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Global Time & Global States of 
Distributed Systems

● Asynchronous distributed systems consist of several 
processes without common memory which communicate 
(solely) via messages with unpredictable transmission 
delays

● Global time & global state are hard to realize in distributed 
systems
● Rate of event occurrence is very high
● Event execution times are very small

● We can only approximate the global view
● Simulate synchronous distributed system on a given asynchronous 

system
● Simulate a global time – Clocks (Physical and Logical)
● Simulate a global state – Global Snapshots



The Concept of Time in 
Distributed Systems

● A standard time is a set of instants with a temporal precedence 
order < satisfying certain conditions [Van Benthem 83]:

● Irreflexivity
● Transitivity
● Linearity
● Eternity (∀x∃y: x<y)
● Density (∀x,y: x<y → ∃z: x<z<y)

● Transitivity and Irreflexivity imply asymmetry
● A linearly ordered structure of time is not always adequate for 

distributed systems
● Captures dependence, not independence of distributed activities

● Time  as a partial order
● A partially ordered system of vectors forming a lattice structure is a 

natural representation of time in a distributed system.



Partial vs. total order



Global time in distributed 
systems

● An accurate notion of global time is difficult to achieve in 
distributed systems.
● Uniform notion of time is necessary for correct operation of 

many applications (mission critical distributed control, online 
games/entertainment, financial apps, smart environments etc.)

● Clocks in a distributed system drift
● Relative to each other
● Relative to a real world clock

● Determination of this real world clock itself may be an issue

● Clock synchronization is needed to simulate global time
● Physical Clocks vs. Logical clocks 

● Physical clocks are logical clocks that must not deviate from the 
real-time by more than a certain amount.

We often derive causality  of events from loosely synchronized clocks



Physical Clock Synchronization



Physical Clocks

How do we measure real time?
Early – Stonehenge, sundials
13th -17th century:  Mechanical clocks 
based on astronomical measurements 
● Solar Day - Transit of the sun
● Solar Seconds - Solar Day/(3600*24)

Date Duration in mean solar 
time

February 11 24 hours

March 26 24 hours − 18.1 sec 

May 14 24 hours

June 19 24 hours + 13.1 sec

July 26 24 hours

September 16 24 hours − 21.3 sec

November 3 24 hours

December 22 24 hours + 29.9 sec

Length of apparent solar day (1998)
 – (cf: wikipedia )

Problem (1940): Rotation of earth varies!

Mean solar second = average over many days



Atomic Clocks

● 1948 - Counting transitions of a crystal 
(Cesium 133, quartz) used as atomic 
clock 
● crystal oscillates at a well known 

frequency

● 2014 – NIST-F2 Atomic clock
● Accuracy: ± 1 sec in 300 mil years
● NIST-F2 measures particular transitions in 

Cesium atom (9,192,631,770 vibrations 
per second), in much colder environment, 
minus 316F, than NIST-F1

● TAI - International Atomic Time
● 9,192,631,779 transitions = 1 mean 

solar second in 1948

UTC (Universal Coordinated Time)
From time to time, UTC skips a solar 
second to stay in phase with the sun 
(30+ times since 1958)

UTC is broadcast by several sources 
(satellites…)



Next Generation Atomic Clocks 
-- NIST F2

http://www.youtube.com/watch?v=z-jE7DXy1x0


From Distributed Systems  (cs.nju.edu.cn/distribute-systems/lecture-notes/ 10

How Clocks Work in Computers

Quartz 
crystal

  Counter 

Holding 
register

Each crystal oscillation 
decrements the counter by 1When counter gets 0, its 

value reloaded from the 
holding register

CPU

When counter is 0, an 
interrupt is generated, which 

is call a clock tick

At each clock tick, an interrupt 
service procedure add 1 to time 

stored in memory Memory

Oscillation at a 
well-defined frequency



Accuracy of Computer Clocks

● Modern timer chips have a relative error 
of 1/100,000 - 0.86 seconds a day

● To maintain synchronized clocks
● Can use UTC source (time server) to obtain 

current notion of time
● Use solutions without UTC.



