Middleware for Communication
and Messaging

CS 237

Distributed Systems
Middleware (with slides from

Tanenbaum and Van Steen book ,
Cambridge Univ and Petri Maaranen)

Traditional networking stack

Application o ettt 7
. | <-—--- Presentation protocol ____ |
Presentation | I 6
Session | e Session protocol _______ s
Transport protocol
Transport I D ROCRIOER oo I B
Network protocol
< ______________________________
Network I I 3
_ P Data link protocol _______
Data link : I 2
. 4________P_h)’_5_if_3§|_ protocol _______
Physical 1

Network

@ Physical layer: contains the specification and implementation of bits, and
their transmission between sender and receiver

@ Data link layer: prescribes the transmission of a series of bits into a frame
to allow for error and flow control

@ Network layer: describes how packets in a network of computers are to be
routed.

The transport layer provides the actual communication facilities for most
distributed systems.

For distributed systems

T Application protocol T
Application 5 >
l [
_ Middleware protocol
Middleware 19> Sty syt >
l [
Operating Host-to-host protocol
system ettt »
I Physical/Link-level protocol l
Hardware o Attt >

Network

Observation

Middleware is invented to provide common services and protocols that can be
used by many different applications

@ A rich set of communication protocols

@ (Un)marshaling of data, necessary for integrated systems
@ Naming protocols, to allow easy sharing of resources

@ Security protocols for secure communication

@ Scaling mechanisms, such as for replication and caching

Communication Types

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server
Client I/ I/ I/
Request /

Transmission
interrupt

Storage
facility

Server Time —>

@ Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.

@ Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.

When to synchronize?

@ At request submission
@ At request delivery
@ After request processing

Synchronous vs. Asynchronous communication

Communication Types

Client/Server computing is generally based on a model of transient
synchronous communication:

@ Client and server have to be active at time of communication
@ Client issues request and blocks until it receives reply
@ Server essentially waits only for incoming requests, and subsequently

processes them

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server
Client I/ I/ I/
Request /

facility

Transmission
interrupt
Storage /\/

Server Time —>

Message-oriented middleware
Aims at high-level persistent asynchronous communication:
@ Processes send each other messages, which are queued

@ Sender need not wait for immediate reply, but can do other things
@ Middleware often ensures fault tolerance

Remote Procedure Calls (RPC)

Basis of client/server systems
80’s - Birrell and Nelson

General message passing Caller Callee
model for execution of remote PrOcest Process
functionality. Request Message

Provides programmers with a v Procedure’s parameters) Receive

familiar mechanism for building \ request
Y, (procedure

distributed applications/systems executes)

Familiar semantics (similar to
LPC)

. . Send reply and
Simple syntax, well defined / wait
interface, ease of use, Reply Message For next message

Resume fai e of dure
generality and IPC between Execution { €CETR St oTproseaury
processes on same/different
machines. v

It is generally synchronous

Can be made asynchronous by
using multi-threading

LPC vs. RPC

Host A
Pl

| —] Host A

P2

B, P2

int £2()

Host B

RPC Challenges

Achieving exactly the same semantics for LPC and RPC is hard

Disjoint address spaces
Consumes more time (due to communication delays)
Failures (hard to guarantee exactly-once semantics)
Function may not be executed 1f
Request (call) message 1s dropped
Reply (return) message 1s dropped
Called process fails before executing called function
Called process fails after executing called function
Hard for caller to distinguish these cases
Function may be executed multiple times 1f request (call)
message 1s duplicated

RPC Needs :Syntactic and Semantic
Transparency

Resolve differences in data representation (CDR)
Support multi-threaded programming
Provide good reliability
Provide independence from transport protocols
Ensure high degree of security
Locate required services across networks
Support a variety of execution semantics

e At most once semantics (e.g., Java RMI)

e At least once semantics (e.g., Sun RPC)
e Maybe, i.e., best-effort (e.g., CORBA)

Retransmit Filter duplicate Re-execute RPC Semantics
request requests function or
retransmit reply

Implementing RPC - Mechanism

server
i server

stub !

