Time, State and Coordination in
Distributed Systems

Prof. Nalini Venkatasubramanian
Distributed Systems Middleware

-includes slides/examples from

Indy Gupta (UIUC) and Kshemkalyani&Singhal (book
slides)

Global Time & Global States of
Distributed Systems

Asynchronous distributed systems consist of several
processes without common memory which communicate

(solely) via messages with unpredictable transmission
delays

Global time & global state are hard to realize in distributed
systems

Rate of event occurrence is very high

Event execution times are very small

We can only approximate the global view

Simulate synchronous distributed system on a given asynchronous
system

Simulate a global time — Clocks (Physical and Logical)
Simulate a global state — Global Snapshots

The Concept of Time in
Distributed Systems

A standard time is a set of instants with a temporal precedence
order < satisfying certain conditions [Van Benthem 83]:
Irreflexivity

Transitivity

Linearity

Eternity (Vx3y: x<y)

Density (VX,y: X<y — 3z: X<z<y)
Transitivity and Irreflexivity imply asymmetry

A linearly ordered structure of time is not always adequate for
distributed systems

Captures dependence, not independence of distributed activities
Time as a partial order

A partially ordered system of vectors forming a lattice structure is a
natural representation of time in a distributed system.

Partial vs. total order

drudl-\wIdct ridll. 1 0LdI-IUCh ridalls.

Start Start Start Start Start Start Start

1 ! ! ! 1 y
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock

Sock Sotk Y ' ' ' 1 '

Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe

eftSockOn RightSockOn * * + * + *
: Right Left Right Left Left Right

Left Right

e st Shoe Shoe Shoe Shoe Sock Sock
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe

LeftShoeOn, RightShoeOn * * * * + *

Finish Finish Finish Finish Finish Finish Finish

Figure 11.6 A partial-order plan for putting on shoes and socks, and the six corresponding
linearizations into total-order plans.

Global time in distributed
systems

An accurate notion of global time is difficult to achieve in
distributed systems.

Uniform notion of time is necessary for correct operation of

many applications (mission critical distributed control, online

games/entertainment, financial apps, smart environments etc.)
Clocks in a distributed system drift

Relative to each other

Relative to a real world clock

Determination of this real world clock itself may be an issue

Clock synchronization is needed to simulate global time

Physical Clocks vs. Logical clocks

Physical clocks are logical clocks that must not deviate from the
real-time by more than a certain amount.

We often derive causality of events from loosely synchronized clocks

Physical Clock Synchronization

f/l/'()/(ly/z

Physical Clocks
Tine,

How do we measure real time?
Early — Stonehenge, sundials

13th -17th century: Mechanical clocks
based on astronomical measurements

Problem (1940): Rotation of earth varies!

Mean solar second = average over many days

e Solar Day - Transit of the sun Date Duration in mean solar
e Solar Seconds - Solar Day/(3600*24) me
February 11 24 hours
March 26 24 hours — 18.1 sec
May 14 24 hours
June 19 24 hours + 13.1 sec
July 26 24 hours
September 16 24 hours — 21.3 sec
November 3 24 hours
December 22 24 hours + 29.9 sec

Length of apparent solar day (1998)
— (cf: wikipedia’

Atomic Clocks

Accurate atomic clocks
Sr now holds the record on the Q and S/N

1948 - Counting transitions of a crystal

(Cesium 133, quartz) used as atomic o
ClOCk : .NBS'1 ' K 1010
. = 1,000 \QNBS.Z ‘ ' 10"
crystal oscillates at a well known g NS Llper z
S NBS- 3 'Copled {10 ;Eg
frequency z N
8 = —
R I e)
_ S o NIST7 NG T F1 | s 3
2014 — NIST-F2 Atomic clock 10 N[0 E
bt v ST @410
Accuracy: £ 1 sec in 300 mil years . ; single® fg
NIST-F2 measures particular transitions in o e
Cesium atom (9,192,631,770 vibrations YEAR
pe_r sec30 1n6dF) ! tIE mul\fIl‘IS_(l:_OII:Cier AACRIED, UTC (Universal Coordinated Time)
e 7 (Ll) From time to time, UTC skips a solar

second to stay in phase with the sun

TAI - International Atomic Time (30+ times since 1958)

9,192,631,779 transitions = 1 mean yrc is broadcast by several sources
solar second in 1948 (satellites...)

Next Generation Atomic Clocks
-- NIST F2

http://www.youtube.com/watch?v=z-jE7DXy1x0

How Clocks Work in Computers

Oscillation at a
well-defined frequency

Each crystal oscillation
decrements the counter by 1

When counter is 0, an
interrupt is generated, which

1s call a clock tick

Holding Quartz
register crystal
When counter gets 0, its ﬂ
value reloaded from the
holding register —[> Counter
CPU
At each clock tick, an interrupt ﬂ
service procedure add 1 to time
stored in memory Memory

From Distributed Systems (cs.nju.edu.cn/distribute-systems/lecture-notes/ 10

Accuracy of Computer Clocks

Modern timer chips have a relative error
of 1/100,000 - 0.86 seconds a day

To maintain synchronized clocks

Can use UTC source (time server) to obtain
current notion of time

Use solutions without UTC.

Cristian’s (Time Server) Algorithm
(external synchronization)

e Uses a time server (S) to synchronize clocks

e Time server keeps the reference time (say UTC)

e A client asks the time server for time, the server responds with
its current time, and the client uses the received value to set its
clock.

Set clock to t Time
>

P
What's theXime?

Heré s the time t!

>
Che‘ck local clock to find time t

Cristian’s Algorithm (cont.)

e But network round-trip time introduces errors...

e By the time response message is received at P, time has moved on
e Let RTT = response-received-time — request-sent-time
(measurable at client),

e If we know (@) min = minimum client-server one-way transmission time
and (b) that the server timestamped the message at the last possible
instant before sending it back

e Then, the actual time could be between [T+min, T+RTT— min]

RTT

I Set clock to t
| 1

> lime

P

What \the time?

ere’s the time t!

