
Middleware for Communication
and Messaging

CS 237
Distributed Systems
Middleware (with slides from
Tanenbaum and Van Steen book ,
Cambridge Univ and Petri Maaranen)

Traditional networking stack

For distributed systems

Communication Types

Synchronous vs. Asynchronous communication

When to synchronize?

Communication Types

Remote Procedure Calls (RPC)
● Basis of client/server systems

● 80’s - Birrell and Nelson
● General message passing

model for execution of remote
functionality.

● Provides programmers with a
familiar mechanism for building
distributed applications/systems

● Familiar semantics (similar to
LPC)
● Simple syntax, well defined

interface, ease of use,
generality and IPC between
processes on same/different
machines.

● It is generally synchronous
● Can be made asynchronous by

using multi-threading

Caller
Process

Request Message
(contains Remote
Procedure’s parameters) Receive

request
(procedure
executes)

Send reply and
wait
For next messageResume

Execution
Reply Message
(contains result of procedure

execution)

Callee
Process

RPCs

P1

int f1()

main()

int f2()

P2

int f2()

LPC

LPC

RPC request message

Host A

RPC reply message

LPC vs. RPC

Host B

P1

int f1()

main()

int f2()

P2

int f2()

LPC

LPC

RPC

Host A

RPC Call Semantics

8

Achieving exactly the same semantics for LPC and RPC is hard

● Disjoint address spaces
● Consumes more time (due to communication delays)
● Failures (hard to guarantee exactly-once semantics)

○ Function may not be executed if
■ Request (call) message is dropped
■ Reply (return) message is dropped
■ Called process fails before executing called function
■ Called process fails after executing called function
■ Hard for caller to distinguish these cases

○ Function may be executed multiple times if request (call)
message is duplicated

RPC Challenges

RPC Needs :Syntactic and Semantic
Transparency

● Resolve differences in data representation (CDR)
● Support multi-threaded programming
● Provide good reliability
● Provide independence from transport protocols
● Ensure high degree of security
● Locate required services across networks
● Support a variety of execution semantics

● At most once semantics (e.g., Java RMI)
● At least once semantics (e.g., Sun RPC)
● Maybe, i.e., best-effort (e.g., CORBA)

Implementing RPC - Mechanism

● Uses the concept of stubs; A perfectly normal LPC
abstraction by concealing from programs the interface
to the underlying RPC

● Involves the following elements
● The client, The client stub
● The RPC runtime
● The server stub, The server

RPC – How it works II

client

procedure call

client stub

locate
(un)marshal
(de)serialize

send (receive)

co
m

m
un

ic
at

io
n

m
od

ul
e

co
m

m
un

ic
at

io
n

m
od

ul
e

server

procedure

server stub

(un)marshal
(de)serialize

receive (send)

dispatcher

selects stub

client process server process

Wolfgang Gassler, Eva Zangerle

RPC - Steps

● Client procedure calls the client stub in a normal way
● Client stub builds a message and traps to the kernel
● Kernel sends the message to remote kernel
● Remote kernel gives the message to server stub
● Server stub unpacks parameters and calls the server
● Server computes results and returns it to server stub
● Server stub packs results in a message and traps to kernel
● Remote kernel sends message to client kernel
● Client kernel gives message to client stub
● Client stub unpacks results and returns to client

• Different architectures use different ways
of representing data
– Big endian: Hex 12-AC-33 stored

with 12 in lowest address, then AC in
next higher address, then 33 in
highest address

• IBM z, System 360
– Little endian: Hex 12-AC-33 stored

with 33 in lowest address, then AC in
next higher address, then 12

• Intel
• Caller (and callee) process uses its own

platform-dependent way of storing data

Marshalling

14

RPC - Marshalling and
Unmarshalling

• Middleware has a common data
representation (CDR)
– Platform-independent

• Caller process converts
arguments into CDR format
– Called “Marshalling”

• Callee process extracts
arguments from message into its
own platform-dependent format
– Called “Unmarshalling”

• Return values are marshalled on
callee process and unmarshalled
at caller process

RPC - binding
● Static binding

● hard coded stub
● Simple, efficient
● not flexible

● stub recompilation necessary if the location of the server
changes

● use of redundant servers not possible

● Dynamic binding
● name and directory server

● load balancing
● IDL used for binding
● flexible
● redundant servers possible

RPC - dynamic binding

client

procedure call

client stub
bind

(un)marshal
(de)serialize

Find/bind
send

receive

co
m

m
un

ic
at

io
n

m
od

ul
e

co
m

m
un

ic
at

io
n

m
od

ul
e

server

procedure

server stub
register

(un)marshal
(de)serialize

receive
send

dispatcher

selects stub

client process server process

name and directory server

2

4

5 6

7

8

9

1

12

11 10

12

13

12

3

Wolfgang Gassler, Eva Zangerle

How Stubs are Generated

● Through a compiler
● e.g. DCE/CORBA IDL – a purely declarative language
● Defines only types and procedure headers with familiar syntax

(usually C)
● It supports

● Interface definition files (.idl)
● Attribute configuration files (.acf)

● Uses Familiar programming language data typing
● Extensions for distributed programming are added

RPC - IDL Compilation - result

client code

language specific
call interface

client stub

client process server process

server code

server stub

language specific call
interface

development
environment

IDL

IDL
sources

IDL
compiler

interface
headers

Wolfgang Gassler, Eva Zangerle

RPC in Practice...

