specify the Time-aware Predictive Placement (TAPP) algorithm that uses a cost-based optimization procedure based on a priori predictions of expected subscriber requests. In this paper, we will try to define and formalize the dynamic placement strategies, and evaluate the system performance.  
3.1 Static placement strategies

Our objective is to improve the overall system utilization and number of the concurrent users, another words, we focus on the policies that minimize the overall number of rejections, while keeping the load balance among the servers. There are two main ways to deal with how many replicas needed for each video data. One is based on the request popularity of each video; the other is to decide evenly or randomly without caring about the popularity. To settle down the problem of which data replica is stored on which server, we propose deterministic and non-deterministic (random) placement policies to initialize the servers. 
We propose deterministic and non-deterministic placement policies to determine which replica is created on which server. 

· SP1: Cluster-based static placement – Ordinarily, an equal placement strategy attempts to create an equal number of replicas for each video object. The cluster-based placement enhances the rudimentary placement to accept the intermittently availability of servers. Cluster the servers into groups so that the total available service time of each group covers the entire day. Each video object is associated with exactly one group, so that every server in the group has a replica of this video object. 

· SP2: Popularity-enhanced deterministic placement – Classify the video objects into two groups of very-popular and less-popular. A replica of very-popular video object is placed on every server, assuming resource availability. Less-popular video objects are evenly placed in the remaining storage space. The even placement policy attempts to create an equal number of replicas for less-popular video objects.

· SP3: Popularity-based random placement – Choose the number of replicas for a video object based on its popularity, and randomly distributed these replicas among the feasible servers, that have available disk storage.

In the remainder of this paper, we will use SP1, SP2 and SP3 to identify the three static placement strategies. 

3.2 Dynamic placement strategies

The dynamic placement strategies we propose consider the available disk storage, the current load on the servers, and the changing request patterns for access to video objects. We model the incoming request R from the client as:

R: < VID R , ST R , ET R , Type R, QoS R >

Where VID R corresponds to the requested video ID; ST R is the request start time; ET R is the end time by which the request should be finished; Type R represents the type of the request including (a) immediacy of the response (b) whether the request must be continuous or can be discontinuous and (c) whether the request must be executed on a simple server or may be executed on multiple servers. QoS R represents the QoS parameters of the request, i.e. the resources required by the request and the duration for which these resources are needed. We model the resources needed by a request using 4 parameters: the required disk bandwidth (R DBW), required memory resource (R MEM), required CPU (R CPU ) , and the required network transfer bandwidth (RNBW); Dv  represents the duration for which these resources are required
In order to deal with the capacity of each server over time in a unified way, we define a Load Factor (R, S, t) for a request r on server s at time t, as:

Thus, the Load Factor of a server s at time t, LF(R, S, t), is determined by the bottleneck resource at time t. We use the average load-factor over all time units (between ST R and ET R) during which the server is available. For example, if the granularity of the time units in a day is 24 (24 hours/day), and ST R is 5am and ET R is 10am, then we consider

LF (s) = Average (LF5, LF6, LF7, LF8, LF9, LF10). 

Dynamic placement strategies can classified based on whether they are initiated on-demand to satisfy an individual request, or initiated in advance based on predicted request arrivals. The on-demand strategy is myopic since it is focused on a single request; while the predicative strategy attempts to provide better overall performance for a large number of requests.    
On-demand Placement 

The on-demand placement strategy is a request-driven that can be used when the broker can not find the available servers to schedule the coming request. This policy is to find a server (or a set of servers) whose disk(s) has (have) no replica for the requested video, but has available network bandwidth and will be able to provide service for the requested period, also has (have) or will be able to have enough storage for making a new requested replica. So, there will be two main steps of this strategy: 