>
A’heck local clock to find time t 13

Cristian’s Algorithm (cont.)

L

e

Client sets its clock to halfway between T+minand

T+RTT— min I.e., at T+RTT/2
= Expected (i.e., average) skew in client clock time = (RTT/2 — min)

Can increase clock value, should never decrease it.
Can adjust speed of clock too (either up or down is ok)
Multiple requests to increase accuracy

% For unusually long RTTs, repeat the time request

& For non-uniform RTTs

% Drop values beyond threshold; Use averages (or weighted
average)

Berkeley UNIX algorithm

One Version

One daemon without UTC
Periodically, this daemon polls and asks all the machines for
their time

The machines respond.
The daemon computes an average time and then broadcasts

this average time.

Another Version

Master/daemon uses Cristian’s algorithm to calculate time from
multiple sources, removes outliers, computes average and
broadcasts

Decentralized Averaging
Algorithm

Each machine has a daemon without UTC

Periodically, at fixed agreed-upon times,
each machine broadcasts its local time.

Each of them calculates the average time
by averaging all the received local times.

Computer

Network
Time

Network Time Protocol
(NTP)

Most widely used physical clock synchronization protocol
on the Internet (http://www.ntp.org)
Currently used: NTP V3 and V4

10-20 million NTP servers and clients in the Internet

Claimed Accuracy (Varies)

milliseconds on WANs, submilliseconds on LANS,
submicroseconds using a precision timesource

Nanosecond NTP in progress

http://www.ntp.org/

NTP Design

Hierarchical tree of time

servers. Hierarchy in NTP

The primary server at the root
synchronizes with the UTC.

Most accurate (UTC)
The next level contains
secondary servers, which act
as a backup to the primary
server.
At the lowest level is the Less accurate @ @

synchronization subnet which

has the clients.

Variant of Cristian’s algorithm Yair Amir Fall 9/ Lecture 11
that does not use RTT’s, but

multiple 1-way messages

Updated by: 7822, 8573 PROPOSED STANDARD

Errata Exist

Internet Engineering Task Force (IETF) D. Mills

T Request for Comments: 5905 U. Delaware
N P 4 Obsoletes: 1305, 4330 J. Martin, Ed.
[| Category: Standards Track Isc

ISSN: 2070-1721 J. Burbank

W. Kasch

JHU/APL

June 2010

Network Time Protocol Version 4: Protocol and Algorithms Specification

e NTP Stratum 1 Servers s
The Network Time Protocol (NTP) is widely used to synchronize
. ra UI I I erve rs computer clocks in the Internet. This document describes NTP version

4 (NTPv4). which is backwards compatible with NTP version 3 (NTPv3).
de:

e NTP Pool Servers w o Modified protocol header for IPv6
im o Accuracy to 10s of microseconds

v e Dynamic server discovery

Stratum One Time Servers re
implementation and includes an optional extension mechanism.

A Please read the Rules Of Engagement before using these lists. These lists are updated frequently and should not be cached.

[# Read ManagingYourListEntries and then add your Time Server
Click the ISO Country Code to view complete details about a server. See Inactive TimeServers for previously listed servers that are no longer in service.

oo | o Host/ Sponar T Sonica Aros: | AccessPoly: | Notiy? | Lastodd

AD Andorra Only Andorra OpenAccess Yes 2020-04-
09T17:02:10Z

AE Business Central Tower, Dubai, UAE RNTrust (RecroNet Middle East) UAE, Saudi Arabia & EMEA OpenAccess Yes 2019-04-
29T08:32:03Z
AE Business Central Tower, Dubai. UAE RNTrust (RecroNet Middle East) UAE, Saudi Arabia & EMEA OpenAccess Yes 2019-04-
28T09:29:40Z
AM AMNIC DC, Yerevan, Armenia Internet Society of Armenia, AM NIC worldwide OpenAccess No 2015-01-
29T723:31:16Z
AM AMNIC DC, Yerevan, Armenia Internet Society of Armenia, AM NIC worldwide OpenAccess No 2014-10-
08T07:56:13Z
AM AMNIC DC, Yerevan, Armenia worldwide OpenAccess No 2013-04-

01T21:48:39Z2

AT Vienna aco.net, VIX customers, Austrian Internet users OpenAccess No 2009-07-
17T11:01:08Z

AT Hallein Austria/Europe OpenAccess No 2019-12-
20T19:50:17Z
Network Time Foundation: NTP « Ntimed « Linux PTP - RADclock + GTSAPI - More g

20T19:11:42Z

I ©R0cS - concerns about Dos attacks | N

search

NTP users are strongly urged to take immediate action to ensure that their NTP daemon is not susceptible to use in a reflected denial-of-service (DRDoS) attack. Please see the
NTP Security Notice for vulnerability and mitigation details, and the Network Time Foundation Blog for more information. (January 2014)

irectly contained within, are in the public domain. Some portions of this site may be copyrighted by other authors. Please contact the webmaster with any questions regarding copyright. The NTP

L R T N T E 2 A L A U LT RO R N RO

on ensuring that..

In the News 20 November 2021

Can Time Be Hacked? Here's
How One Hacker
Demonstrated It Can

Time Security 1 October 2020

NTS RFC Published: New
Standard to Ensure Secure
Time on the Internet

Forbes

The Internet Society is pleased to see the
publication of RFC 8915: Network Time
Security for the Network Time..