RPC NG: DCOM & CORBA

● Object models allow services and functionality to be
called from distinct processes

● DCOM/COM+(Win2000) and CORBA IIOP extend this to
allow calling services and objects on different machines

● More OS features (authentication,resource
management,process creation,…) are being moved to
distributed objects.

Sample RPC Middleware
Products
● JaRPC (NC Laboratories)

● libraries and development system provides the tools to develop ONC/RPC and extended .rpc Client and Servers in
Java

● powerRPC (Netbula)
● RPC compiler plus a number of library functions. It allows a C/C++ programmer to create powerful ONC RPC

compatible client/server and other distributed applications without writing any networking code.

● Oscar Workbench (Premier Software Technologies)
● An integration tool. OSCAR, the Open Services Catalog and Application Registry is an interface catalog. OSCAR

combines tools to blend IT strategies for legacy wrappering with those to exploit new technologies (object oriented,
internet).

● NobleNet (Rogue Wave)
● simplifies the development of business-critical client/server applications, and gives developers all the tools

needed to distribute these applications across the enterprise. NobleNet RPC automatically generates client/server
network code for all program data structures and application programming interfaces (APIs)— reducing development
costs and time to market.

● NXTWare TX (eCube Systems)
● Allows DCE/RPC-based applications to participate in a service-oriented architecture. Now companies can use J2EE,

CORBA (IIOP) and SOAP to securely access data and execute transactions from legacy applications. With this
product, organizations can leverage their current investment in existing DCE and RPC applications

http://www.nc-labs.com/
http://www.netbula.com/
http://www.premiersoft.com/
http://www.roguewave.com/
http://www.ecubesystems.com/

RPC - Extensions

● conventional RPC: sequential
execution of routines

● client blocked until response of server
● asynchronous RPC – non blocking
● client has two entry points(request and

response)
● server stores result in shared memory
● client picks it up from there

RPC servers and protocols…

● RPC Messages (call and reply messages)
● Server Implementation

● Stateful servers
● Stateless servers

● Communication Protocols
● Request(R)Protocol
● Request/Reply(RR) Protocol
● Request/Reply/Ack(RRA) Protocol

• Idempotent operations - can be repeated multiple times, without any side effects
• Examples (x is server-side variable)

– x=1;

• Non-examples
– x=x+1;
– x=x*2

Some recent views on RPC

● Convenience over
correctness?
http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf

● Time to retire RPC?

Video: Mythbusting Remote Procedure Calls

New messaging formats
-- Google ProtoBuf, Apache Thrift (Facebook)

http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf

25

Message-Oriented Middleware (MOM)
● Software infrastructure to support communication using messages
● Message brokers/ servers decouple client and server

● Messages stored in message queues - asynchronous
persistent communication

● Various assumptions about message content
● Developers agnostic to underlying details of OS/network protocols.

Client App.

local message
queues

Server App.

local message
queues

message
queues

Network Network Network

Message Servers

Middleware

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

26

Properties of MOM
Asynchronous interaction

● Client and server are only loosely coupled
● Messages are queued
● Good for application integration

Support for reliable delivery service
● Keep queues in persistent storage

Processing of messages by intermediate message server(s)
● May do filtering, transforming, logging, …

Natural for database integration

Middleware

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

Introducing message brokers

TJTST21 Spring 2006 28

TJTST21 Spring 2006 29

TJTST21 Spring 2006 30

Message-Oriented Middleware
Message Brokers

• A message broker is a software system based
on asynchronous, store-and-forward messaging.
• It manages interactions between applications
and other information resources, utilizing
abstraction techniques.
• Simple operation: an application puts (publishes)
a message to the broker, another application
gets (subscribes to) the message. The
applications do not need to be session
connected.

TJTST21 Spring 2006 31

(Message Brokers, MQ)

• MQ is fairly fault tolerant in the cases of
network or system failure.
• Most MQ software lets the message be declared
as persistent or stored to disk during a commit at
certain intervals. This allows for recovery on
such situations.
• Each MQ product implements the notion of
messaging in its own way.
• Widely used commercial examples include IBM’s
MQSeries and Microsoft’s MSMQ.

TJTST21 Spring 2006 32

TJTST21 Spring 2006 33

Message Brokers

● Any-to-any
The ability to connect diverse applications and other
information resources
– The consistency of the approach
– Common look-and-feel of all connected resources
• Many-to-many
– Once a resource is connected and publishing
information, the information is easily reusable by any
other application that requires it.

TJTST21 Spring 2006 34

Standard Features of
Message Brokers

• Message transformation engines
– Allow the message broker to alter the way
information is presented for each application.