Cristian’s (Time Server) Algorithm
(external synchronization)

● Uses a time server (S) to synchronize clocks
● Time server keeps the reference time (say UTC)

●  A client asks the time server for time, the server responds with 
its current time, and the client uses the received value to set its 
clock. 

P

S

Time

What’s the time?

Here’s the time t!

Check local clock to find time t

Set clock to t



What’s Wrong

13

● But network round-trip time introduces errors…
● By the time response message is received at P, time has moved on
● Let RTT = response-received-time – request-sent-time 

(measurable at client), 

● If we know (a) min = minimum client-server one-way transmission time 
and (b) that the server timestamped the message at the last possible 
instant before sending it back

● Then, the actual time could be between [T+min,T+RTT— min]

P

S

Time

What’s the time?

Here’s the time t!

Check local clock to find time t

  Set clock to t
RTT

Cristian’s Algorithm (cont.)



Cristian’s Algorithm (cont.)

♣ Client sets its clock to halfway between  T+min and 
T+RTT— min  i.e.,  at T+RTT/2
☹ Expected (i.e., average) skew in client clock time = (RTT/2 – min)

♣ Can increase clock value, should never decrease it.
♣ Can adjust speed of clock too (either up or down is ok)
♣ Multiple requests to increase accuracy
♣ For unusually long RTTs, repeat the time request
♣ For non-uniform RTTs

♣ Drop values beyond threshold;  Use averages (or weighted 
average)



Berkeley UNIX algorithm

● One Version
● One daemon without UTC
● Periodically, this daemon polls and asks all the machines for 

their time
● The machines respond.
● The daemon computes an average time and then broadcasts 

this average time.

● Another Version 
●  Master/daemon uses Cristian’s algorithm to calculate time from 

multiple sources, removes outliers, computes average and 
broadcasts 



Decentralized Averaging 
Algorithm

● Each machine has a daemon without UTC
● Periodically, at fixed agreed-upon times, 

each machine broadcasts its local time.
● Each of them calculates the average time 

by averaging all the received local times.



Network Time Protocol 
(NTP)

● Most widely used physical clock synchronization protocol 
on the Internet (http://www.ntp.org)
● Currently used: NTP V3 and V4

● 10-20 million NTP servers and clients  in the Internet
● Claimed Accuracy (Varies)

● milliseconds on WANs, submilliseconds on LANs, 
submicroseconds using a precision timesource

● Nanosecond NTP in progress

http://www.ntp.org/


NTP Design

● Hierarchical tree of time 
servers.
● The primary server at the root 

synchronizes with the UTC.
● The next level contains 

secondary servers, which act 
as a backup to the primary 
server.

● At the lowest level is the 
synchronization subnet which 
has the clients.

● Variant of Cristian’s algorithm 
that does not use RTT’s, but 
multiple 1-way messages



DRDoS -- concerns about DoS attacks

● Modified protocol header for IPv6
● Accuracy to 10s of microseconds
● Dynamic server discovery

NTP 4.0

● NTP Stratum 1 Servers
● NTP Stratum 2 Servers
● NTP Pool Servers 



http://www.youtube.com/watch?v=s6XN-ypbzWs


W32 time -- Windows Time Service



DCE Distributed Time Service

● Software service that provides precise, fault-tolerant 
clock synchronization for systems in local area networks 
(LANs) and wide area networks (WANs). 

● determine duration, perform event sequencing and 
scheduling. 

● Each machine is either a time server or a clerk
● software components on a group of cooperating 

systems; 
● client obtains time from DTS entity 
● DTS entities

● DTS server
● DTS clerk that obtain time from DTS servers on other hosts



Clock Synchronization in 
DCE
● DCE’s time model is interval- based

● Comparing 2 times may yield 3 answers
● t1 < t2,  t2 < t1, not determined

● Periodically a clerk obtains time-intervals from several servers 
,e.g. all the time servers on its LAN

● Based on their answers, it computes a new time and gradually 
converges to it.

● Compute the intersection where the intervals overlap. Clerks then 
adjust the system clocks of their client systems to the midpoint of 
the computed intersection. 

● When clerks receive a time interval that does not intersect with the 
majority, the clerks declare the non-intersecting value to be faulty.