Time Security 30 September 2020

Can You Spare a Minute?
Network Time Security
Featured on The Hedge
Podcast

Are you interested in finding out more about
Network Time Protocol (NTP), Network Time

Network Time Security (NTS)

http://www.youtube.com/watch?v=s6XN-ypbzWs

W32 time -- Windows Time Service

Windows Time Service Architecture

Service Control Manager

I

Input Windows Time

Clock
Discipline

I

Systemn

Provider Service Manager
B
GPS v4
@ Device
Output
Provider

Clock

The time synchronization process involves the following steps:

¢ Input providers request and receive time samples from configured NTP time sources.

Can synchronize

with PDC Ernulator
or any domain
controller from
parent dornain

Domain
Controller

Workstation

Server

External NTP
Time Server

Domain
Controller

Warkstation Can synchronize

PDC Emulator

Dormain
Controller

L

Server

mrkstation

Y

with PDC E mulator
or any domain
controller from
parent dornain

Dormain
Controller

Controller

Workstation Workstation

1405014 Ammaaial

[rhild Ramainy

e These time samples are then passed to the Windows Time Service Manager, which collects all the samples and passes them to

the clock discipline subcomponent.

e The clock discipline subcomponent applies the NTP algorithms which results in the selection of the best time sample.

e The clock discipline subcomponent adjusts the time of the system clock to the most accurate time by either adjusting the clock

rate or directly changing the time.

If a computer has been designated as a time server, it can send the time on to any computer requesting time synchronization at any

point in this process.

DCE Distributed Time Service

Software service that provides precise, fault-tolerant
clock synchronization for systems in local area networks
(LANs) and wide area networks (WANS).

determine duration, perform event sequencing and
scheduling.

Each machine is either a time server or a clerk

software components on a group of cooperating
systems;

client obtains time from DTS entity

DTS entities

DTS server
DTS clerk that obtain time from DTS servers on other hosts

Clock Synchronization in
DCE

DCE’s time model is interval- based

Comparing 2 times may yield 3 answers
tl1 < t2, t2 < t1, not determined

Periodically a clerk obtains time-intervals from several servers
,e.g. all the time servers on its LAN

Based on their answers, it computes a new time and gradually
converges to it.
Compute the intersection where the intervals overlap. Clerks then

adjust the system clocks of their client systems to the midpoint of
the computed intersection.

When clerks receive a time interval that does not intersect with the
majority, the clerks declare the non-intersecting value to be faulty.

Clerks ignore faulty values when computing new times, thereby
ensuring that defective server clocks do not affect clients.

PTP (Precision Time protoco

End to End Sync Msg - 2 Step

0 t and Pawer Frofile

Dod
e : £36 TG L 1C Qrclrary Clock
0 N o] o]

5G Network Precision Timing

Advanced 5G use cases require more stringent latency requirements across the network from the central office to the edge.
More precise clock synchronization can help solve this challenge. The Intel® Ethernet 700 Series Network Adapter with

http://www.youtube.com/watch?v=ovzt3IUFbyo

Precise Time?

An evaluation of the state of time synct
leadership class supercomputers

Terry Jones!
Patrick G. Bridges®

1Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge TN,
USA

2Universidad Autonoma de Occidente, Cali,
Colombia

3Department of Computer Science, University
of New Mexico, Albuquerque NM, USA

Correspondence

Terry Jones, Computer Science and
Mathematics Division, Oak Ridge National
Laboratory, Oak Ridge, TN, USA.

Email: trj@ornl.gov

Funding information
Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, Grant/Award

| George Ostrouchov! | Gregory A. Koenig

Summary

We present a detailed examination of time
extreme-scale parallel computers. Using a softv
attributes of clock skew among nodes in three re
at three national laboratories. Our measuremer
ment among nodes and how time agreement dr
We discuss the implications of our measurement
and propose strategies to address observed sho

KEYWORDS

clock synchronization, large-scale systems, syst

in 2015; many more have been installed since.

Phasor Measurement Units in the
North American Power Grid b N

@ PVU Locations
Yt Transmission Owner Data Concentrator
Y Regional Data Concentrator

NASPI S LY
Courtesy of the North American Synchrophasor Initiative () and the U.S. Department of Energy.
Figure 1. Almost 1,800 PMUs were installed across North America in 2015 [NASPI 2015]

DTP (Datacenter Time protocol)

Cornell University

* DTP Prototype
— Terasic DE5 board with Altera Stratix V
— Using Bluespec and Connectal framework

DTP: Datacenter Time Protocol

AL EEU o Highly Scalable with bounded precision!
Transport — ~25ns (4 clock ticks) between peers

Network — ~150ns for a datacenter with six hops

Data Link — No Network Traffic

Physical — Internal Clock Synchronization

* End-to-End: ~200ns precision!

Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. 2016. Globally Synchronized Time via
Datacenter Networks. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM 716).

Huygens - software clock synchronization
system
e coded probes
e SVM for propogation time estimation
e natural network effect - use clocks to
detect errors

Exploiting a Natural Network Effect for Scalable,
Fine-grained Clock Synchronization

Yilong Geng, Shiyu Liu, and Zi Yin, Stanford University; Ashish Naik, Google Inc.;
Balaji Prabhakar and Mendel Rosenblum, Stanford University; Amin Vahdat, Google Inc.

https://www.usenix.org/conference/nsdi18/presentation/geng

Timing in Mission Critical
Systems (a Panel)

Mission-Critical Timing Markets GlwA
Financial Government Healthcare
- -/// l | "'.- ‘ .
Conmnunicalicns Dedicated physical Industrial & Scientific
i 4 timing connections
R 7 & secure NTP server
u interfaces are

imperative!