kemel kemel

Uses the concept of stubs; A perfectly normal LPC
abstraction by concealing from programs the interface

to the underlying RPC

Involves the following elements
The client, The client stub
The RPC runtime

The server stub, The server

RPC - How it works II

client process server process
client server
= =
procedure call —§ —§ procedure
A E E ’
) g g dispatcher
client stub S > £ e | server stub
&) O
I § § selects stub
locatg = = (un)ma-rsl-lal
(un)marghal 2 £ ‘ (de)serlahze
(de)seriglize ° 2 » receive (send)
send (recgive)
—

Wolfgang Gassler, Eva Zangerle

RPC - Steps

Client procedure calls the client stub in a normal way
Client stub builds a message and traps to the kernel
Kernel sends the message to remote kernel

Remote kernel gives the message to server stub

Server stub unpacks parameters and calls the server
Server computes results and returns it to server stub
Server stub packs results in a message and traps to kernel
Remote kernel sends message to client kernel

Client kernel gives message to client stub

Client stub unpacks results and returns to client

RPC - Marshalling and

Unmarshalling

Different architectures use different ways
of representing data
— Big endian: Hex 12-AC-33 stored
with 12 in lowest address, then AC in
next higher address, then 33 in
highest address

 IBM z, System 360
— Little endian: Hex 12-AC-33 stored
with 33 in lowest address, then AC in
next higher address, then 12
* Intel

Caller (and callee) process uses its own
platform-dependent way of storing data

Middleware has a common data
representation (CDR)

— Platform-independent
Caller process converts
arguments into CDR format

— Called “Marshalling”
Callee process extracts
arguments from message into its
own platform-dependent format

— Called “Unmarshalling”
Return values are marshalled on
callee process and unmarshalled
at caller process

14

RPC - binding

Static binding
hard coded stub
Simple, efficient
not flexible

stub recompilation necessary if the location of the server
changes

use of redundant servers not possible

Dynamic binding
name and directory server
load balancing

IDL used for binding
flexible
redundant servers possible

RPC - dynamic binding

client process Server process
client server
© >
procedure call —§ —Cé: procedure
>3y t1I5 = = 11 ¥t 10
client stub g 8 5 ’ server stub
bind kS " S register
(un)marshal § §] (un)marshal
(de)serialize é 12 é dispatcher (de)serialize
4 Find /A1t o S+ » receive 9
7 send > selects stub |« send 72
12 receive « ‘
5 2

name and directory server

Wolfgang Gassler, Eva Zangerle

How Stubs are Generated

Through a compiler
e.g. DCE/CORBA IDL — a purely declarative language

Defines only types and procedure headers with familiar syntax
(usually C)

It supports
Interface definition files (.idl)
Attribute configuration files (.acf)

Uses Familiar programming language data typing
Extensions for distributed programming are added

RPC - IDL Com}gilation - result

opment

environment

client process - server process
IDL

client code server code

IDL
compiler

client stub server stub

Wolfgang Gassler, Eva Zangerle

RPC in Practice...

Interface
definition file

IDL compiler

Client code Client stub Header Server stub Server code
#include #include
C compiler C compiler | C compiler | C compiler
Y Y A 4
Client Client stub Server stub Server
object file object file object file object file

Client
binary

Runtime
library

\ .

Runtime
library

Linker

A 4

Server
binary

RPC NG: DCOM & CORBA

Object models allow services and functionality to be
called from distinct processes

DCOM/COM+(Win2000) and CORBA IIOP extend this to
allow calling services and objects on different machines

More OS features (authentication,resource
management,process creation,...) are being moved to
distributed objects.

Sample RPC Middleware
Products

JaRPC (NC Laboratories)

libraries and development system provides the tools to develop ONC/RPC and extended .rpc Client and Servers in
Java

powerRPC (Netbula)

RPC compiler plus a number of library functions. It allows a C/C++ programmer to create powerful ONC RPC
compatible client/server and other distributed applications without writing any networking code.