First, check for sufficient available network bandwidth resources for service request. At this step, when selecting the server(s) for new replica, we ignore the multiple servers’ cases for on-demand placement due to the added complexity and overhead of scheduling multiple replications (and future dereplications) for satisfying a single request. The on-demand placement policy studied in this paper selects a single candidate server that has sufficient resource that can provide continuous service for the request time period. If there are many candidate servers, the policy will choose the one which is least loaded, that is, i.e. has the minimum Load Factor of the server. (this is also to solve the ties, so put together with “ways to solve the ties of dereplicated replicas”?)
Second, check for sufficient storage resources to create a replica. If the server chosen for new replica of the requested video has enough disk space available to create the replica of the required video, then a replica is created and the request is scheduled on this server. However, if the server’s storage is fully occupied by other video replicas, then dereplication of one or more video replicas that are not in use or has not been reserved for future use is necessary so as to free the storage space for the new replica. At this point, either there are some replicas that can be dereplicated, then do replication and schedule the request on this server; or there may be no enough replicas to be dereplicated and free space, then it has to give up this server, and continue to check next server(s) that may be able to satisfy the requests in order of increasing load factor, until there is no one server can be applicable and this request is rejected. 
There are many ways to solve the ties of dereplicated replicas, such as: randomly pick one of them; or choose the one that have been accessed the least number of times before.  It seems that the first one is not good in that it may dereplicate the most popular video replicas on this server. So, we use the second approach, but the system has to keep track of the accesses to all replicas on each server. 
(In detailed algorithm [Appendix], if returnServer is not null, then schedule the request on the returnServer; otherwise, reject the request.)

With low startup latencies, large amounts of server bandwidth and tertiary bandwidth are required to create replicas, hence the on-demand policy may not always be feasible. 
Predictive Placement Strategies

Since reallocation of video objects to data servers is a lengthy and expensive process, such reallocation should be performed in advance, to satisfy expected future subscriber requests. Hence a time-aware predictive placement policy is used by the broker to determine when, where, and how many replicas of each video object should be placed in a video server so as to maximize the number of requested serviced by it. Furthermore, the TAPP takes into account the line??? Of server availability while making placement decision. 
This strategy can be implemented by two approaches: 

· Bandwidth – biased: without considering the servers’ storage, choose servers for new replicas only based on the current load and service time availability. 
· Storage – biased: starts considering the available disk storage of the servers besides the current load; if there is no enough disk storage, then choose some of the servers that have replicas of less-popular videos, and try to make new replicas for popular videos.
The implementation algorithms will be elaborated in the next section.
4. The Time-aware Placement Algorithm 
In this section, we present a generalized time-aware predictive placement algorithm (TAPP). In fact, before running the TAPP algorithm (illustrated in Fig 4) at the beginning of every period of time, during the previous time period, the system has to record the total rejections of each video and total number of requests for each video, based on which, TAPP can execute the following 4 main steps: popularity Estimation, Candidate server selection, Pseudo Replication, and Pseudo Dereplication. 
Popularity Estimation

In this step is to decide which video objects need more replicas based on the rejection-popularity (RP) factor. If “total rejections of video i within last period of time” is # rejection (i), “total rejections for whole videos within last period of time” is # rejections, and “total requests of video i within last period of time” is requests (i), then the RP(i) is defined as:
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Then, the larger the RP of a video, the more problematic it is, which implies that it is necessary to add replicas of this video object.
By studying the request model, we assume if 
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, then video j will be inserted in the list of less-popular videos in the first phase by the sequence of increasing order of the value of RP. 
Candidate server selection
In this step, storage – biased approach will choose all the servers that have storage resource available as candidate servers. On the other hand, bandwidth – biased approach is to choose all the servers that still have network bandwidth available and available service time, but without caring if they have extra disk storage. According to the load factor to determine if it’s heavily loaded. But, how many to choose? Or how to delete the invalid servers.

Pseudo Replication: given the set of servers of disk_available_servers (in Fig 3) and popular videos got from the step of Popularity Estimation, use the pseudo allocation algorithm to get a set of combinations as (server j, video i), so as to create one replica i on j.
In order to derive a mapping of video objects to data servers, the broker constructs a placement cost matrix that represents the relative costs of servicing subscriber requests from each of the data servers. Columns in the placement matrix represent data servers and rows represent video objects as Table 1. Each entry in the matrix, 
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represents the maximum revenue that can accrue from allocating Vi to S j. 

If video i is in server j, then the entry of i row and j column is set as null, so that this combination will never be in consideration of this replication matrix. 
1/ LF(Ri, Sj) represents the average number of requests of Ri that data server Sj can provide for each time unit in one placement period. Ni is the number of rejections in the last period; As this is for an intermittently available system, tj is used to represent the value of total service time for server j. so that (1/LF(Ri,Sj) * tj represents the average total number of requests for video i that a sever j can accept. 