Utilities Transportation Space & Defense

S Microsemi
N © 2016 Meraset Corporats

Power Matters.™

http://www.youtube.com/watch?v=0aGvNazSUKE

NASA example: Agile Local
Positioning System

http://www.youtube.com/watch?v=oyXsiE9CuK8

Logical Clock Synchronization

Causal Relations

Distributed application results in a set of
distributed events
Induces a partial order [causal precedence relation

Knowledge of this causal precedence relation is
useful in reasoning about and analyzing the
properties of distributed computations

Liveness and fairness in mutual exclusion

Consistency in replicated databases

Distributed debugging, checkpointing

Logical Clocks

Used to determine causality in distributed
systems

Time is represented by non-negative integers

Event structures represent distributed
computation (in an abstract way)

A process can be viewed as consisting of a sequence
of events, where an event is an atomic transition of
the local state which happens in no time

Process Actions can be modeled using the 3 types of
events

Send Message

Receive Message

Internal (change of state)

Logical Clocks

A logical Clock C is some abstract mechanism which
assigns to any event e<E the value C(e) of some time
domain T such that certain conditions are met

C:E—T :: T is a partially ordered set : e<e’—=C(e)<C(e") holds
Consequences of the clock condition [Morgan 85]:

Events occurring at a particular process are totally ordered by
their local sequence of occurrence

If an event e occurs before event e’ at some single process, then

event e is assigned a logical time earlier than the logical time
assigned to event e’

For an¥/ message sent from one process to another, the logical

time of the send event is always earlier than the logical time of
the receive event

Each receive event has a corresponding send event
Future can not influence the past (causality relation)

Event Ordering

Lamport defined the “happens before”
(=>) relation
If a and b are events in the same process,
and a occurs before b, then a => b.

If a is the event of a message being sent
by one process and b is the event of the
message being received by another
process, then a => b.

If X =>Y and Y=>Z then X => Z.
If a => b then time (a) => time (b)

Causal Ordering

“Happens Before” also called causal ordering

Possible to draw a causality relation between 2
events if

They happen in the same process

There is a chain of messages between them

“Happens Before” notion is not straightforward
in distributed systems

No guarantees of synchronized clocks
Communication latency

Implementation of Logical
Clocks

Requires
Data structures local to every process to represent logical time and
a protocol to update the data structures to ensure the consistency
condition.
Each process Pi maintains data structures that allow it the following
two capabilities:
A local logical clock, denoted by LC_i, that helps process Pi measure its
OWnN progress.
A logical global clock, denoted by GCi , that is a representation of
pFoce_ss Pi ’s local view of the logical global time. Typically, Ici is a part
of gci
The protocol ensures that a process’s logical clock, and thus its view
of the global time, is managed consistently.

The protocol consists of the following two rules:
R1: This rule governs how the local logical clock is updated by a process
when it executes an event.
R2: This rule governs how a process updates its global logical clock to
update its view of the global time and global progress.

Types of Logical Clocks

Systems of logical clocks differ in their
representation of logical time and also in
the protocol to update the logical clocks.

3 kinds of logical clocks
Scalar

Vector
Matrix

Scalar Logical Clocks -
Lamport

Proposed by Lamport in 1978 as an attempt to
totally order events in a distributed system.

Time domain is the set of hon-negative integers.

The logical local clock of a process pi and its
local view of the global time are squashed into
one integer variable Ci .

Monotonically increasing counter
No relation with real clock

Each process keeps its own logical clock used to
timestamp events

Consistency with Scalar
Clocks

To guarantee the clock condition, local clocks
must obey a simple protocol:

When executing an internal event or a send event at
process P. the clock C. ticks
C+=d (d>0)

When P sends a message m, it piggybacks a logical
timestamp t which equals the time of the send event
When executing a receive event at P. where a
message with timestamp t is received, the clock is
advanced

C. = max(C,t)+d (d>0)

Results in a partial ordering of events.

Lamport Logical Clock

Pl P2 P3 PI P2 P3
0 0 0 I 0 0
4\5 3 4\5 3
g8 10 B 8 10 B
12 15\9 — 12 15\‘11
16 20 12 16 20 14

24 a0 18 24 a0 20

20 25/15 20 25/1?
A '

28 35 21 28 35 23

= 7

9 40 24 36" 40 26

Yair Amir Fall 98/ Lecture 11

Total Ordering

Extending partial order to total order

Global timestamps:

(Ta, Pa) where Ta is the local timestamp and
Pa is the process id.

(Ta,Pa) < (Tb,Pb) iff
(Ta<Tb)or ((Ta=Tb)and (Pa < Pb))
Total order is consistent with partial order.

Properties of Scalar Clocks

No Strong Consistency

The system of scalar clocks is not strongly
consistent; that is, for two events ei and ej ,
C(ei) < C(gj) does not imply ei — €] .
Reason: In scalar clocks, logical local clock and
logical global clock of a process are squashed
into one, resulting in the loss of causal
dependency information among events at
different processes.

Independence

Two events e,e’ are mutually independent (i.e. e||e’) if
~(e<e’)A\~(e'<e)
Two events are independent if they have the same timestamp
Events which are causally independent may get the same or
different timestamps
By looking at the timestamps of events it is not possible
to assert that some event could not influence some
other event

If C(e)<C(e") then ~(e'<e) however, it is not possible to decide
whether e<e’ or e||€’

C is an order homomorphism which preserves < but it does not
preserves negations (i.e. obliterates a lot of structure by
mapping E into a linear order)

Problems with Total Ordering

A linearly ordered structure of time is not always
adequate for distributed systems
captures dependence of events

loses independence of events - artificially enforces an ordering
for events that need not be ordered — loses information

Mapping partial ordered events onto a linearly ordered set of
integers is losing information

Events which may happen simultaneously may get different
timestamps as if they happen in some definite order.

A partially ordered system of vectors forming a lattice
structure is a natural representation of time in a
distributed system

Lamport on clocks...

http://www.youtube.com/watch?v=nfRouGH0oMg

Vector Clocks

Independently developed by Fidge, Mattern and Schmuck.

Aim: To construct a mechanism by which each process gets an
optimal approximation of global time

Time representation
Set of n-dimensional non-negative integer vectors.

Each process has a clock C consisting of a vector of length n, where n
is the total number of processes vt[1..n], where vt[j] is the local logical
clock of Pj and describes the logical time progress at process Pj .