● Clerks  ignore faulty values when computing new times, thereby 
ensuring that defective server clocks do not affect clients. 



PTP (Precision Time protocol) 

http://www.youtube.com/watch?v=ovzt3IUFbyo


Precise Time? 



DTP (Datacenter Time protocol) 

Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim 
Weatherspoon. 2016. Globally Synchronized Time via 
Datacenter Networks. In Proceedings of the 2016 ACM 
SIGCOMM Conference (SIGCOMM ’16).

Huygens - software clock synchronization 
system

● coded probes
● SVM for propogation time estimation
● natural network effect - use clocks to 

detect errors



Timing in Mission Critical 
Systems (a Panel) 

http://www.youtube.com/watch?v=0aGvNazSUKE


NASA example: Agile Local 
Positioning System

http://www.youtube.com/watch?v=oyXsiE9CuK8


Logical Clock Synchronization



Causal Relations

● Distributed application results in a set of 
distributed events
● Induces a partial order 🡪 causal precedence relation

● Knowledge of this causal precedence relation is 
useful in reasoning about and analyzing the 
properties of distributed computations
● Liveness and fairness in mutual exclusion
● Consistency in replicated databases
● Distributed debugging, checkpointing



Logical Clocks

● Used to determine causality in distributed 
systems

● Time is represented by non-negative integers
● Event structures represent distributed 

computation (in an abstract way)
● A process can be viewed as consisting of a sequence 

of events, where an event is an atomic transition of 
the local state which happens in no time 

● Process Actions can be modeled using the 3 types of 
events

● Send Message
● Receive Message
● Internal (change of state)



Logical Clocks

● A logical Clock C is some abstract mechanism which 
assigns to any event e∈E the value C(e) of some time 
domain T such that certain conditions are met

● C:E→T :: T is a partially ordered set : e<e’→C(e)<C(e’) holds
● Consequences of the clock condition [Morgan 85]:

● Events occurring at a particular process are totally ordered by 
their local sequence of occurrence

● If an event e occurs before event e’ at some single process, then 
event e is assigned a logical time earlier than the logical time 
assigned to event e’

● For any message sent from one process to another, the logical 
time of the send event is always earlier than the logical time of 
the receive event

● Each receive event has a corresponding send event
● Future can not influence the past (causality relation)



Event Ordering

● Lamport defined the “happens before” 
(=>) relation
● If a and b are events in the same process, 

and a occurs before b, then a => b.
● If a is the event of a message being sent 

by one process and b is the event of the 
message being received by another 
process, then a => b.

● If X =>Y and Y=>Z then X => Z.
If a => b then time (a) => time (b) 



Causal Ordering

● “Happens Before” also called causal ordering
● Possible to draw a causality relation between  2 

events if 
● They happen in the same process
● There is a chain of messages between them

● “Happens Before” notion is not straightforward 
in distributed systems
● No guarantees of synchronized clocks
● Communication latency



Implementation of Logical 
Clocks

● Requires 
● Data structures local to every process to represent logical time and
● a protocol to update the data structures to ensure the consistency 

condition.
● Each process Pi maintains data structures that allow it the following 

two capabilities:
● A local logical clock, denoted by LC_i , that helps process Pi measure its 

own progress.
● A logical global clock, denoted by GCi , that is a representation of 

process Pi ’s local view of the logical global time. Typically, lci is a part 
of gci 

● The protocol ensures that a process’s logical clock, and thus its view 
of the global time, is managed consistently. 
● The protocol consists of the following two rules:

● R1: This rule governs how the local logical clock is updated by a process 
when it executes an event.

● R2: This rule governs how a process updates its global logical clock to 
update its view of the global time and global progress.



Types of Logical Clocks

● Systems of logical clocks differ in their 
representation of logical time and also in 
the protocol to update the logical clocks.

● 3 kinds of logical clocks
● Scalar
● Vector 
● Matrix



Scalar Logical Clocks - 
Lamport

● Proposed by Lamport in 1978 as an attempt to 
totally order events in a distributed system.

● Time domain is the set of non-negative integers.
● The logical local clock of a process pi and its 

local view of the global time are squashed into 
one integer variable Ci .

