
Time, State and Coordination in
Distributed Systems

Prof. Nalini Venkatasubramanian
Distributed Systems Middleware

-includes slides/examples from

Indy Gupta (UIUC) and Kshemkalyani&Singhal (book
slides)

Global Time & Global States of
Distributed Systems

● Asynchronous distributed systems consist of several
processes without common memory which communicate
(solely) via messages with unpredictable transmission
delays

● Global time & global state are hard to realize in distributed
systems
● Rate of event occurrence is very high
● Event execution times are very small

● We can only approximate the global view
● Simulate synchronous distributed system on a given asynchronous

system
● Simulate a global time – Clocks (Physical and Logical)
● Simulate a global state – Global Snapshots

The Concept of Time in
Distributed Systems

● A standard time is a set of instants with a temporal precedence
order < satisfying certain conditions [Van Benthem 83]:

● Irreflexivity
● Transitivity
● Linearity
● Eternity (∀x∃y: x<y)
● Density (∀x,y: x<y → ∃z: x<z<y)

● Transitivity and Irreflexivity imply asymmetry
● A linearly ordered structure of time is not always adequate for

distributed systems
● Captures dependence, not independence of distributed activities

● Time as a partial order
● A partially ordered system of vectors forming a lattice structure is a

natural representation of time in a distributed system.

Partial vs. total order

Global time in distributed
systems

● An accurate notion of global time is difficult to achieve in
distributed systems.
● Uniform notion of time is necessary for correct operation of

many applications (mission critical distributed control, online
games/entertainment, financial apps, smart environments etc.)

● Clocks in a distributed system drift
● Relative to each other
● Relative to a real world clock

● Determination of this real world clock itself may be an issue

● Clock synchronization is needed to simulate global time
● Physical Clocks vs. Logical clocks

● Physical clocks are logical clocks that must not deviate from the
real-time by more than a certain amount.

We often derive causality of events from loosely synchronized clocks

Physical Clock Synchronization

Physical Clocks

How do we measure real time?
Early – Stonehenge, sundials
13th -17th century: Mechanical clocks
based on astronomical measurements
● Solar Day - Transit of the sun
● Solar Seconds - Solar Day/(3600*24)

Date Duration in mean solar
time

February 11 24 hours

March 26 24 hours − 18.1 sec

May 14 24 hours

June 19 24 hours + 13.1 sec

July 26 24 hours

September 16 24 hours − 21.3 sec

November 3 24 hours

December 22 24 hours + 29.9 sec

Length of apparent solar day (1998)
 – (cf: wikipedia)

Problem (1940): Rotation of earth varies!

Mean solar second = average over many days

Atomic Clocks

● 1948 - Counting transitions of a crystal
(Cesium 133, quartz) used as atomic
clock
● crystal oscillates at a well known

frequency

● 2014 – NIST-F2 Atomic clock
● Accuracy: ± 1 sec in 300 mil years
● NIST-F2 measures particular transitions in

Cesium atom (9,192,631,770 vibrations
per second), in much colder environment,
minus 316F, than NIST-F1

● TAI - International Atomic Time
● 9,192,631,779 transitions = 1 mean

solar second in 1948

UTC (Universal Coordinated Time)
From time to time, UTC skips a solar
second to stay in phase with the sun
(30+ times since 1958)

UTC is broadcast by several sources
(satellites…)

Next Generation Atomic Clocks
-- NIST F2

http://www.youtube.com/watch?v=z-jE7DXy1x0

From Distributed Systems (cs.nju.edu.cn/distribute-systems/lecture-notes/ 10

How Clocks Work in Computers

Quartz
crystal

 Counter

Holding
register

Each crystal oscillation
decrements the counter by 1When counter gets 0, its

value reloaded from the
holding register

CPU

When counter is 0, an
interrupt is generated, which

is call a clock tick

At each clock tick, an interrupt
service procedure add 1 to time

stored in memory Memory

Oscillation at a
well-defined frequency

Accuracy of Computer Clocks

● Modern timer chips have a relative error
of 1/100,000 - 0.86 seconds a day

● To maintain synchronized clocks
● Can use UTC source (time server) to obtain

current notion of time
● Use solutions without UTC.