A process P. ticks by incrementing its own component of its clock
Cli]+=1
The timestamp C(e) of an event e is the clock value after ticking

Each message gets a piggybacked timestamp consisting of the vector
of the local clock
The process gets some knowledge about the other process’ time
approximation

C.=sup(C,t):: sup(u,v)=w : w[i]=max(uli],v[i]), Vi

Vector Clocks example

NI []H

O\
u [\m A Ul

¢
; H\H li

Figure 3.2: Evolution of vector time.

From A. Kshemkalyani and M. Singhal (Distributed Computing)

Vector Times (cont)

Because of the transitive nature of the scheme, a
process may receive time updates about clocks in
non-neighboring process

Since process P. can advance the i" component of global
time, it always has the most accurate knowledge of its

local time
At any instant of real time Vi,j: C[i]= Cj[i]

Structure of the Vector Time

For two time vectors u,v

uv iff Yi: uf[i]=v[i]

u<v iff usv A u#v

u||v iff ~(u<v) A~(v<u) :: || is not transitive
For an event set E,

Vee' €E:e<eiff C(e)<C(e") A el|eiff C(e)||C(e")

In order to determine if two events e,e’ are causally

related or not, just take their timestamps C(e) and C(e’)
if C(e)<C(e") V C(e")<C(e), then the events are causally related
Otherwise, they are causally independent

Matrix Time

Vector time contains information about latest
direct dependencies

What does Pi know about Pk

Also contains info about latest direct
dependencies of those dependencies
What does Pi know about what Pk knows about Pj

Message and computation overheads are high

Powerful and useful for applications like
distributed garbage collection

Time Manager Operations

Logical Clocks
C.adjust(L,T)

adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

C.read
returns the current value of clock C
Timers
TP.set(T) - reset the timer to timeout in T units
Messages

receive(m,l); broadcast(m); forward(m,l)

Spanner: Google's Globally
Distributed Database

a

TrueTime
(Tmin, Tmax)

Google Cloud

What is Spanner?

A scalable, multi-version, globally-distributed, synchronously- replicated
database

Scalable

Data centers and servers can be added or removed as needed for

availability and performance

Automatic Load Balancing among datacenters
Multi-version

Data has a timestamp, enabling historical data queries
Globally-Distributed:

Data centers can be separated by great distances

Provides Locality and fault tolerance
Synchronously-replicated:

Replication results in multiple up-to-date copies of data

Main idea:
— Get externally consistent view of globally distributed database
— Spanner = BigTable with timestamps + Paxos + TrueTime

Google’s Setting

Dozens of zones (datacenters) across the globe
Per zone, 100-1000s of servers
Per server, 100-1000 partitions (tablets)

Every tablet replicated for fault-tolerance (e.g.,
5x) 18 Google’s Setting

. client-application configurable

Heterogeneous Workloads

e SQL — NoSQL — NewSQL
Supports multiple types of query languages

e Large scale transactional databases

e Eventual consistency is not good enough:

— Managing global money/warehouses/resources

— Auctions, especially Google's advertisement platform
— Social networks, Twitter

— MapReduce over a globally changing dataset

e \We need external consistency:
o [(e1(commit)) < T(e2(start)) — s1 <s2

Concepts

Spanner Guarantees

External consistency: Transactions are processed in a way equivalent to a
single machine processing all transactions. Analogous to distributed shared
memory, which provides an abstraction for many memories as one centralized

memory
Global consistency: Commits that are made are visible to all replicas. Queries
made from different data centers give the same values.

Provides full control over
How far data is from user (read latency)

How far replicas are from each other (write latency)

How many replicas (durability, availability, throughput)

Spanner: Storage
Architecture

universemaster

placement driver

Zone 1

zonemaster

Zone 2

zonemaster

[

location
proxy

1

location
proxy

spanserver

1
1

spanserver

Universe: The entire Spanner deployment

Zone: A cluster of machines in a data center used to serve data to geographically

close clients.

A universe has an arbitrary number of zones.
spanserver: A store; A zone may have hundreds to thousands of spanservers.
zonemaster: assigns data to spanservers; A zone has exactly one zonemaster
universemaster: provides status information about all zones in universe for

debugging

Zone N

zonemaster

location
proxy

1
1

spanserver

placement driver: handles movement of data between zones

SpanServer Architecture and Data Model

other.group's participant other.g.roup's
participant ¢ lead e===s participant
leader ea e(leader

* transaction :

- manager -
. lock table
leader
replica replica replica
Paxos = . Paxos =. Paxos
Colossus: tablet tablet tablet
A distributed File System b e v | Eeewatees | et !
i Colossus Colossus I Colossus
Data Center X Data Center Y Data Center Z

Spanner provides semi-relational interface with SQL-like query
language:

e Database: Split among many zones geographically separated

e Tables : Split among many tablets replicated across data centers

e Rows: Collection of values for a variety of data columns, timestamped.
e Columns: Values from the internal key-value store.