After calculating the entries in the matrix of each row and column, first to choose the maximum value of each column and set the values in the last row accordingly, then to choose the maximum value of the last row, so that a set of replication combination with one video and one server,  (server j, video i) is selected. Then, shrink the matrix by deleting either a column (if Ni >= 1/LF(Ri,Sj)*tj) and decreasing the value of Ni by 1/LF(Ri,Sj)*tj; or a row (if Ni <= 1/LF(Ri,Sj) * tj) and decreasing the available network bandwidth of the snapshot servers by minus the bandwidth predicted for  the new replicas of video i in the next period. Only if at least one column and one row with a non-null entry value is left, repeat building replication matrix, and getting replication combinations. 
Pseudo Dereplication 
Pseudo dereplication can be implemented by using two policies: bandwidth biased and storage biased. They are different in considering which resource as the main concern. 

(a) Bandwidth_biased with (server j , video i )
If server j does not have enough storage for a replica of video i. Dereplication of less-popular videos (got from the step of Popularity Estimation) is necessary. To choose the videos for dereplication, we make the replicas of server j in order of increasing the number of accessed during last period of time. Follow this sequence, try to find replicas that are not in use or has not been reserved for future use, so as to be dereplicable from this server, and provide enough space for a new replica of video i. 
(b) Storage_biased
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We are devising methods for dereplication of videos based on changes in their popularities and in server usage patterns together; the goal is to dereplicate the replica of the least popular video from lightly loaded server with more service time available. If the server parameter of sever j is defined as 

sp ( j ) = tj * LF (Vi , Sj ).

After getting the less-popular videos queue, pick up a number of servers following the dereplication queue got in the first step in a zigzag way, and add the servers into the disk_space_available list again. At this time, each item in the disk_space_available list is identified by the server and the less-popular video together, that is, after pseudo replication, for the server of each replication combination, there is a set of dereplication combinations. 
5. Performance Evaluation of the Resources Discovery Policies

In this section, we evaluate the performance of different resource discovery policies under various video server resource constraints.

5.1 Request Model

Since the focus application of this paper is the delivery of multimedia services, we choose an appropriate request model to characterize incoming requests to the broker, i.e., Zipfian law [DS95], with the request arrivals per day for each video Vi being given by:

Pr. (Vi  is requested) = [image: image6.wmf]i
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We compute the probability of request arrival in hour j to be: pj  
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. From the request arrivals per day for each video and the probability distribution of requests for each hour, the number of requests that arrive in each hour for each video Vj is computed. The validity of this model is confirmed in the studies of Chervenak [C94] and Dan, Sitaram and Shahabuddin [DSS94], which analyses examined statistics in magazines for video rentals and reports from video store owners. Both of them concluded that the popularity distribution of video titles could be fitted into a zipfian distribution.

5.2 System Model

The basic video server configuration used in this simulation includes 20 data servers; each with a storage of 100 GB and network transfer bandwidth of 100Mbps. These parameters will be appropriately altered for simulation studies. For simplicity, the CPU and memory resources of the data servers are assumed not to be bottlenecks; we assumed that besides the 100Mbps network bandwidth available for video streaming, there is some other network bandwidth resource reserved for replication process.  Also, another factor, disk bandwidth is an important factor that affects the process of replication, the usability of the placement strategies as well. [SM98] proposed an approach according to that. In the following simulations, we also assume that the duration of each video is 3 hours, each video replica requires 2 GB disk storage, and 2 Mbps for network transmission bandwidth. 

5.3 Time Map and Scheduling policies. 

The service time map for each server keeps the information of when the server will be available during a day. We study three approaches to model the time map of each server:

· T1: Uniform availability – All the servers are available (or unavailable) for an equal amount of time; furthermore, the servers are divided into groups, such that within each group, the time distribution covers the entire 24-hour day, as shown in figure 6. In our simulations, we use the uniform availability with duration = 6 hours as the first time map strategy, T1. We also executed the entire set of experiments with a finer granularity of the time map, with available duration = 3 hours, and the results obtained were similar to the coarse granularity case, where  duration = 6 hours.

· T2: Random availability – We randomly choose the number of hours during the day when a server is available. The time at which a server is available is also randomly chosen on a per-hour basis; hence the available times may be continuous, discontinuous or partially continuous. 