Cristian’s (Time Server) Algorithm
(external synchronization)

● Uses a time server (S) to synchronize clocks
● Time server keeps the reference time (say UTC)

● A client asks the time server for time, the server responds with
its current time, and the client uses the received value to set its
clock.

P

S

Time

What’s the time?

Here’s the time t!

Check local clock to find time t

Set clock to t

What’s Wrong

13

● But network round-trip time introduces errors…
● By the time response message is received at P, time has moved on
● Let RTT = response-received-time – request-sent-time

(measurable at client),

● If we know (a) min = minimum client-server one-way transmission time
and (b) that the server timestamped the message at the last possible
instant before sending it back

● Then, the actual time could be between [T+min,T+RTT— min]

P

S

Time

What’s the time?

Here’s the time t!

Check local clock to find time t

 Set clock to t
RTT

Cristian’s Algorithm (cont.)

Cristian’s Algorithm (cont.)

♣ Client sets its clock to halfway between T+min and
T+RTT— min i.e., at T+RTT/2
☹ Expected (i.e., average) skew in client clock time = (RTT/2 – min)

♣ Can increase clock value, should never decrease it.
♣ Can adjust speed of clock too (either up or down is ok)
♣ Multiple requests to increase accuracy
♣ For unusually long RTTs, repeat the time request
♣ For non-uniform RTTs

♣ Drop values beyond threshold; Use averages (or weighted
average)

Berkeley UNIX algorithm

● One Version
● One daemon without UTC
● Periodically, this daemon polls and asks all the machines for

their time
● The machines respond.
● The daemon computes an average time and then broadcasts

this average time.

● Another Version
● Master/daemon uses Cristian’s algorithm to calculate time from

multiple sources, removes outliers, computes average and
broadcasts

Decentralized Averaging
Algorithm

● Each machine has a daemon without UTC
● Periodically, at fixed agreed-upon times,

each machine broadcasts its local time.
● Each of them calculates the average time

by averaging all the received local times.

Network Time Protocol
(NTP)

● Most widely used physical clock synchronization protocol
on the Internet (http://www.ntp.org)
● Currently used: NTP V3 and V4

● 10-20 million NTP servers and clients in the Internet
● Claimed Accuracy (Varies)

● milliseconds on WANs, submilliseconds on LANs,
submicroseconds using a precision timesource

● Nanosecond NTP in progress

http://www.ntp.org/

NTP Design

● Hierarchical tree of time
servers.
● The primary server at the root

synchronizes with the UTC.
● The next level contains

secondary servers, which act
as a backup to the primary
server.

● At the lowest level is the
synchronization subnet which
has the clients.

● Variant of Cristian’s algorithm
that does not use RTT’s, but
multiple 1-way messages

DRDoS -- concerns about DoS attacks

● Modified protocol header for IPv6
● Accuracy to 10s of microseconds
● Dynamic server discovery

NTP 4.0

● NTP Stratum 1 Servers
● NTP Stratum 2 Servers
● NTP Pool Servers

http://www.youtube.com/watch?v=s6XN-ypbzWs

W32 time -- Windows Time Service

DCE Distributed Time Service

● Software service that provides precise, fault-tolerant
clock synchronization for systems in local area networks
(LANs) and wide area networks (WANs).

● determine duration, perform event sequencing and
scheduling.

● Each machine is either a time server or a clerk
● software components on a group of cooperating

systems;
● client obtains time from DTS entity
● DTS entities

● DTS server
● DTS clerk that obtain time from DTS servers on other hosts

Clock Synchronization in
DCE
● DCE’s time model is interval- based

● Comparing 2 times may yield 3 answers
● t1 < t2, t2 < t1, not determined

● Periodically a clerk obtains time-intervals from several servers
,e.g. all the time servers on its LAN

● Based on their answers, it computes a new time and gradually
converges to it.

● Compute the intersection where the intervals overlap. Clerks then
adjust the system clocks of their client systems to the midpoint of
the computed intersection.