● Monotonically increasing counter
● No relation with real clock

● Each process keeps its own logical clock used to 
timestamp events



Consistency with Scalar 
Clocks

● To guarantee the clock condition, local clocks 
must obey a simple protocol:
● When executing an internal event or a send event at 

process Pi the clock Ci ticks
• Ci += d (d>0)

● When Pi sends a message m, it piggybacks a logical 
timestamp t which equals the time of the send event

● When executing a receive event at Pi where a 
message with timestamp t is received, the clock is 
advanced

• Ci = max(Ci,t)+d   (d>0)

● Results in a partial ordering of events.





Total Ordering

● Extending partial order to total order

● Global timestamps:
● (Ta, Pa) where Ta is the local timestamp and 

Pa is the process id.
● (Ta,Pa) < (Tb,Pb) iff  

● (Ta < Tb) or   ( (Ta = Tb) and (Pa < Pb))

● Total order is consistent with partial order.

time Proc_id



Properties of Scalar Clocks  

● No Strong Consistency
● The system of scalar clocks is not strongly 

consistent; that is, for two events ei and ej , 
C(ei ) < C(ej ) does not imply ei → ej .

● Reason: In scalar clocks, logical local clock and 
logical global clock of a process are squashed 
into one, resulting in the loss of causal 
dependency information among events at 
different processes.



Independence

● Two events e,e’ are mutually independent (i.e. e||e’) if 
~(e<e’)∧~(e’<e)
● Two events are independent if they have the same timestamp
● Events which are causally independent may get the same or 

different timestamps
● By looking at the timestamps of events it is not possible 

to assert that some event could not influence some 
other event
● If C(e)<C(e’) then ~(e’<e) however, it is not possible to decide 

whether e<e’ or e||e’
● C is an order homomorphism which preserves < but it does not 

preserves negations (i.e. obliterates a lot of structure by 
mapping E into a linear order)



Problems with Total Ordering

● A linearly ordered structure of time is not always 
adequate for distributed systems
● captures dependence of events
● loses independence of events - artificially enforces an ordering 

for events that need not be ordered – loses information
● Mapping partial ordered events onto a linearly ordered set of 

integers is losing information
● Events which may happen simultaneously may get different 

timestamps as if they happen in some definite order.

● A partially ordered system of vectors forming a lattice 
structure is a natural representation of time in a 
distributed system



Lamport on clocks…

http://www.youtube.com/watch?v=nfRouGH0oMg


Vector Clocks

● Independently developed by Fidge, Mattern and Schmuck.
● Aim: To construct a mechanism by which each process gets an 

optimal approximation of global time
● Time  representation

● Set of n-dimensional non-negative integer vectors.
● Each process has a clock Ci consisting of a vector  of length n, where n 

is the total number of processes vt[1..n], where vt[j ] is the local logical 
clock of Pj and describes the logical time progress at process Pj .

● A process Pi ticks by incrementing its own component of its clock
● Ci[i] += 1

● The timestamp C(e) of an event e is the clock value after ticking
● Each message gets a piggybacked timestamp consisting of the vector 

of the local clock
● The process gets some knowledge about the other process’ time 

approximation
● Ci=sup(Ci,t):: sup(u,v)=w : w[i]=max(u[i],v[i]), ∀i



Vector Clocks example

From A. Kshemkalyani and M. Singhal (Distributed Computing)

Figure 3.2: Evolution of vector time.



Vector Times (cont)

● Because of the transitive nature of the scheme, a 
process may receive  time updates about clocks in 
non-neighboring process

● Since process Pi can advance the ith component of global 
time, it always has the most accurate knowledge of its 
local time

● At any instant of real time ∀i,j: Ci[i]≥ Cj[i]



Structure of the Vector Time

● For two time vectors u,v
● u≤v iff ∀i: u[i]≤v[i]
● u<v iff u≤v ∧ u≠v
● u||v iff ~(u<v) ∧~(v<u)  :: || is not transitive

● For an event set E, 
●  ∀e,e’∈E:e<e’ iff C(e)<C(e’) ∧ e||e’ iff  C(e)||C(e’)