• Intelligent routing capabilities
– Ability to identify a message, and an ability to
route them to appropriate location.

• Rules processing capabilities
– Ability to apply rules to the transformation and

routing of information.

TJTST21 Spring 2006 35

TJTST21 Spring 2006 36

Enterprise Service Buses

● MOMs -> Message brokers -> ESB
● ESB (Enterprise Service Buses)

● Wikipedia
● “ a software architecture model used for designing and implementing

communication between mutually interacting software applications in a
service-oriented architecture (SOA)”

● abstraction layer on top of a messaging system

TJTST21 Spring 2006 37

Vendors
● Adea Solutions[2]: Adea ESB Framework
● ServiceMix[3]: ServiceMix (Apache) Synapse (Apache Incubator)
● BEA: AquaLogic Service Bus
● BIE: Business integration Engine
● Cape Clear Software: Cape Clear 6
● Cordys ESB
● Fiorano Software Inc.Fiorano Software Inc. Fiorano ESB™ 2006
● IBMWebSphere Platform (specifically WebSphere Message Broker or WebSphere ESB)
● IONA Technologies Artix
● iWay Software: iWay Adaptive Framework for SOA
● Microsoft .NET
● Microsoft BizTalk Server
● ObjectWeb
● Celtix (Open Source, LGPL)
● Oracle: Oracle Integration products
● Petals Services Platform: EBM WebSourcing & Fossil E-Commerce (Open Source)
● PolarLake: Integration Suite
● LogicBlaze: ServiceMix ESB (Open Source, Apache Lic.)
● Sonic Software: Sonic ESB
● SymphonySoft Mule (Open Source)
● TIBCO Software
● Virtuoso Universal Server
● webMethods: webMethods Fabric

http://www.adeasolutions.com/
http://www.servicemix.org/
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Bea&gwp=8&curtab=2222_1
http://www.brunswickwdi.com/bie
http://www.capeclear.com/
http://www.cordys.com/en/Products/Cordys_ESB_overview.htm
http://www.fiorano.com/
http://www.fiorano.com/products/fesb/fioranoesb.htm
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=IBM&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=WebSphere&gwp=8&curtab=2222_1
http://www.iona.com/
http://www.iona.com/products/artix/welcome.htm
http://www.iwaysoftware.com/
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Microsoft&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=.NET+Framework&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Microsoft+BizTalk+Server&gwp=8&curtab=2222_1
http://celtix.objectweb.org/
http://celtix.objectweb.org/
http://www.oracle.com/solutions/integration/index.html
http://petals.objectweb.org/
http://www.polarlake.com/
http://www.servicemix.org/
http://www.sonicsoftware.com/
http://www.symphonysoft.com/
http://mule.codehaus.org/
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=TIBCO+Software&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Virtuoso+Universal+Server&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=WebMethods&gwp=8&curtab=2222_1

38

IBM MQSeries
● One-to-one reliable message passing using queues

● Persistent and non-persistent messages
● Message priorities, message notification

● Queue Managers
● Responsible for queues
● Transfer messages from input to output queues
● Keep routing tables

● Message Channels
● Reliable connections between queue managers

● Messaging API:
MQopen Open a queue
MQclose Close a queue
MQput Put message into opened queue
MQget Get message from local queueMiddleware

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

39

Java Message Service (JMS)
● Java API specification to access MOM implementations
● Two modes of operation *specified*:

● Point-to-point one-to-one communication using queues

● Publish/Subscribe Event-Based Middleware

● JMS Server implements JMS API, JMS Clients connect to JMS servers
● Java objects can be serialised to JMS messages

● A JMS interface has been provided for MQ, pub/sub spec

Middleware

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

Amazon Simple Queue Service

https://www.youtube.com/watch?v=XrX7rb6M3jw

https://www.youtube.com/watch?v=XrX7rb6M3jw

3.20.0 / 25 March 2022; 20 days ago[2]

https://en.wikipedia.org/wiki/Protocol_Buffers

Comparing messaging formats

44

Disadvantages of MOM
� Poor programming abstraction (but has evolved)

• Rather low-level
• Request/reply more difficult to achieve, but can be done

� Message formats originally unknown to middleware
• No type checking (JMS addresses this – implementation?)

� Queue abstraction only gives one-to-one communication
• Limits scalability (JMS pub/sub – implementation?)

Middleware

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

Generalizing
communication

● Publish-subscribe systems
● A form of asynchronous messaging

● Group communication
● Synchrony of messaging is a critical issue

Publish/Subscribe Communication
in distributed systems

Nalini Venkatasubramanian
(with slides from Roberto Baldoni, Pascal
Felber, Arno Jacobsen, Hojjat Jafarpour etc.)