● When clerks receive a time interval that does not intersect with the
majority, the clerks declare the non-intersecting value to be faulty.

● Clerks ignore faulty values when computing new times, thereby
ensuring that defective server clocks do not affect clients.

PTP (Precision Time protocol)

http://www.youtube.com/watch?v=ovzt3IUFbyo

Precise Time?

DTP (Datacenter Time protocol)

Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. 2016. Globally Synchronized Time via
Datacenter Networks. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM ’16).

Huygens - software clock synchronization
system

● coded probes
● SVM for propogation time estimation
● natural network effect - use clocks to

detect errors

Timing in Mission Critical
Systems (a Panel)

http://www.youtube.com/watch?v=0aGvNazSUKE

NASA example: Agile Local
Positioning System

http://www.youtube.com/watch?v=oyXsiE9CuK8

Logical Clock Synchronization

Causal Relations

● Distributed application results in a set of
distributed events
● Induces a partial order 🡪 causal precedence relation

● Knowledge of this causal precedence relation is
useful in reasoning about and analyzing the
properties of distributed computations
● Liveness and fairness in mutual exclusion
● Consistency in replicated databases
● Distributed debugging, checkpointing

Logical Clocks

● Used to determine causality in distributed
systems

● Time is represented by non-negative integers
● Event structures represent distributed

computation (in an abstract way)
● A process can be viewed as consisting of a sequence

of events, where an event is an atomic transition of
the local state which happens in no time

● Process Actions can be modeled using the 3 types of
events

● Send Message
● Receive Message
● Internal (change of state)

Logical Clocks

● A logical Clock C is some abstract mechanism which
assigns to any event e∈E the value C(e) of some time
domain T such that certain conditions are met

● C:E→T :: T is a partially ordered set : e<e’→C(e)<C(e’) holds
● Consequences of the clock condition [Morgan 85]:

● Events occurring at a particular process are totally ordered by
their local sequence of occurrence

● If an event e occurs before event e’ at some single process, then
event e is assigned a logical time earlier than the logical time
assigned to event e’

● For any message sent from one process to another, the logical
time of the send event is always earlier than the logical time of
the receive event

● Each receive event has a corresponding send event
● Future can not influence the past (causality relation)

Event Ordering

● Lamport defined the “happens before”
(=>) relation
● If a and b are events in the same process,

and a occurs before b, then a => b.
● If a is the event of a message being sent

by one process and b is the event of the
message being received by another
process, then a => b.

● If X =>Y and Y=>Z then X => Z.
If a => b then time (a) => time (b)

Causal Ordering

● “Happens Before” also called causal ordering
● Possible to draw a causality relation between 2

events if
● They happen in the same process
● There is a chain of messages between them

● “Happens Before” notion is not straightforward
in distributed systems
● No guarantees of synchronized clocks
● Communication latency

Implementation of Logical
Clocks

● Requires
● Data structures local to every process to represent logical time and
● a protocol to update the data structures to ensure the consistency

condition.
● Each process Pi maintains data structures that allow it the following

two capabilities:
● A local logical clock, denoted by LC_i , that helps process Pi measure its

own progress.
● A logical global clock, denoted by GCi , that is a representation of

process Pi ’s local view of the logical global time. Typically, lci is a part
of gci

● The protocol ensures that a process’s logical clock, and thus its view
of the global time, is managed consistently.
● The protocol consists of the following two rules:

● R1: This rule governs how the local logical clock is updated by a process
when it executes an event.

● R2: This rule governs how a process updates its global logical clock to
update its view of the global time and global progress.

Types of Logical Clocks

● Systems of logical clocks differ in their
representation of logical time and also in
the protocol to update the logical clocks.

● 3 kinds of logical clocks
● Scalar
● Vector
● Matrix

Scalar Logical Clocks -
Lamport

● Proposed by Lamport in 1978 as an attempt to
totally order events in a distributed system.

● Time domain is the set of non-negative integers.
● The logical local clock of a process pi and its

local view of the global time are squashed into
one integer variable Ci .