· T3: Total availability – All the servers are available all the time.

When using T1 or T2, clustering the servers into “server groups” is an important concept for ensuring that at least one replica of video objects is always available. This implies that there are no “blank” spots in service availability. Note that the placement strategies will take this issue into account.

In the remainder of this paper, we will use T1, T2 and T3 to identify the three time map strategies; P1, P2 and P3 to identify the three placement strategies. 
We present a generalized algorithm for discovering intermittently available resources (DIAR) by modeling the DIAR problem as a graph-theoretic approach, and develop a network flow analogy; refinements to the generalized solution will be discussed in the next section. The different DIAR policies are to satisfy various QoS requirements of multimedia requests. We classify the policies based on three criteria:

(a) Whether the request must be immediately started  with zero startup latency (IS)  or if the request startup can be delayed (DS); 

(b) Whether the request must be continuously (C)  processed until completion or if the request can be discontinuously (D) executed; 

(c) Whether the service is provided by one single server (SS) , or if the service can be provided by multiple servers (MS). 

The classification of DIAR policies is illustrated in Fig 5. Six policies are proposed: IS-C-SS, IC-C-MS, DS-C-SS, DS-C-MS, DS-D-SS, and DS-D-MS
. We will use the above nomenclature in the remainder of this paper to refer to the six policies studied.  In the implementation of the above policies, the technique used to search for augmenting paths may be server-driven (pick a server first and then determine suitable time nodes) or time-driven (pick a time-node first and then select a feasible server). In general, the single-server policies will be server driven and multiple server policies are time-driven. 

The above scheduling policies are described specifically in [HV02], and in this paper, we will give performance evaluation based on these concepts.
5.4 Performance Evaluation

We evaluate system performance using the time map and scheduling polices explained above and use the number of rejections (i.e. success of the admission control process) as the main metric of evaluation. We compare how the different placement strategies perform under varying system configurations such as server storage and varying number of data servers.  

Overall performance of static placement
In order to focus on the placement problem, we present our results using the IS-C-MS scheduling policy, we believe that this policy is representative of how current multimedia request will be handled in a grid based environment. For more detailed results on the other five scheduling policies, please refer to [HV02]. 
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In this section, we study the system performance under different scheduling policies. We compare the performance of the above six scheduling policies under different time maps for different static placement strategies. Fig 6 represents the number of rejections over the time for the six policies. The title of each graph indicates the placement and the time map strategy used in this simulation environment. The results produced with the random time-map and random placement strategies are averaged over several executions.

Intuitively, when servers are always available, the multiple server cases should always have a better acceptance rate.  This is because, in general, the single server case is a constrained version of the multiple server case and therefore has fewer options for resource selection. However, we notice in our experiments that another factor comes into play: i.e. the amount of available resources; and this introduces variation in the outcome. Consider the case of the P2-T3 configuration; the algorithm causes resources in multiple servers to be reserved in the future, hence larger number of resources become unavailable to new incoming immediate-start requests in the next round. This is also true sometimes in P1-T3 and P3-T3, i.e. DS-D-MS exhibits higher rejection rates than DS-D-SS. 

In the case of intermittently available servers, the single server case becomes highly restricted since finding a single continuously available server that meets the timing requirements is difficult. The multiple server policy offers much more flexibility, since request execution times can span multiple servers. However, this can cause the non-popular requests to be distributed across servers that contain popular objects and cause early saturation of servers with popular objects, resulting in the rejection of many popular requests. As can be observed, the multiple server policies perform better within the time map T1 and T2. As expected, the most restrictive policy, i.e. IS-C-SS exhibits the worst performance and the most flexible policy DS-D-MS has the smallest number of rejections. 

In general, we observe that the number of rejections of policy P1 is always much larger than P2 and P3 since P1 does not take the request popularity into account. In all case, the random placement policy, P3, has the smallest number of rejections. Though both P2 and P3 take request popularity into account, P3 is better than P2, because the random distribution enlarges the possibility for the replica to be created on more servers with different time maps, so that the servers with the replicas of this video requests can be available for more time.