Wide Range of Applications

At the heart of several such systems are publish subscribe
architectures

Notification systems are prevalent

Socialization and
Entertainment

Alert, Rescue and Relief
operation

Communication, Administration,
Regulatory Compliance

Situational
Awareness

Transportation,Delivery
Service

Hojjat Jafarpour 48

Publish/Subscribe (pub/sub) systems

Pub/Sub Service

Stock (Name=‘IBM’; Price < 100 ; Volume>10000)

Stock (Name=‘IBM’; Price < 110 ; Volume>10000)

Stock (Name=‘HP’; Price < 50 ; Volume >1000)

Football(Team=‘USC’; Event=‘Touch Down’)

Stock (Name=‘IBM’; Price =95 ; Volume=50000)

Stock (Name=‘IBM’; Price =95 ; Volume=50000)

Stock (Name=‘IBM’; Price =95 ; Volume=50000)

■ What is Publish/Subscribe (pub/sub)?
• Asynchronous communication
• Selective dissemination
• Push model, physical separation
• Decoupling publishers and subscribers (time, space)

Hojjat Jafarpour 49

Publish/Subscribe (pub/sub) systems

● Applications:
● Alerting Services
● Online stock quotes
● Internet games
● Sensor networks
● Location-based services
● Network management
● Internet auctions
● Surveillance and monitoring
● Business process

Management
● IoT workflows

Sample Pub-Sub Protocols/Brokers

https://www.slideshare.net/PeterHanzlik

Pub/Sub vs. Database Queries

The Pub/Sub Matching Problem

Matching Problem - Dimensions

Scalable Publish/Subscribe Architectures & Algorithms — P. Felber 54

Publish/subscribe architectures

● Centralized
● Single matching engine
● Limited scalability

● Broker overlay
● Multiple P/S brokers
● Participants connected to

some broker
● Events routed through

overlay
● Peer-to-peer

● Publishers & subscribers
connected in P2P network

● Participants collectively
filter/route events, can be
both producer & consumer

● …….

Types of pub/sub

Two main forms
● Topic-Based Publish Subscribe [Oki73]

○ events are divided in topics
○ subscribers subscribe for a single topic

● Content-Based Publish Subscribe [Carz2001]
○ subscriptions are generic SQL-like queries on the event

schema

Other forms
● Channel Based Pub/sub
● Type based pub/sub - type as a discriminating attribute, notifications are

objects

Topic-Based Pub/Sub

● Event space is divided into topics, corresponding to logical
channels

● Topics may be organized in a tree/hierarchy
● Participants subscribe for a topic and publish on a topic
● Receivers for an event are known a priori
● Channel = Group

○ can exploit network-level multicast, group communication
● Limited expressiveness

Content-Based Pub/Sub

● Cannot determine recipients before
publication occurs, Receivers
calculated for each event being
published

● Flexible, general
● Difficult to implement

Distributed pub/sub
systems

● Broker – based pub/sub
● A set of brokers forming an overlay

● Clients use system through brokers

●Benefits
• Scalability, Fault tolerance, Cost efficiency

Dissemination
Tree

Distributed Content-Based Pub/Sub

● Network of publish/subscribe brokers
● Subscriptions & publications are injected into network at

closest edge broker
● Routing protocol distributes subscriptions throughout network
● Network routes relevant publications to interested subscribers
● Routing is based on content; it is not based on addresses,

which are not available
● Subscriptions may change dynamically

60

Challenges in distributed
pub/sub systems

Broker overlay architecture
• How to form the broker network
• How to route subscriptions and
publications

Broker internal operations
• Subscription management

• How to store subscriptions in
brokers

• Content matching in brokers
• How to match a publication
against subscriptions

Broker Responsibility
Subscription Management
Matching: Determining the recipients for an event
Routing: Delivering a notification to all the recipients

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,

2005 61

EVENT vs SUBSCRIPTION
ROUTING

● Extreme solutions
● Sol 1 (event flooding)
● flooding of events in the notification event box
●each subscription stored only in one place within the

notification event box
●Matching operations equal to the number of brokers

● Sol 2 (subscription flooding)
● each subscription stored at any place within the

notification event box
●each event matched directly at the broker where the

event enters the notification event box

Other routing solutions

● Identify as soon as possible events that
are not interesting for any subscriber
and arrest their diffusion

● Requires routing info to be maintained
at brokers - set of filters (aggregate of
subscriptions) that are reachable
through that broker

Major distributed pub/sub
approaches

● Tree-based
● Brokers form a tree overlay [SIENA, PADRES, GRYPHON]

● DHT-based:
● Brokers form a structured P2P overlay [Meghdoot, Baldoni et al.]

● Channel-based:
● Multiple multicast groups [Phillip Yu et al.]

● Probabilistic:
● Unstructured overlay [Picco et al.]