● Monotonically increasing counter
● No relation with real clock

● Each process keeps its own logical clock used to
timestamp events

Consistency with Scalar
Clocks

● To guarantee the clock condition, local clocks
must obey a simple protocol:
● When executing an internal event or a send event at

process Pi the clock Ci ticks
• Ci += d (d>0)

● When Pi sends a message m, it piggybacks a logical
timestamp t which equals the time of the send event

● When executing a receive event at Pi where a
message with timestamp t is received, the clock is
advanced

• Ci = max(Ci,t)+d (d>0)

● Results in a partial ordering of events.

Total Ordering

● Extending partial order to total order

● Global timestamps:
● (Ta, Pa) where Ta is the local timestamp and

Pa is the process id.
● (Ta,Pa) < (Tb,Pb) iff

● (Ta < Tb) or ((Ta = Tb) and (Pa < Pb))

● Total order is consistent with partial order.

time Proc_id

Properties of Scalar Clocks

● No Strong Consistency
● The system of scalar clocks is not strongly

consistent; that is, for two events ei and ej ,
C(ei) < C(ej) does not imply ei → ej .

● Reason: In scalar clocks, logical local clock and
logical global clock of a process are squashed
into one, resulting in the loss of causal
dependency information among events at
different processes.

Independence

● Two events e,e’ are mutually independent (i.e. e||e’) if
~(e<e’)∧~(e’<e)
● Two events are independent if they have the same timestamp
● Events which are causally independent may get the same or

different timestamps
● By looking at the timestamps of events it is not possible

to assert that some event could not influence some
other event
● If C(e)<C(e’) then ~(e’<e) however, it is not possible to decide

whether e<e’ or e||e’
● C is an order homomorphism which preserves < but it does not

preserves negations (i.e. obliterates a lot of structure by
mapping E into a linear order)

Problems with Total Ordering

● A linearly ordered structure of time is not always
adequate for distributed systems
● captures dependence of events
● loses independence of events - artificially enforces an ordering

for events that need not be ordered – loses information
● Mapping partial ordered events onto a linearly ordered set of

integers is losing information
● Events which may happen simultaneously may get different

timestamps as if they happen in some definite order.

● A partially ordered system of vectors forming a lattice
structure is a natural representation of time in a
distributed system

Lamport on clocks…

http://www.youtube.com/watch?v=nfRouGH0oMg

Vector Clocks

● Independently developed by Fidge, Mattern and Schmuck.
● Aim: To construct a mechanism by which each process gets an

optimal approximation of global time
● Time representation

● Set of n-dimensional non-negative integer vectors.
● Each process has a clock Ci consisting of a vector of length n, where n

is the total number of processes vt[1..n], where vt[j] is the local logical
clock of Pj and describes the logical time progress at process Pj .

● A process Pi ticks by incrementing its own component of its clock
● Ci[i] += 1

● The timestamp C(e) of an event e is the clock value after ticking
● Each message gets a piggybacked timestamp consisting of the vector

of the local clock
● The process gets some knowledge about the other process’ time

approximation
● Ci=sup(Ci,t):: sup(u,v)=w : w[i]=max(u[i],v[i]), ∀i

Vector Clocks example

From A. Kshemkalyani and M. Singhal (Distributed Computing)

Figure 3.2: Evolution of vector time.

Vector Times (cont)

● Because of the transitive nature of the scheme, a
process may receive time updates about clocks in
non-neighboring process

● Since process Pi can advance the ith component of global
time, it always has the most accurate knowledge of its
local time

● At any instant of real time ∀i,j: Ci[i]≥ Cj[i]

Structure of the Vector Time

● For two time vectors u,v
● u≤v iff ∀i: u[i]≤v[i]
● u<v iff u≤v ∧ u≠v
● u||v iff ~(u<v) ∧~(v<u) :: || is not transitive

● For an event set E,
● ∀e,e’∈E:e<e’ iff C(e)<C(e’) ∧ e||e’ iff C(e)||C(e’)

● In order to determine if two events e,e’ are causally
related or not, just take their timestamps C(e) and C(e’)
● if C(e)<C(e’) ∨ C(e’)<C(e), then the events are causally related
● Otherwise, they are causally independent

Matrix Time

● Vector time contains information about latest
direct dependencies
● What does Pi know about Pk

● Also contains info about latest direct
dependencies of those dependencies
● What does Pi know about what Pk knows about Pj

● Message and computation overheads are high
● Powerful and useful for applications like

distributed garbage collection

Time Manager Operations

● Logical Clocks
● C.adjust(L,T)

● adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

● C.read
● returns the current value of clock C

● Timers
● TP.set(T) - reset the timer to timeout in T units

● Messages
● receive(m,l); broadcast(m); forward(m,l)

Spanner: Google's Globally
Distributed Database

What is Spanner?