Oscar Workbench (Premier Software Technologies)

An integration tool. OSCAR, the Open Services Catalog and Application Registry is an interface catalog. OSCAR
combines tools to blend IT strategies for legacy wrappering with those to exploit new technologies (object oriented,
internet).

NobleNet (Rogue Wave)

simplifies the development of business-critical client/server applications, and gives developers all the tools
needed to distribute these applications across the enterprise. NobleNet RPC automatically generates client/server

network code for all program data structures and application programming interfaces (APIs)— reducing development
costs and time to market.

NXTWare TX (eCube Systems)

Allows DCE/RPC-based applications to participate in a service-oriented architecture. Now companies can use J2EE,
CORBA (IIOP) and SOAP to securely access data and execute transactions from legacy applications. With this
product, organizations can leverage their current investment in existing DCE and RPC applications

http://www.nc-labs.com/
http://www.netbula.com/
http://www.premiersoft.com/
http://www.roguewave.com/
http://www.ecubesystems.com/

RPC - Extensions

conventional RPC: sequential
execution of routines

client blocked until response of server

asynchronous RPC — non blocking

client has two entry points(request and
response)

server stores result in shared memory
client picks it up from there

RPC servers and protocols...

RPC Messages (call and reply messages)

Server Implementation
Stateful servers
Stateless servers
Communication Protocols
Request(R)Protocol
Request/Reply(RR) Protocol
Request/Reply/Ack(RRA) Protocol

Idempotent operations - can be repeated multiple times, without any side effects
Examples (X is server-side variable)

- x=I;
Non-examples

— x=xt1;

— x=x*2

Some recent views on RPC

Convenience over
correctness?

http://steve.vinoski.net/pdf/IEEE-Convenience Over Correc tness.pdf

Time to retire RPC? gm'e'em

Video: Mythbusting Remote Procedure Calls

New messaging formats
-- Google ProtoBuf, Apache Thrift (Facebook)

http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

Message-Oriented Middleware (MOM)

Software infrastructure to support communication using messages
Message brokers/ servers decouple client and server

Messages stored in message queues - asynchronous
persistent communication

Various assumptions about message content
Developers agnostic to underlying details of OS/network protocols.

Client App. Server App.

t tl

Message Servers

local message message local message
queues queucs queues
——— —_—
Network Network Network

Middleware 25

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

Properties of MOM

Asynchronous interaction
Client and server are only loosely coupled
Messages are queued
Good for application integration

Support for reliable delivery service
Keep queues in persistent storage

Processing of messages by intermediate message server(s)
May do filtering, transforming, logging, ...

Natural for database integration

Operations

Operation | Description

put Append a message to a specified queue

get Block until the specified queue is nonempty, and
remove the first message

poll Check a specified queue for messages, and remove
the first. Never block

notify Install a handler to be called when a message is put

Middleware into the specified queue

Introducing message brokers

Observation

Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data representation)

Broker handles application heterogeneity in an MQ system

@ Transforms incoming messages to target format
@ Very often acts as an application gateway
@ May provide subject-based routing capabilities (i.e., publish-subscribe

capabilities)
Source Message broker Destination
Application |:| |:| D G Application
Broker plugins Rules
A \

. ’—:L‘ — Queuing | —
=l =| 5l ayer = 2 R

Local OS Local OS T Local OS

- __

From Computer Desktop Encyclopedia
@ 2000 The Computer Language Co. Inc.

Order Accounts Credit
Processing Receivable Check
Inventory Human
Resources
Purchasing Payroll

Accounts Fixed G/L
Payable Assets

TJTST21 Spring 2006

From Computer Desktop Encyclopedia
@ 2000 The Computer Language Co. Inc.

Order Accounts Credit
Processing Receivable Check

Inventory Human
Resources
Messaging
Middleware
- 1. transport
FisChasing 2. rules (routing) Payroll
3. reformatting

Accounts Fixed G/IL
Payable Assets

TJTST21 Spring 2006

Message-Oriented Middleware
Message Brokers

e A message broker is a software system based

on asynchronous, store-and-forward messaging.

e It manages interactions between applications
and other information resources, utilizing
abstraction techniques.

e Simple operation: an application puts (publishes)
a message to the broker, another application

gets (subscribes to) the message. The
applications do not need to be session

connected.