63

64

Tree-based
● Brokers form an acyclic graph
● Subscriptions are broadcast to all brokers
● Publications are disseminated along the tree with

applying subscriptions as filters

65

Tree-based
● Subscription dissemination load reduction

● Subscription Covering
● Subscription Subsumption

● Publication matching
● Index selection

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,

2005 66

Pub/Sub Sysems: Tib/RV
[Oki et al 03]

● Topic Based
● Two level hierarchical architecture of

brokers (deamons) on TCP/IP
● Event routing is realized through one

diffusion tree per subject
● Each broker knows the entire network

topology and current subscription
configuration

67

3

2

4

8

1

7

6

5

9

SIENA Filtering-Based Routing
Subscription Forwarding

a

s1: price > 600
s1:a

s1:1

s1:2

s1:3

s1:2

s1:6

s1:3

s1:1

s1:5

MINEMA Summer School - Klagenfurt (Austria) July 11-15, 2005 (cf. Baldoni)

MINEMA Summer School - Klagenfurt (Austria) July 11-15, 2005 (cf. Baldoni)
68

3

2

4

8

7

6

5

9

SIENA Filtering-Based Routing
Subscription Merging

s1:1

s1:2

s1:6

s1:3

s1:1

s2: price > 700

b

s1:3

s1:2

s1:5

s1:1
s2:5

s1:2
s2:8

s1:5
s2:b

a

s1 covers s2

1

s1 covers s2

s1:as1:a
s2:2

69

3

2

4

8

1

7

6

5

9

SIENA Filtering-Based Routing
Notification Delivery

b

s1:1
s2:5

s1:2

s1:6

s1:3

s1:1
s1:3

s1:2
s2:8

a s1:a
s2:2

s1:5
s2:b

n1 matches s1
n1 matches s2

n1:
price = 899

MINEMA Summer School - Klagenfurt (Austria) July 11-15, 2005 (cf. Baldoni)

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,

2005 70

Pub/Sub systems: Gryphon
[IBM 00]

● Content based
● Hierarchical tree from publishers to

subscribers
● Filtering-based routing
● Mapping content-based to network level

multicast

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,

2005 71

DHT Based Pub/Sub:
SCRIBE [Castro et al. 02]

● Topic Based
● Based on DHT (Pastry)
● Rendez-vous event routing
● A random identifier is assigned to each

topic
● The pastry node with the identifier closest

to the one of the topic becomes
responsible for that topic

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,

2005 72

DHT-based pub/sub
MEGHDOOT

● Content Based
● Based on Structured Overlay CAN
● Mapping the subscription language and

the event space to CAN space
● Subscription and event Routing exploit

CAN routing algorithms

73

Fault-tolerant Pub/Sub
● Brokers are clustered
● Each broker knows all brokers in

its own cluster and at least one
broker from every other cluster

● Subscriptions are broadcast
within clusters

● Every broker maintains
subscriptions from brokers in the
same cluster

● Subscription aggregation is done
based on brokers

74

Fault-tolerant Pub/Sub

● Broker overlay
● Join
● Leave
● Failure

● Detection
● Masking
● Recovery

● Load Balancing
● Ring publish load
● Cluster publish load
● Cluster subscription load

Google Cloud Pub/Sub

Customized content
delivery with pub/sub

Hojjat Jafarpour

CCD: Efficient Customized
Content Dissemination in

Distributed Pub/Sub 78

Español
Español!!!

Customize content
to the required
formats before

delivery!

Hojjat Jafarpour

CCD: Efficient Customized
Content Dissemination in

Distributed Pub/Sub 79

Motivation
Leveraging pub/sub framework for dissemination of rich content
formats, e.g., multimedia content.

Same content
format may not be
consumable by all

subscribers!!!

Hojjat JafarpourCCD: Efficient Customized Content Dissemination in Distributed Pub/Sub

80

Challenges: Content customization

How is content customization done?
●Through Adaptation operators

Original content
Size: 28MB

Low resolution and small
content suitable for
mobile clients
Size: 8MB

Transcoder
Operator

● How can customization be implemented in a
distributed pub/sub system?

Hojjat Jafarpour CCD: Efficient Customized Content Dissemination in Distributed Pub/Sub
81

Challenges
Option 1: Perform all the required customizations in the sender broker

28MB

28MB 28MB15MB12MB8MB

8MB

8MB 8MB

15MB

28+12+8 = 48MB 28+12+8 = 48MB

12MB8MB

Hojjat Jafarpour 82

Challenges
● Option 2: Perform all the required customization in the proxy brokers (leaves)

28MB

28MB 28MB15MB12MB8MB

8MB

8MB 8MB

15MB

28MB 28MB

28MB

Repeated
Operator

Hojjat Jafarpour 83

Challenges
● Option 3: Perform all the required customization in the broker overlay network

28MB

28MB 28MB15MB12MB8MB

8MB

8MB 8MB

15MB

84

Example: In network
customization of notifications

Super Peer Network

2230

1330

2130

0130

1130

2330

2330

1230

1030

3130

0330

1130

2130

1130

Publisher
of C

RP Peer
for C

[(Shelter Information,
Irvine, School),
(English,Text)]

[(Shelter
Information,

Irvine, School),
(English,Text)]

[(Shelter Info, Santa Ana,
School),(Spanish,Voice)]

Speech
to text

Speech
to text

Translation

Hojjat Jafarpour

CCD: Efficient Customized
Content Dissemination in

Distributed Pub/Sub 85

DHT-based pub/sub
● DHT-based routing schema, e,g. Tapestry

Rendezvous
Point

86

Example using DHT based
pub-sub

● Tapestry (DHT-based) pub/sub and routing
framework
● Event space is partitioned among peers

● Single content matching
● Each partition is assigned to a peer (RP)
● Publications and subscriptions are matched in RP

● All receivers and preferences are detected after matching
● Content dissemination among matched subscribers

are done through a dissemination tree rooted at RP
where leaves are subscribers.