A scalable, multi-version, globally-distributed, synchronously- replicated
database
● Scalable

○ Data centers and servers can be added or removed as needed for
availability and performance

○ Automatic Load Balancing among datacenters
● Multi-version

○ Data has a timestamp, enabling historical data queries
● Globally-Distributed:

○ Data centers can be separated by great distances
○ Provides Locality and fault tolerance

● Synchronously-replicated:
○ Replication results in multiple up-to-date copies of data

Main idea:
– Get externally consistent view of globally distributed database
– Spanner = BigTable with timestamps + Paxos + TrueTime

Google’s Setting

● Dozens of zones (datacenters) across the globe
● Per zone, 100-1000s of servers
● Per server, 100-1000 partitions (tablets)
● Every tablet replicated for fault-tolerance (e.g.,

5x) 18 Google’s Setting
● client-application configurable

Heterogeneous Workloads

● SQL → NoSQL → NewSQL
● Supports multiple types of query languages

● Large scale transactional databases
● Eventual consistency is not good enough:

– Managing global money/warehouses/resources
– Auctions, especially Google's advertisement platform
– Social networks, Twitter
– MapReduce over a globally changing dataset

● We need external consistency:
● T(e1(commit)) < T(e2(start)) → s1 < s2

Concepts

Spanner Guarantees
● External consistency: Transactions are processed in a way equivalent to a

single machine processing all transactions. Analogous to distributed shared
memory, which provides an abstraction for many memories as one centralized
memory

● Global consistency: Commits that are made are visible to all replicas. Queries
made from different data centers give the same values.

Provides full control over
● How far data is from user (read latency)

● How far replicas are from each other (write latency)

● How many replicas (durability, availability, throughput)

Spanner: Storage
Architecture

● Universe: The entire Spanner deployment
● Zone: A cluster of machines in a data center used to serve data to geographically

close clients.
○ A universe has an arbitrary number of zones.

● spanserver: A store; A zone may have hundreds to thousands of spanservers.
● zonemaster: assigns data to spanservers; A zone has exactly one zonemaster
● universemaster: provides status information about all zones in universe for

debugging
● placement driver: handles movement of data between zones

SpanServer Architecture and Data Model

Spanner provides semi-relational interface with SQL-like query
language:
● Database: Split among many zones geographically separated
● Tables : Split among many tablets replicated across data centers
● Rows: Collection of values for a variety of data columns, timestamped.
● Columns: Values from the internal key-value store.

Paxos State Machine: Participants in Paxos protocol for consistency

Colossus:
A distributed File System

TrueTime
Goal: Provide globally synchronized time with sharp error
bounds, i.e. bounded uncertainty
● Interval-based global time.
● Do not trust synchronization via NTP Implemented using

GPS and “commodity” atomic clocks

• Spanner implements algorithms to make sure these guarantees are
respected by the machines (non-conformists are evicted)

– Uses a variant of Marzullo’s algorithm (estimates time from
multiple noisy sources)

– Time accuracy on the order of 10ms (avg. error bound ~4 ms)

TrueTime Architecture

Compute reference [earliest, latest] = now ± ε

TrueTime implementation

now = reference now + local-clock offset
ε = reference ε + worst-case local-clock drift
 = 1ms + 200 μs/sec

What about faulty clocks? – Bad CPUs 6x more likely in 1
year of empirical data

References

● Princeton - COS 418: Distributed Systems course slides by Themis
Melissaris and Daniel Suo

● Spanner: Google's Globally Distributed Database by Philipp Moritz

● https://youtu.be/NthK17nbpYs

https://youtu.be/NthK17nbpYs

Case Study: Amazon DynamoDB

Amazon serves millions of customers at peak time
● Require availability - “always-on” experience.
● Loss of service has financial consequences, erodes user trust

What is Dynamo?
● A key-value distributed data storage system
● Emphasis on Reliability, scalability and availability
● Used in AWS - highly decentralized, loosely coupled, service oriented architecture

consisting of hundreds of services.