TJTST21 Spring 2006 30

(Message Brokers, MQ)

e MQ is fairly fault tolerant in the cases of
network or system failure.

e Most MQ software lets the message be declared
as persistent or stored to disk during a commit at
certain intervals. This allows for recovery on

such situations.

e Each MQ product implements the notion of
messaging in its own way.

e Widely used commercial examples include IBM’s
MQSeries and Microsoft's MSMQ.

TJTST21 Spring 2006 31

Advantages of Message Brokers

« They l2ave systems “where they are” still
allowing data 1o be shared.

« [Greater likelihood to be able to automate some
manual processes.

TJTST21 Spring 2006

32

Message Brokers

Any-to-any
The ability to connect diverse applications and other
information resources
— The consistency of the approach
— Common look-and-feel of all connected resources
e Many-to-many
— Once a resource is connected and publishing
information, the information is easily reusable by any
other application that requires it.

TJTST21 Spring 2006 33

Standard Features of
Message Brokers

e Message transformation engines

— Allow the message broker to alter the way
information is presented for each application.

e Intelligent routing capabilities

— Ability to identify a message, and an ability to
route them to appropriate location.

e Rules processing capabilities

— Ability to apply rules to the transformation and
routing of information.

TJTST21 Spring 2006 34

Providing the Services

Meszage Broker

- o

Message Transformation

uy -~

Fules Engine

Intzlligent Routing

Adapter

Message Brokers provide services to applications through
an application programming interface, or an adapter.

TJTST21 Spring 2006

Enterprise Service Buses

MOMs -> Message brokers -> ESB

ESB (Enterprise Service Buses)
Wikipedia
" a software architecture model used for designing and implementing

communication between mutually interacting software applications in a
service-oriented architecture (SOA)”

abstraction layer on top of a messaging system

o
=n | e

TJTST21 Spring 2006 ou

Vendors

Adea Solutions|2|: Adea ESB Framework
ServiceMix| 3 |: ServiceMix (Apache) Synapse (Apache Incubator)
: Aqualogic Service Bus
: Business integration Engine
: Cape Clear 6

Fiorano Software Inc.
Platform (specifically WebSphere Message Broker or WebSphere ESB)

: iWay Adaptive Framework for SOA

(Open Source, LGPL)
: Oracle Integration products
: EBM WebSourcing & Fossil E-Commerce (Open Source)
: Integration Suite
: ServiceMix ESB (Open Source, Apache Lic.)
: Sonic ESB
(Open Source)

: webMethods Fabric

http://www.adeasolutions.com/
http://www.servicemix.org/
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Bea&gwp=8&curtab=2222_1
http://www.brunswickwdi.com/bie
http://www.capeclear.com/
http://www.cordys.com/en/Products/Cordys_ESB_overview.htm
http://www.fiorano.com/
http://www.fiorano.com/products/fesb/fioranoesb.htm
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=IBM&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=WebSphere&gwp=8&curtab=2222_1
http://www.iona.com/
http://www.iona.com/products/artix/welcome.htm
http://www.iwaysoftware.com/
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Microsoft&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=.NET+Framework&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Microsoft+BizTalk+Server&gwp=8&curtab=2222_1
http://celtix.objectweb.org/
http://celtix.objectweb.org/
http://www.oracle.com/solutions/integration/index.html
http://petals.objectweb.org/
http://www.polarlake.com/
http://www.servicemix.org/
http://www.sonicsoftware.com/
http://www.symphonysoft.com/
http://mule.codehaus.org/
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=TIBCO+Software&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Virtuoso+Universal+Server&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=WebMethods&gwp=8&curtab=2222_1

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

IBM MQSeries

One-to-one reliable message passing using queues
Persistent and non-persistent messages
Message priorities, message notification
Queue Managers
Responsible for queues
Transfer messages from input to output queues
Keep routing tables
Message Channels
Reliable connections between queue managers
Messaging API.:

MQopen |Open a queue

MQclose |Close a queue

MQput Put message into opened queue
Middleware MQget | Get message from local queue

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

Java Message Service (JMS)

Java API specification to access MOM implementations
Two modes of operation *specified*:

Point-to-point one-to-one communication using queues

Publish/Subscribe Event-Based Middleware

JMS Server implements JMS API, JMS Clients connect to JMS servers
Java objects can be serialised to JMS messages

A JMS interface has been provided for MQ, pub/sub spec

Version history [edit]

o JMS 1.0/

«JMS 1.0.1 (October 5, 1998)14]
«JMS 1.0.1a (October 30, 1998)[51(6]
* JMS 1.0.2 (December 17, 1999)7]
« JMS 1.0.2a (December 23, 1999)(8!
« JMS 1.0.2b (August 27, 2001)[°]

« JMS 1.1 (April 12, 2002)1°]

*JMS 2.0 (May 21, 2013)[11I12]

* JMS 2.0a (March 16, 2015)[13114]

. JMS 2.0 is currently maintained under the Java Community Process as JSR 343.[1°]
Middleware
JMS 3.0 is under early development as part of Jakarta EE.[1¢]

Amazon Simple Queue Service

AMAZON SQS & FIFO QUEUES

https://www.youtube.com/watch?v=XrX7rb6M3jw

https://www.youtube.com/watch?v=XrX7rb6M3jw

Pro'oco' Buffer

l6hika

Designed ~2001 because everything else wasn’t that good those days

Production, proprietary in Google from 2001-2008, open-sourced since 2008

Battle tested, very stable, well trusted

Every time you hit a Google page, you're hitting several services and several PB
code

PB is the glue to all Google services

Official support for four languages: C++, Java, Python, and JavaScript

Does have a lot of
Current Version -

BSD License

dhhivA] mmbv s st e Al s

3.20.0 /25 March 2022; 20 days ago[2]

uages (of highly variable quality)

::. protobuf

Protocol Buffers - Google's data interchange format

https://en.wikipedia.org/wiki/Protocol_Buffers

Apache Thrift

* Designed by an X-Googler in 2007 ApaChe Th I’iftm!! ! :! §='==E .‘::

* Developed internally at Facebook, used extensively there = I‘I'ﬁ I'HRIF.:

* An open Apache project, hosted in Apache's Inkubator.

* Aims to be the next-generation PB (e.g. more comprehensive feature

languages) Thrift is an interface definition language and binary

communication protocol used for defining and
* IDL syntax is slightly cleaner than PB. If you know one, then you kno creating services for numerous programming
* Supports: C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, languages. It was developed at Facebook for
JavaScript, Node.js, Smalltalk, OCaml and Delphi and other languages " . "
scalable cross-language services development" and

* Offers a stack for RPC calls as of 2020 is an open source project in the Apache

Software Foundation. Wikipedia
Developer(s): Apache Software Foundation
Original author(s): Facebook, Inc.

License: Apache 2.0

Stable release: 0.16.0 / 15 February 2022; 58 days
ago

Repository: Thrift Repository

Programming languages: Go, C, Python, Java,
JavaScript, C++, C#, MORE

Comparing messaging formats

JSON Protobuf

cf: www.cl.cam.ac.uk/teaching/0910/ConcDistS/

Disadvantages of MOM

Poor programming abstraction (but has evolved)
Rather low-level
Request/reply more difficult to achieve, but can be done

Message formats originally unknown to middleware
No type checking (JMS addresses this — implementation?)

Queue abstraction only gives one-to-one communication
Limits scalability (JMS pub/sub — implementation?)

Middleware 44

Generalizing
communication

Publish-subscribe systems
A form of asynchronous messaging

Group communication
Synchrony of messaging is a critical issue

Publish/Subscribe Communication
in distributed systems

Nalini Venkatasubramanian

(with slides from Roberto Baldoni, Pascal
Felber, Arno Jacobsen, Hojjat Jafarpour etc.)