87

Super Peer Network

2230

1330

2130

0130

1130

2330

2330

1230

1030

3130

0330

1130

2130

1130

Publisher
of C

RP Peer
for C

[(Shelter Information,
Irvine, School),
(English,Text)]

[(Shelter
Information,

Irvine, School),
(English,Text)]

[(Shelter Info, Santa
Ana,

School),(Spanish,Voic
e)]

Speech
to text

Translation

Example: In network
customization of notifications

88

Super Peer Network

2230

1330

2130

0130

1130

2330

2330

1230

1030

3130

0330

1130

2130

1130

Publisher
of C

RP Peer
for C

[(Shelter Information,
Irvine, School),
(English,Text)]

[(Shelter
Information,

Irvine, School),
(English,Text)]

[(Shelter Info, Santa
Ana,

School),(Spanish,Voic
e)]

Speech
to text

Translation

Example: In network
customization of notifications

Videos..

Twitter experiences
https://www.youtube.com/watch?v=zwo3ipH4LZU

https://www.youtube.com/watch?v=zwo3ipH4LZU

Enriched and customized notification systems are needed

Enriched, actionable and customized notifications:
o Customized notifications, e.g., nearby traffic and road

conditions, etc.
o Enriched notifications: maps, pictures, videos, shelter

locations, alternate routes, etc.
Population scale and active notification systems:
o Accommodate a large-scale workload, many end-users
o Allow users to subscribe and provide active data

delivery

Subways were shutdown

Most cars were stuck

Buses were able to operate at
90%

Scalable data ingestion
and processing

Scalable data
delivery

“PetaBytes to
MegaFolks

in Millisecond
s”

Big Data Publish Subscribe Systems – Pub/Sub
Paradigms Based on Big Data

Next Generation Notification Systems

Big Data Pub Sub

BDPS: Enriched Publications and Subscriptions

BDPS - How do we enrich and scale at BDMS?

BDPS : Support for scaling in distributed Broker
Network

BDPS: Information Flow and components

Guest Lecture

Data Distribution Service (DDS)
from RTI Inc.

Guest Speaker: Dr. Kyle Benson

Student lecture

Kafka presentation

KSQL and ksqlDB

KSQL
● an open source streaming SQL engine that enables

continuous, interactive queries on Apache Kafka
● continuously transforms streams of data -- take existing

Apache Kafka® topics and filter, process them to create
new derived topics

ksqlDB : integrates traditional database-
like lookups on top of these materialized
tables of data.

https://www.confluent.io/ksql

Videos..

Twitter experiences
https://www.youtube.com/watch?v=zwo3ipH4LZU

https://www.youtube.com/watch?v=zwo3ipH4LZU

EXTRA SLIDES

Group Communication

● Communication to a collection of processes – process group
● Group communication can be exploited to provide

● Simultaneous execution of the same operation in a group of
workstations

● Software installation in multiple workstations
● Consistent network table management

● Who needs group communication ?
● Highly available servers
● Conferencing
● Cluster management
● Distributed Logging….

Group communication - Types

● Peer
● All members are equal
● All members send messages to the group
● All members receive all the messages

● Client-Server
● Common communication pattern

● replicated servers
● Client may or may not care which server answers

● Diffusion group
● Servers sends to other servers and clients

● Hierarchical
● Highly and easy scalable

Svrs Clients

Message Passing Basics

● A system is said to be asynchronous if there is no fixed upper
bound on how long it takes a message to be delivered or how much
time elapses between consecutive steps

● Point-to-point messages
● sndi(m)
● rcvi(m,j)

● Group communication
● Broadcast

● one-to-all relationship
● Multicast

● one-to-many relationship
● A variation of broadcast where an object can target its messages to a

specified subset of objects

Using Traditional
Transport Protocols

● TCP/IP
●Automatic flow control, reliable delivery,

connection service, complexity
• linear degradation in performance

● Unreliable broadcast/multicast
●UDP, IP-multicast - assumes h/w support
●message losses high(30%) during heavy load

• Reliable IP-multicast very expensive

Group Communication
Issues

● Ordering
● Delivery Guarantees
● Membership
● Failure

Ordering Service

● Unordered
● Single-Source FIFO (SSF)

● For all messages m1, m2 and all objects ai, aj, if ai sends m1 before it
sends m2, then m2 is not received at aj before m1 is

● Totally Ordered
● For all messages m1, m2 and all objects ai, aj, if m1 is received at ai

before m2 is, the m2 is not received at aj before m1 is
● Causally Ordered

● For all messages m1, m2 and all objects ai, aj, if m1 happens before m2,
then m2 is not received at ai before m1 is

Delivery guarantees

● Agreed Delivery
• guarantees total order of message delivery and allows a

message to be delivered as soon as all of its
predecessors in the total order have been delivered.