Dynamo Application Characteristics
● “always writeable” store, no updates are rejected despite failures/concurrent writes
● Single administrative domain where all nodes are assumed to be trusted.
● No hierarchical namespaces (e.g file systems) or complex relational schema
● Latency sensitive applications (99.9% of R/W operations < few 100ms)

Usecase: Amazon DynamoDB

https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

Clock skews in Cassandra

Timestamps are critical for coordination in a distributed
key-value store.
But issues can arise!!
-- Last-write wins problem..

http://www.youtube.com/watch?v=IjsJLTriLzs

Cassandra

• Distributed, customizable, eventually-consistent NoSQL database

• Originated at Facebook in 2008

 – Currently an Apache open-source project
 – ACID relational database systems were too slow
 – CAP theorem: strong consistency → availability suffers

• Performance also suffers (e.g., locking, running commit protocols)
 – Go with an eventually consistent model
 – Built as a combination of Amazon Dynamo DHT + Google Bigtable

Cassandra Design Goals

• High availability – no single point of failure - no central coordinator • Low
latency
• Run on commodity hardware
• Linear performance increase with additional nodes

• Tunable consistency: Define replication # and policy
• Key-oriented queries
• Flexible data model: row can have different columns with different data types
• SQL-like query language (CQL - Cassandra Query Language)

Cassandra Machine
Hierarchy

Cluster – Collection of machines that run Cassandra
– Nodes are arranged in a logical ring (like Chord/Dynamo) and data is replicated

• Datacenter – Machines in one location (data center)

• Rack – Machines in one rack (low latency – single switch connection)

• Node – Individual machine
Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

Cassandra Data Model

Column: Fundamental unit of
storage

– { name, value, timestamp }

– Each column has a name (key) that
can be queried for a value • Data types
(>20) include alphabetic, numeric, blob,
time, set, map

– Timestamp enables conflict
resolution among replicas • Usually
created by client – synchronized clocks
assumed

– Columns can also be given an
optional expiration timestamp (time to
live)

Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

Cassandra Storage/query
Model

• Replica reconciliation – what happens when there are conflicts?

 – Not like Dynamo's vector clocks
 – Last write wins model where every mutation is timestamped (including

deletes) and then the latest version of data is the "winning" value

Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

Coordination Problems

http://www.youtube.com/watch?v=eSaFVX4izsQ

Creating Global State

● The notions of global time and global state are closely
related

● Goal: Compute, for a process, without freezing the
whole computation, the best possible approximation of a
global state [Chandy & Lamport 85]

● A global state that could have occurred
● No process in the system can decide whether the state did really

occur
● Guarantee stable properties (i.e. once they become true, they

remain true)

What constitutes global state?

● Global Snapshot = Global State

Individual state of each process in the distributed system
 +
Individual state of each communication channel in the distributed system

● Capture the instantaneous state of each process
● Capture the instantaneous state of each communication channel, i.e.,

messages in transit on the channels

P2

P1

P3

Time

e21

e31

e11

e22

Event Diagram

e23 e24 e25

e12 e13

e32 e33 e34

P2

P1

P3

Time

e21

e31

e11

e22 e23 e24 e25

e12 e13

e32 e33 e34

Equivalent Event Diagram

Rubber Band Transformation

P2

P1

P3

Time

e31

e11

e21

e12

P4
e41 e42

e22

cut

Consistent Cuts

● A cut (or time slice) is a zigzag line cutting a time
diagram into 2 parts (past and future)
● E is augmented with a cut event ci for each process Pi:E’ =E ∪

{ci,…,cn} ∴
● A cut C of an event set E is a finite subset C⊆E: e∈C ∧ e’<le →e’

∈C
● A cut C1 is later than C2 if C1⊇C2
● A consistent cut C of an event set E is a finite subset C⊆E : e∈C

∧ e’<e →e’ ∈C
• i.e. a cut is consistent if every message received was previously sent

(but not necessarily vice versa!)