Notification systems are prevalent

Wide Range of Applications

Communication, Administration, Socialization and
Regulatory Compliance Enﬁainﬁt -
\ Alert, Rescue and Relie
o ' OVoube Pp
SCHOOLMESSENGER® operation &
ke
. oo
Transportation,Delivery ‘ ?
Service <9 Situational
Awarene
i . @Traffic
Uber Uoer Eats &Il g Notficatior
BUS BULLETIN FE

At the heart of several such systems are publish subscribe
architectures

Publish/Subscribe (pub/sub) svstems

¢ Asynchronous communication

« What | ® Selective dissemination
* Push model, physical separation
* Decoupling publishers and subscribers (time, space) feiom)

o
Stock (Name=‘IBM’; Price =95 ; Volume=50000) ﬁ ! I
Stock (Name=‘IBM’; Price =95 ; Volume=50000)

Stock (Name="HP’; Price < 50 ; Volume >1000)

oy
Fo

Stock (Name=‘IBM’; Price < 110 ; Volume>10000)

Stock (Name=‘IBM’; Price =95 ; Volume=50000)

Football(Team="USC’; Event="Touch Down”)

Hojjat Jafarpour 48

Publish/Subscribe (pub/sub) systems

Applications:
Alerting Services G()ugle aleEEE YAHOO!, FINANCE
Online stock quotes
Internet games YAHOO!. ALERTS

Sensor networks g

Location-based services d) \' deal/sea
Network management e
Internet auctions

Surveillance and monitoring

Business process
Management

IoT workftlows

Hojjat Jafarpour 49

Sample Pub-Sub Protocols/Brokers

XMPP E * Mosquitto: * RabbitMQ:
P » MQTT « AMQP

* Open-source * Plugins: MQTT, STOMP

STUMP =wnMP * WebSocket support
UGkEt- * Apache ActiveMQ:

* HiveMQ: . IMS
MSP hSUhHUthh it * Plugins: MQTT, AMQP, STOMP
* High-performance
* Clustering
maznn * Enterprise Solution * IBM WebSphere MQ
MUTT * WebSocket support
=

S
J

Pub/Sub Brokers — Cloud Based /
‘b’ o @
* CloudMQTT.com (Mosquitto) * Google Cloud Messaging &) RN % "
8 HiveMQ ’“bs‘"bg
* CloudAMQP.com (RabbitMQ) * Amazon SNS (Simple Notification b ol %
Service) sensor
Test Brokers: ?;::u.::;m‘w" o p::L sj:i‘?“ — mobile device

* broker.mqttdashboard.com (Hive MQ)
* test. mosquitto.org (Mosquitto)

* iot.eclipse.org (Mosquitto)
https://www.slideshare.net/PeterHanzlik

Pub/Sub vs. Database Queries

TSX Stock markets ‘/\/ NASDAQ . e

Publisher| ®** e+ |Publisher

NYSE

AN
Gs 59 e _8b
orci=12 Publications e\~

Ji
HON=24 Mspr_, e Vs
Subscriptions: Notification

“YAEIOO! FINANCE i
IBM > 85

Notification
ORCL < 10 Sub ions
INJ > 60

Subscriber [eee e Subscriber
query publication
- o
2 5
=)
= X o
o =
2 g
< J <
Sets of tuples Matching subscriptions
VA T -
A\ Query and subscription is very similar.
M,DDLEWA STEMS Set of tuples and publication is very similar.

RESEARCH GROUP

The Pub/Sub Matching Problem

Given a set of subscriptions, S, and a publication, e,
return all s in S matched by e.

e is referred to as event or publication
Splitting hairs

a Event is a state transition of interest in the
environment

a Publication is the information about e submitted to the
publish/subscribe system

Simple problem statement, widely applicable, and lots of
open questions

Matching Problem - Dimensions

Text / search strings (information filtering) Different matching semantics
Semi-structured data / queries .
Q attrLbute-vaIue pairs / attribute-operator-value- o Crisp
predicates .
L XML, HTML Q A-pp.roxmate,
Tree-structured data / path expressions o Similar

o XML ./ XPath expressions :
n-of-m (n of m predicates match
Graph-structured data / graph queries - (P)