Paxos State Machine: Participants in Paxos protocol for consistency

TrueTime

Goal: Provide globally synchronized time with sharp error
bounds, i.e. bounded uncertainty
Interval-based global time.
Do not trust synchronization via NTP Implemented using
GPS and “commaodity” atomic clocks

Method Returns

TT.now() TTinterval: [earliest, latest]
TT.after(t) true if ¢ has definitely passed
TT.before(t) || true if ¢ has definitely not arrived

* Spanner implements algorithms to make sure these guarantees are
respected by the machines (non-conformists are evicted)

— Uses a variant of Marzullo’s algorithm (estimates time from
multiple noisy sources)

— Time accuracy on the order of 10ms (avg. error bound ~4 ms)

TrueTime Architecture

GPS GPS GPS
timemaster timemaster timemaster
GPS Atomic-clock GPS
timemaster timemaster timemaster

Client
Datacenter 1 Datacenter 2 Datacenter n

Compute reference [earliest, latest] = now % €

TrueTime implementation

now = reference now + local-clock offset
£ = reference £ + worst-case local-clock drift
= 1ms + 200 ps/sec

+6ms 4

> time
Osec 30sec 60sec 90sec

What about faulty clocks? — Bad CPUs 6x more likely in 1
year of empirical data

References

Princeton - COS 418: Distributed Systems course slides by Themis
Melissaris and Daniel Suo

Spanner: Google's Globally Distributed Database by Philipp Moritz

https://youtu.be/NthK17nbpYs

https://youtu.be/NthK17nbpYs

Case Study: Amazon DynamoDB

Amazon serves millions of customers at peak time
e Require availability - “always-on” experience.
e Loss of service has financial consequences, erodes user trust

What is Dynamo?
e A Kkey-value distributed data storage system
e Emphasis on Reliability, scalability and availability
e Used in AWS - highly decentralized, loosely coupled, service oriented architecture
consisting of hundreds of services.

Dynamo Application Characteristics

“always writeable” store, no updates are rejected despite failures/concurrent writes
Single administrative domain where all nodes are assumed to be trusted.
No hierarchical namespaces (e.g file systems) or complex relational schema

(
(
(
e Latency sensitive applications (99.9% of R/W operations < few 100ms)

Usecase: Amazon DynamoDB

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability
High Availability Vector clocks with . L
) o) Version size is decoupled from update rates.
for writes reconciliation during reads
Handling : , : —_ "
Sloppy Quorum and hinted | Provides high availability and durability guarantee when
temporary . .
_ handoff some of the replicas are not available.
failures

Recovering from . .
Anti-entropy using Merkle))))
permanent A Synchronizes divergent replicas in the background.
rees
failures

Gossip-based membership | Preserves symmetry and avoids having a centralized

Membership and . . , . :
protocol and failure registry for storing membership and node liveness

failure detection _ . _
detection. information.

Dynamo uses vector clocks [12] in order to capture causality between different versions of the same
object. A vector clock is effectively a list of (node, counter) pairs. One vector clock is associated with
every version of every object. One can determine whether two versions of an object are on parallel
branches or have a causal ordering, by examine their vector clocks. If the counters on the first object’s
clock are less-than-or-equal to all of the nodes in the second clock, then the first is an ancestor of the
second and can be forgotten. Otherwise, the two changes are considered to be in conflict and require

reconciliation.
https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

Clock skews in Cassandra

Timestamps are critical for coordination in a distributed
key-value store.

But issues can arise!!

Bl 00000

11

S =R e agsgasml I=S=

D3QerouTl

Bt o ‘4;—.».-% ez | VGl | S
—

=/ —

Clock Skew, and other annoying realities in

distributed systems

http://www.youtube.com/watch?v=IjsJLTriLzs

Cassandra

* Distributed, customizable, eventually-consistent NoSQL database

* Originated at Facebook in 2008

— Currently an Apache open-source project

— ACID relational database systems were too slow

— CAP theorem: strong consistency — availability suffers

» Performance also suffers (e.g., locking, running commit protocols)

— Go with an eventually consistent model

— Built as a combination of Amazon Dynamo DHT + Google Bigtable

Cassandra Design Goals

* High availability — no single point of failure - no central coordinator « Low
latency

* Run on commodity hardware

* Linear performance increase with additional nodes

» Tunable consistency: Define replication # and policy

 Key-oriented queries

* Flexible data model: row can have different columns with different data types
» SQL-like query language (CQL - Cassandra Query Language)

Cassandra Machine
Hierarchy

Cluster
Datacenter Datacenter
Rack Rack . in e Rack Rack
Vol U Vo4 oy
N . e 5 B B 2 3 3
(@] O (@] (@] (@] O (@] O (@] (@] (@] (@)
B I Zz Nz = B e Z =z =

Cluster — Collection of machines that run Cassandra
— Nodes are arranged in a logical ring (like Chord/Dynamo) and data is replicated

« Datacenter — Machines in one location (data center)
* Rack — Machines in one rack (low latency — single switch connection)

* Node - Individual machine

Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

Row

Cassandra Data Model

Keyspace Instance of a database Column: Fundamental unit of
., storage
Table (Column Family) Collection of key/value data — { name, value, timestamp }

&

— Each column has a name (key) that

Row Primary key for row can be queried for a value - Data types
‘ (>20) include alphabetic, numeric, blob,
time, set, map

Column { key, value, timestamp }

— Timestamp enables conflict

resolution among replicas Usually
created by client — synchronized clocks
assumed

Column key

Column key Column key _
— Columns can also be given an

Column value SEEECER optional expiration timestamp (time to
live)

Primary

K Column value Column value
ey

Timestamp Timestamp

Timestamp

Column Column Column

Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

Cassandra Storage/query
Model

« A client request can go to any Cassandra node AT en

— That node will act as a coordinator for that request

— Communication uses Apache Thrift RPC / y’ \
* Dynamo/Chord style distributed hash table ‘ Client request

— Systems arranged in a logical ring -

each node responsible for a hash range Coofc‘j;:fzt
— Coordinator hashes the partition key to identify the node

— Virtual nodes, vnodes (like Dynamo)

« Each node can own a many hash ranges
» Makes it easy to alleviate hotspots and give more vnodes to more powerful nodes

— Replicas are found by following the ring clockwise

* Replica reconciliation — what happens when there are conflicts?