● In order to determine if two events e,e’ are causally 
related or not, just take their timestamps C(e) and C(e’)
● if C(e)<C(e’) ∨ C(e’)<C(e), then the events are causally related
● Otherwise, they are causally independent



Matrix Time

● Vector time contains information about latest 
direct dependencies
● What does Pi know about Pk

● Also contains info about latest direct 
dependencies of those dependencies
● What does Pi know about what Pk knows about Pj

● Message and computation overheads are high
● Powerful and useful for applications like 

distributed garbage collection



Time Manager Operations

● Logical Clocks
● C.adjust(L,T) 

● adjust the local time displayed by clock C to T (can be 
gradually, immediate, per clock sync period)

● C.read 
● returns the current value of clock C

● Timers
● TP.set(T) - reset the timer to timeout in T units

● Messages
● receive(m,l); broadcast(m); forward(m,l)



Spanner: Google's Globally 
Distributed Database



What is Spanner? 

A scalable, multi-version, globally-distributed,  synchronously- replicated 
database
● Scalable

○ Data centers and servers can be added or removed as needed for 
availability and performance

○ Automatic Load Balancing among datacenters 
● Multi-version

○ Data has a timestamp, enabling historical data queries
● Globally-Distributed: 

○ Data centers can be separated by great distances
○ Provides Locality and fault tolerance 

● Synchronously-replicated: 
○ Replication results in multiple up-to-date copies of data 

Main idea: 
– Get externally consistent view of globally distributed database 
– Spanner = BigTable with timestamps + Paxos + TrueTime 



Google’s Setting

● Dozens of zones (datacenters) across the globe 
● Per zone, 100-1000s of servers 
● Per server, 100-1000 partitions (tablets) 
● Every tablet replicated for fault-tolerance (e.g., 

5x) 18 Google’s Setting
● client-application configurable



Heterogeneous  Workloads 

● SQL → NoSQL → NewSQL 
● Supports multiple types of query languages

● Large scale transactional databases 
● Eventual consistency is not good enough:

– Managing global money/warehouses/resources 
– Auctions, especially Google's advertisement platform 
– Social networks, Twitter 
– MapReduce over a globally changing dataset 

● We need external consistency: 
● T(e1(commit)) < T(e2(start)) → s1 < s2



Concepts

Spanner Guarantees 
● External consistency: Transactions are processed in a way equivalent to a 

single machine processing all transactions. Analogous to distributed shared 
memory, which provides an abstraction for many memories as one centralized 
memory

● Global consistency: Commits that are made are visible to all replicas. Queries 
made from different data centers give the same values. 

Provides full control over 
● How far data is from user (read latency) 

● How far replicas are from each other (write latency) 

● How many replicas (durability, availability, throughput) 



Spanner: Storage 
Architecture

● Universe:  The entire Spanner deployment
● Zone:  A cluster of machines in a data center used to serve data to geographically 

close clients.
○ A universe has an arbitrary number of zones. 

● spanserver: A store; A zone may have hundreds to thousands of spanservers. 
● zonemaster: assigns data to spanservers;  A zone has exactly one zonemaster
● universemaster: provides status information about all zones in universe for 

debugging
● placement driver: handles movement of data between zones 



SpanServer Architecture and Data Model

Spanner provides semi-relational interface with SQL-like query 
language:
● Database: Split among many zones geographically separated
● Tables : Split among many tablets replicated across data centers
● Rows: Collection of values for a variety of data columns, timestamped.
● Columns: Values from the internal key-value store. 

Paxos State Machine:  Participants in Paxos protocol for consistency 

Colossus:  
A distributed File System



TrueTime 
Goal: Provide globally synchronized time with sharp error 
bounds, i.e. bounded uncertainty  
● Interval-based global time.
● Do not trust synchronization via NTP Implemented using  

GPS and “commodity” atomic clocks

• Spanner implements algorithms to make sure these guarantees are 
respected by the machines (non-conformists are evicted) 

– Uses a variant of Marzullo’s algorithm (estimates time from 
multiple noisy sources) 

– Time accuracy on the order of 10ms (avg. error bound ~4 ms)