Impact of dynamic placement on different scheduling policies
Adaptive placement algorithm works well. The effect of adaptive placement strategies are always work better on Multiple servers than single server if all other conditions are same. The reason is easy to analyzed, because the reallocation of video replicas generates more available servers to handle the requests. Even they may not be in continuous time service, they still devote in improving the overall request acceptance. Especially as for the figure, because it’s time-aware predictive placement processing, so the changes only happen after 24 hours, that is the numbers of rejections are same within the first simulation day, since we assume the mechanism will take place every a day. 
Here the y-axis presents the value:
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Comparing different placement strategies under different storage configuration
The on-demand placement strategy is the better than TaP placement when there is more storage resource on each server, and the bandwidth biased performs similar as storage biased; but, when the storage resource is sufficient, the TaP performs better than on-demand, and the storage biased performs better the bandwidth biased.  (want to get the T4 with more fine granularity, then the on-demand one will not have much advantage. This depends on if the continuity of the servers is able to handle the service individually)
Different storage resources will lead different result.

The more storage has, the better on-demand placement strategy will be.
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Impact of server storage (the figure can be a little complex) 
We studied the impact of disk storage on the dynamic placement strategies. From the following figure, it is obvious that the more storage resource each server has, the more effective the periodical dynamic strategy will be. The reason is that, more storage provides more possibility to make replicas for popular videos, therefore, more requests may be accepted. Here, we also use the ratio concept. And more storage leads to more benefit by applying the dynamic placement.
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Impact of service time map (different continuity) 
As the system we studied is an intermittently available one, the time map is an important character that influencing the system performance. The following figure generalized the impact of the time map on the periodical placement strategy. The result is time map with fine granularity will have better performance than the coarse one. The reason is because the data servers of the overall system will cover more service time, so that more requested will be accepted. 
For different placement strategies, the impact of service time map is different.

But, the impact of service time continuity is contrary on two dynamic placement strategies. 
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Impact of number of data servers

There is no difference between periodical dynamic placement strategy and static one when the server storage is big enough.  But it is useful for little storage resource.
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5.5 Summary of performance

6. Related work and Future Research Directions

We address related work in existing grid system management and scheduling in computational grid systems. We indicate how the techniques proposed in this paper can be incorporated into existing grid environments. 

Legion [CKK98] presents users with wide range of services for security, performance, and functionality. In addition, Legion provides two types of resources: computational resources (hosts) and storage resources (vaults). The Resource Allocation Manager (GRAM) of Globus [CFK98] provides the local component for resource management. Resource and computation management services are implemented in a hierarchical fashion. Currently, the Globus Architecture for Reservation and Allocation (GARA) aims to address issues of dynamic discovery, advance or immediate reservation of resources. Our scheduling algorithms can be applied in the information service component of the Globus and GARA resource management architectures to support more kinds of applications. 

AppLeS [BW97] performs resource selection as an initial step, and its default scheduling policy chooses the best schedule among the resulting candidates based on the user’s performance criteria; other scheduling policies may be provided by the user. Prophet [WZ97], and MARS [BPC94], use only one criterion: the performance goal for all applications is minimal execution time. The adaptive scheduling algorithm proposed in [CKP99] uses a queuing theory based approach for scheduling computationally intensive tasks.

NetSolve[CD95], Nimrod [AFG97] and Ninf [SSN96] are targeted for scientific applications. NetSolve implements an application-level selection and scheduling policy by taking into account whether the candidate CPUs are lightly or heavily loaded, whether the network itself is loaded, and what the best combination of resources is at any given time. The Bricks performance evaluation system introduced in [TMN99] supports a task model of global computation that can be used for scheduling. 
In summary, we have proposed a generalized technique for resource discovery in intermittently available environments and developed specialized policies to deal with varying user requirements. We intend to conduct further performance studies with heterogeneous servers and combinations of request patterns. In order to improve the system scalability and adapt to changing requirements, we are developing dynamic placement strategies for intermittently available environments.  

( 

[VWD01] developed a provably near optimal algorithm for placing objects in a set of cooperating caches that are constrained by update bandwidth.

[BR01] considered static data management in arbitrary networks with memory capacity constraints in a model that is similar to our model; and they only consider read requests.