— Not like Dynamo's vector clocks
— Last write wins model where every mutation is timestamped (including
deletes) and then the latest version of data is the "winning" value

Figure taken from Paul Krzyzanowski’s slides. https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

https://people.cs.rutgers.edu/~pxk/417/notes/pdf/09b-cassandra-slides.pdf

Coordination Problems

http://www.youtube.com/watch?v=eSaFVX4izsQ

Creating Global State

The notions of global time and global state are closely
related

Goal: Compute, for a process, without freezing the
whole computation, the best possible approximation of a
global state [Chandy & Lamport 85]

A global state that could have occurred

No process in the system can decide whether the state did really
occur

Guarantee stable properties (i.e. once they become true, they
remain true)

What constitutes global state?

Global Snapshot = Global State

Individual state of each process in the distributed system
+

Individual state of each communication channel in the distributed system

Capture the instantaneous state of each process _
Capture the instantaneous state of each communication channel, i.e.,
messages in transit on the channels

Event Diagram

Time
ell el2 el3
Pl
e21 e22 e23 e24 e25
P2 -@
e32 e33 e34
P3 @

e31

Equivalent |

Hvent Diagram

Time
ell el2 el3
Pl
e2l e22 e23 e2 e25
P2 @
e32 e33 e34
P3 @
e31

Pl

P2

P3

P4

Rubber Band Transformation

Time

>

ell

.
4

ed1

= /\

cut

Consistent Cuts

A cut (or time slice) is a zigzag line cutting a time
diagram into 2 parts (past and future)

E is augmented with a cut event c for each process P..E" =E U
{C,..C.} -
A cut C of an event set E is a finite subset CCE: e=C A e'<e —¢€’
=C
AcutC, is later than C, if C,=2C,
A consistent cut C of an event set E is a finite subset CCE : e=C
N\ e'<e —-e’' €C

i.e. a cut is consistent if every message received was previously sent
(but not necessarily vice versa!)

Cuts (Summary)

Instant of local
observation

-
®
-

Time

L
5 8
.—Z
initial o
value 2 B
5 2 3 7
4
1
Pl @ ri
s T 4 T 0
ideal consistent inconsistent
(vertical) cut cut
cut /
not attainable equivalent to a vertical cut can’t be made vertical

(rubber band transformation)

(message from the future)

Consistent Cuts

Some Theorems
For a consistent cut consisting of cut events c,...,c_, no
pair of cut events is causally related. i.e Vci,cj ~(C< cj)
A ~(c<c)

For any time diagram with a consistent cut
consisting of cut events c,...,c , there is an
equivalent time diagram where c,...,c_occur
simultaneously. i.e. where the cut line forms a

straight vertical line
All cut events of a consistent cut can occur
simultaneously

Global States of Consistent Cuts

The global state of a distributed system is a collection of
the local states of the processes and the channels.

A global state computed along a consistent cut is correct

The global state of a consistent cut comprises the local
state of each process at the time the cut event happens
and the set of all messages sent but not yet received

The snapshot problem consists in designing an efficient
protocol which yields only consistent cuts and to collect
the local state information

Messages crossing the cut must be captured

Chandy & Lamport presented an algorithm assuming that message
transmission is FIFO

System Model for Global
Snapshots

The system consists of a collection of n processes p1,
p2, ..., pn that are connected by channels.
T

nere are no globally shared memory and physical
global clock and processes communicate by passing
messages through communication channels.

C. denotes the channel from process pi to process pj
and its state is denoted by SC; -

The actions performed by a process are modeled as
three types of events:

Internal events,the message send event and the message
receive event.

For a message mij that is sent by process pi to process pj , let
send(mij) and rec(mij) denote its send and receive events.

Process States and Messages
in transit

At any instant, the state of process pi , denoted by LSi , is a result
of the sequence of all the events executed by pi till that instant.

For an event e and a process state LSi , e=LSi iff e belongs to the
sequence of events that have taken process pi to state LSi .

For an event e and a process state LSi, e (not in) LSi iff e does not

belong to the sequence of events that have taken process pi to
state LSi .

For a channel Cij , the following set of messages can be defined
based on the local states of the processes pi and pj

Transit: transit(LSi , LSj) = {mij |send(mij) € LSi V
rec(mij) (not in) LSj }

Distributed Global Snapshot:
Requirements

Snapshot should not interfere with normal application actions, and it
should not require application to stop sending messages
Each process is able to record its own state
Process state: Application-defined state or, in the worst case:
its heap, registers, program counter, code, etc. (essentially the
coredump)
Global state is collected in a distributed manner
Any process may initiate the snapshot
Assume just one snapshot run for now

Chandy-Lamport Distributed
Snapshot Algorithm

Assumes FIFO communication in channels

Uses a control message, called a marker to separate messages in
the channels.

After a site has recorded its snapshot, it sends a marker, along all of its
outgoing channels before sending out any more messages.

The marker separates the messages in the channel into those to be
included in the snapshot from those not to be recorded in the
snapshot.
A process must record its snapshot no later than when it receives a
marker on any of its incoming channels.

The algorithm terminates after each process has received a marker
on all of its incoming channels.

All the local snapshots get disseminated to all other processes and
all the processes can determine the global state.

Chandy-Lamport Distributed
Snapshot Algorithm

If (P1 has not yet recorded its state) it
records its process state now
records the state of ¢ as the empty set
turns on recording of messages arriving over other channels
else
Pi records the state of ¢ as the set of messages received over ¢
since it saved its state

After P1 has recorded its state, for each outgoing channel c:
Pi sends one marker message over ¢
(before 1t sends any other message over c)

Computing Global States
without FIFO Assumption

In a non-FIFO system, a marker cannot be used to
delineate messages into those to be recorded in the
global state from those not to be recorded in the
global state.

In a non-FIFO system, either some degree of
inhibition or piggybacking of control information on
computation messages to capture out-of-sequence
messages.