2 RDF / RDF queries (e.g., SPARQL) o Probability of match

Regular languages / regular expressions
Tables / SQL queries

Centralized and distributed instantiation

Networking architecture

o Internet (as overlay network)

o Peer-to-peer style interface (DHT, table-lookup)
o With mobile publishers, subscribers, brokers

o Ad hoc network

Publish/subscribe architectures

Centralized
Single matching engine
Limited scalability
Broker overlay
Multiple P/S brokers

Participants connected to
some broker

Events routed through
overlay

Peer-to-peer
Publishers & subscribers
connected in P2P network

Participants collectively
filter/route events, can be
both producer & consumer

Scalable Publish/Subscribe Architectures & Algorithms — P. Felber 54

Types of pub/sub

Two main forms

Topic-Based Publish Subscribe [Oki73]
events are divided in topics
subscribers subscribe for a single topic
Content-Based Publish Subscribe [Carz2001]
subscriptions are generic SQL-like queries on the event
schema

Other forms
Channel Based Pub/sub

Type based pub/sub - type as a discriminating attribute, notifications are
objects

Topic-Based Pub/Sub

Event space is divided into topics, corresponding to logical
channels

Topics may be organized in a tree/hierarchy
Participants subscribe for a topic and publish on a topic
Receivers for an event are known a priori

Channel = Group
can exploit network-level multicast, group communication
Limited expressiveness

C

politics

politics

Content-Based Pub/Sub

« Subscriptions and events defined over an
P Cannot determlne reCIplentS before n-dimensional event space (E.g. StockName = “ACME” and

change < -3)

publication occurs, Receivers
calculated for each event being
published

o Flexible, general

o Difficult to implement

Language and Data model
o Conjunctive Boolean functions over predicates
o Predicates are attribute-operator-value triples
[class,=, trigger]
o Subscriptions are conjunctions of predicates
[class,=, trigger], [appl,=,payroll], [gid,=,g001]
o Publications are sets of attribute-value pairs
[class, trigger], [appl,printer], [gid,g007]
Matching semantic
a A subscription matches if all its predicates are matched

a

— Subscription: conjunction of constraints

event s?:scription
”””””””” Content-based
subscriptions can
.................... . include range
E constraints
: ' H R
e — | 81
MINEMA Summer School -

Klagenfurt (Austria) July 11-15, 2005

Distributed pub/sub
systems

Broker — based pub/sub

A set of brokers forming an overlay
Clients use system through brokers

Benefits
Scalability, Fault tolerance, Cost efficiency

Dissemination
Tree

([
01

([

f/
([

([

f/
([
([
([

([

Distributed Content-Based Pub/Sub

Network of publish/subscribe brokers

Subscriptions & publications are injected into network at
closest edge broker

Routing protocol distributes subscriptions throughout network
Network routes relevant publications to interested subscribers
Routing is based on content; it is not based on addresses,
which are not available

Subscriptions may change dynamically

Challenges in distributed
pub/sub systems

Broker Responsibility

Subscription Management
Matching: Determining the recipients for an event
Routing: Delivering a notification to all the recipients

Broker internal operations

« How to form the broker network - How to store subscriptions in
« How to route subscriptions and brokers

« Content matching in brokers
- How to match a publication
against subscriptions

publications

(&
(&
.//“//;l

60

EVENT vs SUBSCRIPTION
ROUTING

Extreme solutions

Sol 1 (event flooding)
flooding of events in the notification event box

each subscription stored only in one place within the
notification event box

Matching operations equal to the number of brokers

Sol 2 (subscription flooding)

each subscription stored at any place within the
notification event box

each event matched directly at the broker where the
event enters the notification event box
MINEMA Summer School -

Klagenfurt (Austria) July 11-15,
2005 61

Other routing solutions

» Filtering-based Routing [Carzaniga et al.