[KRW01] deals with static data management in computer systems connected by networks. A basic functionality in these systems is the interactive use of shared data objects that can be accessed from each computer in the system. Examples for these objects are les in distributed le systems, cache lines in virtual shared memory systems, or pages in the WWW. In the static scenario we are given read and write request frequencies for each computer-object pair. The goal is to calculate a placement of the objects to the memory modules, possibly with redundancy, such that a given cost function is minimized.
[SM98] discusses about a multimedia storage server system. It uses random adapt allocation along with partial data replication to achieve load balance and high performance. They analyze a system with heterogeneous storage disks and disk bandwidths. Replication of fraction of data on one disk with smaller BSR (bandwidth to space ration) to higher BSR disk makes the load more uniform over all the disks. 
On the other hand, the paper [CHLY95] discusses a way of replication frequently accessed movies to provide high data bandwidth and fault tolerance in a disk array based video server. This is particularly very useful in case of video on demand application. 

[DKS95] introduces a dynamic segment replication policy that replicates segments of files in order to be responsive to quick video load requests, and to also balance the load across a number of disks. Being dynamic its performance is better than a policy based on static replication of popular movies. 
[VR96] discusses the load balancing for video servers. It defines and formulates various policies that can be used for load management in a video server. The paper proposes a predictive placement policy that determines the degree of replication necessary for selected popular video objects using a cost based optimization procedure that is based on predictions of expected subscriber requests.  It also devises methods for dereplication of storage of video objects depending upon change in video object popularities or change in server usage patterns. 

We currently assume a centralized broker that can be a bottleneck as the system scale. In order to achieve the scalability of such a system in a large scale heterogeneous network environment, we intend to extend our technique to the hierarchical frameworks [XNW01] for effective and faster wide-area service directory organization and management. 
Future work will also address resource management in grid based systems with mobile clients.  We are also considering to apply clustering techniques on such an intermittently available system, that is, according to the servers’ service time map, disk bandwidth and network bandwidth, group them into different clusters, so that we can implement fault tolerant techniques when processing replication and dereplication. Eventually, we believe that the grid-based infrastructure will play an important role in promoting the wide speed use of multimedia application environment. Another, without losing the generality, in our simulation we assume each server has same disk storage. For future study, we will study the techniques for heterogeneous disk environment. 
Approaches for other unpredictable cases  

In this paper, we assume a knowledge of the liability of each server. We intend to explore effective placement and discovery techniques in situations where the servers’ availability is not known a prior.

[WV01] proposed an algorithm for fault tolerant data placement in a distributed video server that determines the placement of video objects so as to ensure continuity of video requests in the event of node failures. In our system architecture, we assume that once the requests have been handed out to the servers, the requests will be finished successfully without any failure. Besides system failure, there may be other situations that trigger the dynamic placement approaches. For example, the number of rejections of some video object’s requests happened to increase too much within a short period of time; or the number of rejections kept same for a long period of time.
In this paper, we focus on the predictable approaches, fault tolerance and solutions for unpredictable cases are beyond the scope of this paper, and they will be addressed elsewhere.
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Appendix




Load Factor (R, S, t) 


 = Max [ CPU a  , MEM a  , NBW a  , DBW a  ]


CPU a = R CPU / SAvailCPU(t)


MEM a = R MEM / SAvailMEM(t)


NBW a   = R NBW / SAvailNBW(t)


DBW a   = R DBW / SAvailDBW(t)
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Fig 5 A sample uniform availability Time Map - the above figure illustrates the time map where the size of each server group is equal to 4; and the servers are continuously available for a duration of 6 hours.















































































































































Time-aware Predictive Dynamic Placement Algorithm {


Take a snapshot of current videos and data servers;


/*  from step (2) until step (5), all functions are running on the snapshot objects, not the real objects. */


Popularity Estimation: compute the ratio of rejection & popularity rp(i); so as to divide snapshot videos into two links   (popular-videos in order of increasing rp(i) and less-popular-videos in order of decreasing rp(i) ):


disk_available_servers = null; 


/* disk_available_servers is a set with servers */


replication_set = null; 


/*  replication_set is a set of combinations of (video i, server j), indicating to replicate the video i’s replica on the according server j. */


dereplication_set = null;


/*  dereplication_set is a set of combinations of (video, server), indicating to dereplicate the video’s replica from the according server.*/


disk_available_servers = Candidate server selection;


/* there are two approaches, bandwidth-biased and storage-biased for this step. */