Lai-Yang Algorithm (uses coloring)
Mattern’s Algorithm (uses vector-clocks)

Distributed Snapshots - Flink

The Power of Snapshots

https://www.infog.com/presentations/distributed-st _
ream-processing-flink/ Stateful Stream Processing

with Apache Flink

Stephan Ewen
dataArtisans

QCon San Francisco, 2017

Apache Flink in a Nutshell

Stateful computations over streams
real-time and historic
fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once

Queries Application

Applications svearns < [N () /v
= \ /v % Database
Devices % — 5
/ i l I I l Stream

etc Historic -
| | 6%%
% % % File / Object

Storage

J

https://www.infoq.com/presentations/distributed-stream-processing-flink/
https://www.infoq.com/presentations/distributed-stream-processing-flink/

Apache Flink

Stream (low latency)

\

pE——
(Bratapation M EEEE E EEEEE EE mmm un)
(Buatka partiton HH H H B EE EH JEE EEE EEE|)

.
J a?as-:;qj a?sg-:,;:J a%%:r;:nj Jl a%:a-:nj 2?135,;;j 23135z;j 223&;2;1j (Streaming + Batch
7 Workloads)
\ Batch

ream (high latency) (bounded stream)

—) —
oo o} c D g
{= 7] c = v
a o3 s 3 o3
S = 3 8 | &3
S <& g & <
» Q. o 2 < o
@ = D S 2 £ > £ 9
T &g 2= £8 3T& B/
= 2 r& T 006 F&
2
o3
@ DataStream API DataSet API
% Stream Processing Batch Processing
‘ — (Flink Component Stack)
o Distributed Streaming Dataflow
)
T& Standalone YARN Mesos Kubernetes
a

Snapshots with operator
graphs in Apache Flink

goto; -

; 3 2 :fj’

o

O

http://www.youtube.com/watch?v=DkNeyCW-eH0

Snapshots: Cassandra Clusters

101.202.203.113

101.202.203.112 101.202.203.107

Clusters use snapshots for fault
tolerance

101.202.203.111

101.202.203.110 101.202.203.109

One of our customers was running a 17 node cassandra cluster (DSE) on
AWC EC2 and we had to come up with a backup strategy for it. The
customer was running a fairly large environment with multiple application
servers running across availability zones and we also had to automate EBS
) snapshots for them.

Cassandra Snapshot, Clone, Time-

tr avel DSE was deployed using the default placement

strategy(NetworkTopologyStrategy) with a replication factor of 2. While

Take unlimited cluster snapshots

o we automated EBS snapshots for all the instances using awesome script
Restore or refresh a cluster to any point-in-time using snapshots

available at AWS missing tools and it is a multi datacenter deployment with

Robin Hyper-Converged Kubernetes Platform provides out of the box support for applicationtime replication enabled, we can neither rely on volume snapshots for
travel. Cluster level distributed snapshots at pre-defined intervals can be really useful to restore

o . A transactionally consistent backups nor can replication take care of
the entire pipeline or parts of it if anything goes wrong.

Robin Systems recommends admins to take snapshots before making any major changes. Whether
you are upgrading the software version or making a configuration change make sure to have a
snapshot. If anything goes wrong the entire cluster can be restored to the last known snapshotin a

More Snapshot Algorithms

Computing Global States without
FIFO Assumption - Lai-Yang Algorithm

Uses a coloring scheme that works as follows
White (before snapshot); Red (after snapshot)

Every process is initially white and turns red while taking a
snapshot. The equivalent of the “"Marker Sending Rule”
(virtual broadcast) is executed when a process turns red.

Every message sent by a white (red) process is colored
white (red).
Thus, a white (red) message is a message that was sent

before (after) the sender of that message recorded its local
snapshot.

Every white process takes its snapshot at its convenience,
but no later than the instant it receives a red message.

Computing Global States without
FIFO Assumption -
Lai-Yang Algorithm (cont.)

Every white process records a history of all white
messages sent or received by it along each channel.

When a process turns red, it sends these histories
along with its snapshot to the initiator process that
collects the global snapshot.

Determining Messages in transit (i.e. White messages
received by red process)
The initiator process evaluates transit(LSi, LSj) to compute
the state of a channel Cij as given below:
SCij = {white messages sent by pi on Cij —
white messages received by pj on Cij}
= { send (Mij)|send(mij) €LSi} — {rec(mij)| rec(mij)=LS;j}.

Computing Global States without
FIFO Assumption: Termination

First method

Each process I keeps a counter cntri that indicates the difference
between the number of white messages it has sent and received
before recording its snapshot, i.e number of messages still in transit.

It reports this value to the initiator along with its snapshot and
forwards all white messages, it receives henceforth, to the initiator.

Snapshot collection terminates when the initiator has received
2i cntri number of forwarded white messages.

Second method

Each red message sent by a process piggybacks the value of the
number of white messages sent on that channel before the local

state recording. Each process keeps a counter for the number of
white messages received on each channel.

Termination — Process receives as many white messages on each
channel as the value piggybacked on red messages received on that
channel.

Computing Global States without
FIFO Assumption: Mattern’s Algorithm

Uses Vector Clocks

All process agree on some future virtual time s or a set of virtual
time instants s,,...s which are mutually concurrent and did not
yet occur

A process takes its local snapshot at virtual time s
After time s the local snapshots are collected to construct a
global snapshot

P. ticks and then fixes its next time s=C. +(0,...,0,1,0,...,0) to be the
common snapshot time

P. broadcasts s
P. blocks waiting for all the acknowledgements

P ticks again (setting C.=s), takes its snapshot and broadcast a
dummy message (i.e. force everybody else to advance their clocks
to a value > s)

Each process takes its snapshot and sends it to P, when its local
clock becomes = s

Computing Global States without
FIFO Assumption (Mattern cont)

Inventing a n+1 virtual process whose clock is managed
by P.
P. can use its clock and because the virtual clock C_,
ticks only when P. initiates a new run of snapshot :

The first n components of the vector can be omitted

The first broadcast phase is unnecessary

Counter modulo 2
Termination

Distributed termination detection algorithm [Mattern 87]