P2

P1

P3

TimeInstant of local
observation

ideal
(vertical)

 cut

consistent
cut

inconsistent
cut

5

5

5

3

2

8

Cuts (Summary)

1

4

3
4

0

7

initial
value

not attainable equivalent to a vertical cut
(rubber band transformation)

can’t be made vertical
(message from the future)

Consistent Cuts

● Some Theorems
● For a consistent cut consisting of cut events ci,…,cn, no

pair of cut events is causally related. i.e ∀ci,cj ~(ci< cj)
∧ ~(cj< ci)

● For any time diagram with a consistent cut
consisting of cut events ci,…,cn, there is an
equivalent time diagram where ci,…,cn occur
simultaneously. i.e. where the cut line forms a
straight vertical line
● All cut events of a consistent cut can occur

simultaneously

Global States of Consistent Cuts

● The global state of a distributed system is a collection of
the local states of the processes and the channels.

● A global state computed along a consistent cut is correct
● The global state of a consistent cut comprises the local

state of each process at the time the cut event happens
and the set of all messages sent but not yet received

● The snapshot problem consists in designing an efficient
protocol which yields only consistent cuts and to collect
the local state information

● Messages crossing the cut must be captured
● Chandy & Lamport presented an algorithm assuming that message

transmission is FIFO

System Model for Global
Snapshots

● The system consists of a collection of n processes p1,
p2, ..., pn that are connected by channels.

● There are no globally shared memory and physical
global clock and processes communicate by passing
messages through communication channels.

● Cij denotes the channel from process pi to process pj
and its state is denoted by SCij .

● The actions performed by a process are modeled as
three types of events:
● Internal events,the message send event and the message

receive event.
● For a message mij that is sent by process pi to process pj , let

send(mij) and rec(mij) denote its send and receive events.

Process States and Messages
in transit

● At any instant, the state of process pi , denoted by LSi , is a result
of the sequence of all the events executed by pi till that instant.

● For an event e and a process state LSi , e∈LSi iff e belongs to the
sequence of events that have taken process pi to state LSi .

● For an event e and a process state LSi , e (not in) LSi iff e does not
belong to the sequence of events that have taken process pi to
state LSi .

● For a channel Cij , the following set of messages can be defined
based on the local states of the processes pi and pj

Transit: transit(LSi , LSj) = {mij |send(mij) ∈ LSi V
 rec(mij) (not in) LSj }

Distributed Global Snapshot:
Requirements

● Snapshot should not interfere with normal application actions, and it
should not require application to stop sending messages

● Each process is able to record its own state
○ Process state: Application-defined state or, in the worst case:
○ its heap, registers, program counter, code, etc. (essentially the

coredump)
● Global state is collected in a distributed manner
● Any process may initiate the snapshot

○ Assume just one snapshot run for now

Chandy-Lamport Distributed
Snapshot Algorithm

● Assumes FIFO communication in channels
● Uses a control message, called a marker to separate messages in

the channels.
● After a site has recorded its snapshot, it sends a marker, along all of its

outgoing channels before sending out any more messages.
● The marker separates the messages in the channel into those to be

included in the snapshot from those not to be recorded in the
snapshot.

● A process must record its snapshot no later than when it receives a
marker on any of its incoming channels.

● The algorithm terminates after each process has received a marker
on all of its incoming channels.

● All the local snapshots get disseminated to all other processes and
all the processes can determine the global state.

Chandy-Lamport Distributed
Snapshot Algorithm

Marker receiving rule for Process Pi
 If (Pi has not yet recorded its state) it

records its process state now
records the state of c as the empty set
turns on recording of messages arriving over other channels

 else
Pi records the state of c as the set of messages received over c
since it saved its state

Marker sending rule for Process Pi
 After Pi has recorded its state,for each outgoing channel c:

Pi sends one marker message over c
 (before it sends any other message over c)

Computing Global States
without FIFO Assumption

● In a non-FIFO system, a marker cannot be used to
delineate messages into those to be recorded in the
global state from those not to be recorded in the
global state.