While ( (disk_available_servers  != null) && (popular_videos != null) {


replication_set = Pseudo Replication;


		if ( ( bandwidth_biased) && (replication_set != null)) {


			for each combination (video i , server j) in the replication_set {


				if (server j does not have enough storage for a replica of video i){


Pseudo Dereplication ( bandwidth_biased, server j, video i) ;


/* if success, add new dereplication combinations (server k, video m) into dereplication_set, and delete servers and videos from disk_available_set or popular_videos accordingly; otherwise, delete combination (video i , server j) from replication_set. */


}


			}


}


		if ( ( storage_biased) && (popular_videos != null) && (disk_available_servers  == null)) {


Pseudo Dereplication ( storage_biased );


/*if success, add new dereplication combinations (server k, video m) into dereplication_set, and add servers into disk_available_servers set. */


}


		}


}


If ( (replication_set != null) && (dereplication_set != null)) 


do dereplication of real videos from according servers;


do replication of real videos on according servers;


Reset the value of total number of rejections and requests for each video, and total number of rejections for all videos as zero to start new counters.  


}


Fig 4. Time-aware Predictive Placement Algorithm (TAPP)
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On-demand Placement (V: Video objects, S: Servers, R: < VID R , QoS R , ST R , ET R , Dv > {


/* the incoming request R can not be scheduled by scheduling algorithm of [HV02] */


(1) candidateServerSet ( null;


(2) returnServer ( nul; // this will be the final server selection to make a new replica for VID R


(2) for each server s ( S {


(3)	if ((s does not have replica for VID R ) && ( s has network resource for the requested time)) {


(4)		Calculate load factor of s; 


(5)		Insert s into candidateServerSet, so that the servers are in order of increasing load factor;


}


      }


 (6) while ((candidateServerSet != null) && (returnServer == null)) { 


(7)	s ( the first server of candidateServerSet;


(8)	if (s has enough storage space for a new replica of VID R) {


(9)		make a new replica of VID R on s;


(10)		returnServer = s;	


	} else {


(11)		dereplicationSet = Pseudo Dereplication (bandwidth_biased, s, VID R ); 


/* if successfully find enough video objects to dereplicate, and free the space for new replica of VID R , then return the dereplication combinations (s, video m), video m ( V; otherwise, dereplicationSet = null. */





(12)		if (dereplicationSet != null) {


(13)			returnServer = s;


(14)			for each combination (s, video m) {


(16)				do dereplication; 


}


(15) 			do replication for one replica of VID R on s;


} else {


(16)			delete s from candidateServerSet; 


}


	}


      }


} 


Fig 3. On-demand Placement Algorithm
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Fig 2. Placement Strategies for Intermittently Available Systems





		 





�
S1�
S2�
S3�
�
V1�
Min ( N1, (1/LF(R1,S1) * t1)�
Min ( N1, (1/LF(R1,S2) * t2)�
Min ( N1, (1/LF(R1,S3) * t3)�
�
V2�
Min ( N2, (1/LF(R2,S1) * t1)�
Min ( N2, (1/LF(R2,S2) * t2)�
Min ( N2, (1/LF(R2,S3) * t3)�
�
V3�
Min ( N3, (1/LF(R3,S1) * t1)�
Min ( N3, (1/LF(R3,S2) * t2)�
Min ( N3, (1/LF(R3,S3) * t3)�
�
�
Max(PM(Vi, S1))�
Max(PM(Vi, S2)�
Max(PM(Vi, S3))�
�
Table 1. Pseudo Allocation Matrix





Ri should be changed into Vi








�


tertiary storage











Server j


6am-10am: #2, #6, #9…


10am-6pm: #2, #3, #6, #9…





Server n


1am – 9am: #20, #26…


2pm – 10pm: #20, #26…








@ 12pm: 


dereplicate 


replica of #1



































Directory 


Service











@ 10am:


do replication for replica of video #3



































@10am: 


hand in request for Video #3














Broker











Server i


6am-10am: #1, #3, #5…


2pm-8pm:  #3, #5…





Client 





Fig1. System Architecture 














� For the purposes of this study, however, we do not model dynamic transfer from tertiary storage.


� We ignore the cases where immediate start requests are discontinuous since many applications that have zero startup latency requirements also require continuous service.
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