TrueTime Architecture

Compute reference [earliest, latest] = now ± ε



TrueTime implementation

now = reference now + local-clock offset 
ε = reference ε + worst-case local-clock drift
   = 1ms + 200 μs/sec

What about faulty clocks? – Bad CPUs 6x more likely in 1 
year of empirical data



References

● Princeton - COS 418: Distributed Systems course slides by Themis 
Melissaris and Daniel Suo

● Spanner: Google's Globally Distributed Database by Philipp Moritz

● https://youtu.be/NthK17nbpYs

https://youtu.be/NthK17nbpYs


Case Study: Amazon DynamoDB

Amazon serves millions of customers at peak time
● Require availability - “always-on” experience.
● Loss of service has financial consequences, erodes user trust 

What is Dynamo?
● A key-value distributed data storage system
● Emphasis on Reliability, scalability and availability
● Used in AWS - highly decentralized, loosely coupled, service oriented architecture 

consisting of hundreds of services.

Dynamo Application Characteristics 
● “always writeable” store, no updates are rejected despite failures/concurrent writes 
● Single administrative domain where all nodes are assumed to be trusted.
● No hierarchical namespaces (e.g file systems) or complex relational schema 
● Latency sensitive applications  (99.9% of R/W operations < few 100ms )



Usecase: Amazon DynamoDB 

https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html


Clock skews in Cassandra

Timestamps are critical for coordination  in a distributed 
key-value store.
But issues can arise!!
-- Last-write wins problem..

http://www.youtube.com/watch?v=IjsJLTriLzs


Cassandra

• Distributed, customizable, eventually-consistent NoSQL database

• Originated at Facebook in 2008

 –  Currently an Apache open-source project
 –  ACID relational database systems were too slow
 –  CAP theorem: strong consistency → availability suffers

• Performance also suffers (e.g., locking, running commit protocols)
 –  Go with an eventually consistent model
 –  Built as a combination of Amazon Dynamo DHT + Google Bigtable



Cassandra Design Goals

• High availability – no single point of failure - no central coordinator • Low 
latency
• Run on commodity hardware
• Linear performance increase with additional nodes

• Tunable consistency: Define replication # and policy
• Key-oriented queries
• Flexible data model: row can have different columns with different data types 
• SQL-like query language (CQL - Cassandra Query Language)



Cassandra Machine 
Hierarchy

Cluster – Collection of machines that run Cassandra
– Nodes are arranged in a logical ring (like Chord/Dynamo) and data is replicated

• Datacenter – Machines in one location (data center)

• Rack – Machines in one rack (low latency – single switch connection)

• Node – Individual machine
Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf 

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf


Cassandra Data Model

Column: Fundamental unit of 
storage

– { name, value, timestamp }

– Each column has a name (key) that 
can be queried for a value • Data types 
(>20) include alphabetic, numeric, blob, 
time, set, map

– Timestamp enables conflict 
resolution among replicas • Usually 
created by client – synchronized clocks 
assumed

– Columns can also be given an 
optional expiration timestamp (time to 
live)

Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf 

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf


Cassandra Storage/query 
Model

• Replica reconciliation – what happens when there are conflicts?

 –  Not like Dynamo's vector clocks
 –  Last write wins model where every mutation is timestamped (including 

deletes) and then the latest version of data is the "winning" value

Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf 

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf


Coordination Problems 

http://www.youtube.com/watch?v=eSaFVX4izsQ


Creating Global State

● The notions of global time and global state are closely 
related

● Goal: Compute, for a process, without freezing the 
whole computation, the best possible approximation of a 
global state [Chandy & Lamport 85]

● A global state that could have occurred
● No process in the system can decide whether the state did really 

occur
● Guarantee stable properties (i.e. once they become true, they 

remain true)



What constitutes global state? 