● In a non-FIFO system, either some degree of
inhibition or piggybacking of control information on
computation messages to capture out-of-sequence
messages.

● Lai-Yang Algorithm (uses coloring)
● Mattern’s Algorithm (uses vector-clocks)

Distributed Snapshots - Flink

https://www.infoq.com/presentations/distributed-st
ream-processing-flink/

https://www.infoq.com/presentations/distributed-stream-processing-flink/
https://www.infoq.com/presentations/distributed-stream-processing-flink/

Apache Flink

(Streaming + Batch
Workloads)

(Flink Component Stack)

Snapshots with operator
graphs in Apache Flink

http://www.youtube.com/watch?v=DkNeyCW-eH0

Snapshots: Cassandra Clusters

Clusters use snapshots for fault
tolerance

More Snapshot Algorithms

Computing Global States without
FIFO Assumption - Lai-Yang Algorithm

● Uses a coloring scheme that works as follows
● White (before snapshot); Red (after snapshot)
● Every process is initially white and turns red while taking a

snapshot. The equivalent of the “Marker Sending Rule”
(virtual broadcast) is executed when a process turns red.

● Every message sent by a white (red) process is colored
white (red).

● Thus, a white (red) message is a message that was sent
before (after) the sender of that message recorded its local
snapshot.

● Every white process takes its snapshot at its convenience,
but no later than the instant it receives a red message.

● Every white process records a history of all white
messages sent or received by it along each channel.

● When a process turns red, it sends these histories
along with its snapshot to the initiator process that
collects the global snapshot.

● Determining Messages in transit (i.e. White messages
received by red process)

● The initiator process evaluates transit(LSi, LSj) to compute
the state of a channel Cij as given below:

● SCij = {white messages sent by pi on Cij −
 white messages received by pj on Cij}
● = { send (Mij)|send(mij)∈LSi} − {rec(mij)| rec(mij)∈LSj}.

Computing Global States without
FIFO Assumption -
Lai-Yang Algorithm (cont.)

Computing Global States without
FIFO Assumption: Termination

● First method
● Each process I keeps a counter cntri that indicates the difference

between the number of white messages it has sent and received
before recording its snapshot, i.e number of messages still in transit.

● It reports this value to the initiator along with its snapshot and
forwards all white messages, it receives henceforth, to the initiator.

● Snapshot collection terminates when the initiator has received
Σi cntri number of forwarded white messages.

● Second method
● Each red message sent by a process piggybacks the value of the

number of white messages sent on that channel before the local
state recording. Each process keeps a counter for the number of
white messages received on each channel.

● Termination – Process receives as many white messages on each
channel as the value piggybacked on red messages received on that
channel.

Computing Global States without
FIFO Assumption: Mattern’s Algorithm

● Uses Vector Clocks
● All process agree on some future virtual time s or a set of virtual

time instants s1,…sn which are mutually concurrent and did not
yet occur

● A process takes its local snapshot at virtual time s
● After time s the local snapshots are collected to construct a

global snapshot
● Pi ticks and then fixes its next time s=Ci +(0,…,0,1,0,…,0) to be the

common snapshot time
● Pi broadcasts s
● Pi blocks waiting for all the acknowledgements
● Pi ticks again (setting Ci=s), takes its snapshot and broadcast a

dummy message (i.e. force everybody else to advance their clocks
to a value ≥ s)

● Each process takes its snapshot and sends it to Pi when its local
clock becomes ≥ s

Computing Global States without
FIFO Assumption (Mattern cont)

● Inventing a n+1 virtual process whose clock is managed
by Pi

● Pi can use its clock and because the virtual clock Cn+1
ticks only when Pi initiates a new run of snapshot :
● The first n components of the vector can be omitted
● The first broadcast phase is unnecessary
● Counter modulo 2

● Termination
● Distributed termination detection algorithm [Mattern 87]