● Safe Delivery
• requires in addition, that if a message is delivered by the

GC to any of the processes in a configuration, this
message has been received and will be delivered to each
of the processes in the configuration unless it crashes.

Membership

● Messages addressed to the group are received by all group
members

● If processes are added to a group or deleted from it (due to
process crash, changes in the network or the user's preference),
need to report the change to all active group members, while
keeping consistency among them

● Every message is delivered in the context of a certain configuration,
which is not always accurate. However, we may want to guarantee
● Failure atomicity
● Uniformity
● Termination

Failure Model

● Failures types
● Message omission and delay

● Discover message omission and (usually) recovers lost messages
● Processor crashes and recoveries
● Network partitions and re-merges

● Assume that faults do not corrupt messages (or that message
corruption can be detected)

● Most systems do not deal with Byzantine behavior
● Faults are detected using an unreliable fault detector, based on a

timeout mechanism

Some GC Properties

● Atomic Multicast
● Message is delivered to all processes or to none at all. May

also require that messages are delivered in the same order
to all processes.

● Failure Atomicity
● Failures do not result in incomplete delivery of multicast

messages or holes in the causal delivery order
● Uniformity

● A view change reported to a member is reported to all other
members

● Liveness
● A machine that does not respond to messages sent to it is

removed from the local view of the sender within a finite
amount of time.

Virtual Synchrony

● Virtual Synchrony
● Introduced in ISIS, orders group membership changes along

with the regular messages
● Ensures that failures do not result in incomplete delivery of

multicast messages or holes in the causal delivery order(failure
atomicity)

● Ensures that, if two processes observe the same two
consecutive membership changes, receive the same set of
regular multicast messages between the two changes

● A view change acts as a barrier across which no multicast can pass
● Does not constrain the behavior of faulty or isolated processes

More Interesting GC
Properties

● There exists a mapping k from the set of messages appearing in all
rcvi(m) for all i, to the set of messages appearing in sndi(m) for all
i, such that each message m in a rcv() is mapped to a message
with the same content appearing in an earlier snd() and:

● Integrity
● k is well defined. i.e. every message received was previously sent.

● No Duplicates
● k is one to one. i.e. no message is received more than once

● Liveness
● k is onto. i.e. every message sent is received

Reliability Service

● A service is reliable (in presence of f faults) if exists a partition of
the object indices into faulty and non-faulty such that there are at
most f faulty objects and the mapping of k must satisfy:
● Integrity
● No Duplicates

● no message is received more than once at any single object
● Liveness

● Non-faulty liveness
• When restricted to non-faulty objects, k is onto. i.e. all messages broadcast by a

non-faulty object are eventually received by all non-faulty objects
● Faulty liveness

• Every message sent by a faulty object is either received by all non-faulty objects
or by none of them

Faults and Partitions

● When detecting a processor P
from which we did not hear for
a certain timeout, we issue a
fault message

● When we get a fault message,
we adopt it (and issue our
copy)

● Problem: maybe P is only slow
● When a partition occurs, we

can not always completely
determine who received
which messages (there is no
solution to this problem)

Extended virtual synchrony

● Failures
● Processes can fail and recover
● Networks can partition and remerge

● Virtual synchrony handles recovered processes as
new processes

● Can cause inconsistencies with network partitions

● Network partitions are real
● Gateways, bridges, wireless communication

● Extended VS (introduced in Totem)
● Does not solve all the problems of recovery in fault-tolerant

distributed systems, but avoids inconsistencies

Extended Virtual
Synchrony Model

● Network may partition into finite number
of components
● Two or more may merge to form a larger

component
● Each membership with a unique identifier

is a configuration.
●Membership ensures that all processes in a

configuration agree on the membership of that
configuration

Regular and Transitional
Configurations

● To achieve safe delivery with partitions and
remerges, the EVS model defines:
● Regular Configuration

● New messages are broadcast and delivered
● Sufficient for FIFO and causal communication modes

● Transitional Configuration
● No new messages are broadcast, only remaining messages

from prior regular configuration are delivered.
● Regular configuration may be followed and

preceeded by several transitional configurations.

Configuration change

● Process in a regular or transitional configuration can
deliver a configuration change message s.t.

• Follows delivery of every message in the terminated
configuration and precedes delivery of every message in the
new configuration.

● Algorithm for determining transitional configuration
● When a membership change is identified

• Regular conf members (that are still connected) start
exchanging information

• If another membership change is spotted (e.g. failure
cascade), this process is repeated all over again.

• Upon reaching a decision (on members and messages) –
process delivers transitional configuration message to
members with agreed list of messages.

• After delivery of all messages, new configuration is delivered.