● Global Snapshot = Global State 

Individual state of each process in the distributed system
 +
Individual state of each communication channel in the distributed system

● Capture the instantaneous state of each process
● Capture the instantaneous state of each communication channel, i.e.,  

messages in transit on the channels
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Rubber Band Transformation
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Consistent Cuts

● A cut (or time slice) is a zigzag line cutting a time 
diagram into 2 parts (past and future)
● E is augmented with a cut event ci for each process Pi:E’ =E ∪ 

{ci,…,cn} ∴
● A cut C of an event set E is a finite subset C⊆E: e∈C ∧ e’<le →e’

∈C
● A cut C1 is later than C2 if C1⊇C2 
● A consistent cut C of an event set E is a finite subset C⊆E : e∈C 

∧ e’<e →e’ ∈C
• i.e. a cut is consistent if every message received was previously sent 

(but not necessarily vice versa!)
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Consistent Cuts

● Some Theorems
● For a consistent cut consisting of cut events ci,…,cn, no 

pair of cut events is causally related.  i.e ∀ci,cj ~(ci< cj) 
∧ ~(cj< ci)

● For any time diagram with a consistent cut 
consisting of cut events ci,…,cn, there is an 
equivalent time diagram where ci,…,cn occur 
simultaneously.  i.e. where the cut line forms a 
straight vertical line
● All cut events of a consistent cut can occur 

simultaneously



Global States of Consistent Cuts

● The global state of a distributed system is a collection of 
the local states of the processes and the channels.

● A global state computed along a consistent cut is correct
● The global state of a consistent cut comprises the local 

state of each process at the time the cut event  happens 
and the set of all messages sent but not yet received 

● The snapshot problem consists in designing an efficient 
protocol which yields only consistent cuts and to collect 
the local state information

● Messages crossing the cut must be captured
● Chandy & Lamport presented an algorithm assuming that message 

transmission is FIFO



System Model for Global 
Snapshots

● The system consists of a collection of n processes p1, 
p2, ..., pn that are connected by channels.

● There are no globally shared memory and physical 
global clock and processes communicate by passing 
messages through communication channels.

● Cij denotes the channel from process pi to process pj 
and its state is denoted by SCij .

● The actions performed by a process are modeled as 
three types of events:
● Internal events,the message send event and the message 

receive event.
● For a message mij that is sent by process pi to process pj , let 

send(mij ) and rec(mij ) denote its send and receive events.



Process States and Messages 
in transit

● At any instant, the state of process pi , denoted by LSi , is a result 
of the sequence of all the events executed by pi till that instant.

● For an event e and a process state LSi , e∈LSi iff e belongs to the 
sequence of events that have taken process pi to state LSi .

● For an event e and a process state LSi , e (not in) LSi iff e does not 
belong to the sequence of events that have taken process pi to 
state LSi .

● For a channel Cij , the following set of messages can be defined 
based on the local states of the processes pi and pj

Transit: transit(LSi , LSj ) = {mij |send(mij ) ∈ LSi V 
                                                rec(mij ) (not in) LSj }



Distributed Global Snapshot: 
Requirements

● Snapshot should not interfere with normal application actions, and it 
should not require application to stop sending messages

● Each process is able to record its own state
○ Process state: Application-defined state or, in the worst case:
○ its heap, registers, program counter, code, etc. (essentially the 

coredump)
● Global state is collected in a distributed manner
● Any process may initiate the snapshot

○ Assume just one snapshot run for now



Chandy-Lamport Distributed 
Snapshot Algorithm

● Assumes FIFO communication in channels
● Uses a control message, called a marker to separate messages in 

the channels.
● After a site has recorded its snapshot, it sends a marker, along all of its 

outgoing channels before sending out any more messages.
● The marker separates the messages in the channel into those to be 

included in the snapshot from those not to be recorded in the 
snapshot.

● A process must record its snapshot no later than when it receives a 
marker on any of its incoming channels.

● The algorithm terminates after each process has received a marker 
on all of its incoming channels.

● All the local snapshots get disseminated to all other processes and 
all the processes can determine the global state.



Chandy-Lamport Distributed 
Snapshot Algorithm

Marker receiving rule for Process Pi
   If (Pi has not yet recorded its state) it

records its process state now
records the state of c as the empty set
turns on recording of messages arriving over other channels

   else
Pi records the state of c as the set of messages received over c
since it saved its state

Marker sending rule for Process Pi
   After Pi has recorded its state,for each outgoing channel c:

Pi sends one marker message over c
              (before it sends any other message over c)



Computing Global States 
without FIFO Assumption

● In a non-FIFO system, a marker cannot be used to 
delineate messages into those to be recorded in the 
global state from those not to be recorded in the 
global state.