Totem

● Provides a Reliable totally ordered multicast service over LAN
● Intended for complex applications in which fault-tolerance and soft

real-time performance are critical
● High throughput and low predictable latency
● Rapid detection of, and recovery from, faults
● System wide total ordering of messages
● Scalable via hierarchical group communication
● Exploits hardware broadcast to achieve high-performance

● Provides 2 delivery services
● Agreed
● Safe

● Use timestamp to ensure total order and sequence numbers to
ensure reliable delivery

ISIS

● Tightly coupled distributed system developed over loosely coupled
processors

● Provides a toolkit mechanism for distributing programming,
whereby a DS is built by interconnecting fairly conventional non-
distributed programs, using tools drawn from the kit

● Define
● how to create, join and leave a group
● group membership
● virtual synchrony

● Initially point-to-point (TCP/IP)
● Fail-stop failure model

Horus

● Aims to provide a very flexible environment to configure group of
protocols specifically adapted to problems at hand

● Provides efficient support for virtual synchrony
● Replaces point-to-point communication with group communication

as the fundamental abstraction, which is provided by stacking
protocol modules that have a uniform (upcall, downcall) interface

● Not every sort of protocol blocks make sense
● HCPI - Horus Common Protocol Interface for protocol composition

● Stability of messages
● membership

● Electra
● CORBA-Compliant interface
● method invocation transformed into multicast

Transis

● How different components of a partition network can operate
autonomously and then merge operations when they become
reconnected ?

● Are different protocols for fast-local and slower-cluster
communication needed ?

● A large-scale multicast service designed with the following goals
● Tackling network partitions and providing tools for recovery from them
● Meeting needs of large networks through hierarchical communication
● Exploiting fast-clustered communication using IP-Multicast

● Communication modes
● FIFO
● Causal
● Agreed
● Safe

Other Challenges

● Secure group communication architecture
● Formal specifications of group communication systems
● Support for CSCW and multimedia applications
● Dynamic Virtual Private Networks
● Next Generations

● Spread
● Ensemble
● MaelStrom, Ricochet - for cloud data centers

● Wireless networks
● Group based Communication with incomplete spatial coverage
● Dynamic membership

*VSync - ISIS2 (VS + Paxos) https://www.youtube.com/watch?v=3o81K1olx0Q

https://www.youtube.com/watch?v=3o81K1olx0Q

Horus

A Flexible Group
Communication Subsystem

Horus: A Flexible Group
Communication System

● Flexible group communication model to
application developers.

1. System interface
2. Properties of Protocol Stack
3. Configuration of Horus
● Run in userspace
● Run in OS kernel/microkernel

Architecture
● Central protocol => Lego Blocks
● Each Lego block implements a communication

feature.
● Standardized top and bottom interface (HCPI)

● Allow blocks to communicate
● A block has entry points for upcall/downcall
● Upcall=receive mesg, Downcall=send mesg.

● Create new protocol by rearranging blocks.

Message_send

● Lookup the entry in topmost block and
invokes the function.

● Function adds header
● Message_send is recursively sent down

the stack
● Bottommost block invokes a driver to

send message.

● Each stack shielded from each other.
● Have own threads and memory

scheduler.

Endpoints, Group, and Message
Objects

● Endpoints
● Models the communicating entity
● Have address (used for membership), send and

receive messages
● Group
● Maintain local state on an endpoint.
● Group address: to which message is sent
● View: List of destination endpoint addr of

accessible group members
● Message
● Local storage structure
● Interface includes operation pop/push headers
● Passed by reference

Transis

A Group Communication
Subsystem

Transis : Group
Communication System

● Network partitions and recovery tools.
●Multiple disconnected components in the

network operate autonomously.
●Merge these components upon recovery.

● Hierachical communication structure.
● Fast cluster communication.

Systems that depend on primary
component:

● Isis System: Designate 1 component as
primary and shuts down non-primary.
● Period before partition detected, non-primaries

can continue to operate.
● Operations are inconsistent with primary

● Trans/Total System and Amoeba:
● Allow continued operations
● Inconsistent Operations may occur in different

parts of the system.
● Don’t provide recovery mechanism

Group Service
● Work of the collection of group modules.
● Manager of group messages and group

views
● A group module maintains
● Local View: List of currently connected and

operational participants
●Hidden View: Like local view, indicated the

view has failed but may have formed in
another part of the system.

Network partition wishlist

1. At least one component of the network should
be able to continue making updates.

2. Each machine should know about the update
messages that reached all of the other
machines before they were disconnected.

3. Upon recovery, only the missing messages
should be exchanged to bring the machines
back into a consistent state.

Transis supports partition
● Not all applications progress is dependent on

a primary component.
● In Transis, local views can be merged

efficiently.
● Representative replays messages upon merging.

● Support recovering a primary component.
● Non-primary can remain operational and wait to

merge with primary
● Non-primary can generate a new primary if it is

lost.
● Members can totally-order past view changes events.

Recover possible loss.
● Transis report Hidden-views.