● In a non-FIFO system, either some degree of 
inhibition or piggybacking of control information on 
computation messages to capture out-of-sequence 
messages.

● Lai-Yang Algorithm (uses coloring)
● Mattern’s  Algorithm (uses vector-clocks)



Distributed Snapshots - Flink 

https://www.infoq.com/presentations/distributed-st
ream-processing-flink/

https://www.infoq.com/presentations/distributed-stream-processing-flink/
https://www.infoq.com/presentations/distributed-stream-processing-flink/


Apache Flink 

(Streaming + Batch 
Workloads)

(Flink Component Stack)



Snapshots with operator 
graphs in Apache Flink 

http://www.youtube.com/watch?v=DkNeyCW-eH0


Snapshots: Cassandra Clusters

Clusters use snapshots for fault 
tolerance



More Snapshot Algorithms



Computing Global States without 
FIFO  Assumption -  Lai-Yang Algorithm

● Uses a coloring scheme that works as follows
● White (before snapshot); Red (after snapshot)
● Every process is initially white and turns red while taking a 

snapshot. The equivalent of the “Marker Sending Rule”  
(virtual broadcast) is executed when a process turns red.

● Every message sent by a white (red) process is colored 
white (red).

● Thus, a white (red) message is a message that was sent 
before (after) the sender of that message recorded its local 
snapshot.

● Every white process takes its snapshot at its convenience, 
but no later than the instant it receives a red message.



● Every white process records a history of all white 
messages sent or received by it along each channel.

● When a process turns red, it sends these histories 
along with its snapshot to the initiator process that 
collects the global snapshot.

●  Determining Messages in transit ( i.e. White messages 
received by red process)

● The initiator process evaluates transit(LSi, LSj) to compute 
the state of a channel Cij as given below:

● SCij = {white messages sent by pi on Cij − 
             white messages received by pj on Cij}
●        = { send (Mij)|send(mij)∈LSi} − {rec(mij)| rec(mij)∈LSj}.

Computing Global States without 
FIFO  Assumption -  
Lai-Yang Algorithm (cont.)



Computing Global States without 
FIFO Assumption: Termination

● First method
● Each process I keeps a counter cntri that indicates the difference 

between the number of white messages it has sent and received 
before recording its snapshot, i.e number of messages still in transit.

● It reports this value to the initiator along with its snapshot and 
forwards all white messages, it receives henceforth, to the initiator.

● Snapshot collection terminates when the initiator has received         
Σi cntri number of forwarded white messages.

● Second method
● Each red message sent by a process piggybacks the  value of the 

number of white messages sent on that channel before the local 
state recording. Each process keeps a counter for the number of 
white messages received on each channel.

● Termination – Process  receives as many white messages on each 
channel as the value piggybacked on red messages received on that 
channel.



Computing Global States without 
FIFO Assumption: Mattern’s Algorithm

● Uses Vector Clocks
● All process agree on some future virtual time s or a set of virtual 

time instants s1,…sn which are mutually concurrent and did not 
yet occur

● A process takes its local snapshot at virtual time s
● After time s the local snapshots are collected to construct a 

global snapshot
● Pi ticks and then fixes its next time s=Ci +(0,…,0,1,0,…,0) to be the 

common snapshot time
● Pi broadcasts s 
● Pi blocks waiting for all the acknowledgements
● Pi ticks again (setting Ci=s), takes its snapshot and broadcast a 

dummy message (i.e. force everybody else to advance their clocks 
to a value ≥ s)

● Each process takes its snapshot and sends it to Pi when its local 
clock becomes ≥ s



Computing Global States without 
FIFO Assumption (Mattern cont)

● Inventing a n+1 virtual process whose clock is managed 
by Pi 

● Pi can use its clock and because the virtual clock Cn+1 
ticks only when Pi initiates a new run of snapshot :
● The first n components of the vector can be omitted
● The first broadcast phase is unnecessary
● Counter modulo 2

● Termination
● Distributed termination detection algorithm [Mattern 87]