NAAANGEIANAAAANNS

2001]

. . . [}
— Undirected Acyclic graph spanning all the brokers

WA

* Rendez-Vous Routing

— [Wang et al. 2002] based on dynamic partitioning

of the event space among a set of brokers

NAAANAAAFANAANANAL

MINEMA Summer School -
Klagenfurt (Austria) July 11-15, 2005

Ildentify as soon as possible events that
are not interesting for any subscriber
and arrest their diffusion

Requires routing info to be maintained
at brokers - set of filters (aggregate of
subscriptions) that are reachable
through that broker

» Each node is responsible for a partition of the event space

— Storing subscriptions, matching events

[éoee

Problem: difficult to define mapping functions when the set of
nodes changes over time

Klagenfurt (Austria) July 11-15, 2005

Major distributed pub/sub
approaches

Tree-based
Brokers form a tree overlay [SIENA, PADRES, GRYPHON]

DHT-based:

Brokers form a structured P2P overlay [Meghdoot, Baldoni et al.]

Channel-based:
Multiple multicast groups [Phillip Yu et al.]

Probabilistic:
Unstructured overlay [Picco et al.]

63

Tree-based

Brokers form an acyclic graph

Su
Pu
ap

bscriptions are broadcast to all brokers
blications are disseminated along the tree with

plying subscriptions as filters

64

Tree-based

Subscription dissemination load reduction
Subscription Covering
Subscription Subsumption

Publication matching
Index selection

65

Pub/Sub Sysems: Tib/RV
[Oki et al 03]

Topic Based

Two level hierarchical architecture of
brokers (deamons) on TCP/IP

Event routing is realized through one
diffusion tree per subject

Each broker knows the entire network
topology and current subscription
configuration

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,
2005

66

SIENA Filtering-Based Routing

Subscription Forwarding

s,: price > 600

MINEMA Summer School - Klagenfurt (Austria) July 11-15, 2005 (cf. Baldoni)

SIENA Flltering-Based Routing
Subscription Merging

S, COVers s,

S, COVers s,

68
MINEMA Summer School - Klagenfurt (Austria) July 11-15, 2005 (cf. Baldoni)

SIENA Filtering-Based Routing
Notification Delivery

n, matches s,
n, matches s,
<sl:a

s1:2

n,:
price = 899

MINEMA Summer School - Klagenfurt (Austria) July 11-15, 2005 (cf. Baldoni)

Pub/Sub systems: Gryphon
[IBM 00]

Content based

Hierarchical tree from publishers to
subscribers

Filtering-based routing

Mapping content-based to network level
multicast

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,
2005

70

DHT Based Pub/Sub:
SCRIBE [Castro et al. 02]

Topic Based
Based on DHT (Pastry)

Rendez-vous event routing

A random identifier is assigned to each
topic

The pastry node with the identifier closest
to the one of the topic becomes
responsible for that topic

Klagenfurt (Austria) July 11-15,
2005 71

DHT-based pub/sub
MEGHDOOT

Content Based
Based on Structured Overlay CAN

Mapping the subscription language and
the event space to CAN space

Subscription and event Routing exploit
CAN routing algorithms

MINEMA Summer School -
Klagenfurt (Austria) July 11-15,
2005

72

Fault-tolerant Pub/Sub

Brokers are clustered
Each broker knows all brokers in

its own cluster and at least one
broker from every other cluster

Subscriptions are broadcast
within clusters

Every broker maintains
subscriptions from brokers in the
same cluster

Subscription aggregation is done
based on brokers

73

Broker overlay
Join
Leave
Failure
Detection
Masking
Recovery

Load Balancing
Ring publish load

Cluster publish load
Cluster subscription load

Fault-tolerant Pub/Sub

. —— " |

74

M ing Model) o
essaging Mode m\m

« MQTT: ISO standardized pub/sub protocol
— TCP/IP
— Small code footprint, low-bandwidth design
— Has become a common platform for loT [1]

e Simple protocol
— CONNACK
— SUBSCRIBE(t), SUBACK(t)
— PUBLISH(t,msg)

[1] A. Al-Fugaha, et al. 2015. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications
IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

coe® DISTRIBUTED
LA dsg ’ SYSTEMS GROUP

M ing Model N o
essaging Mode E\MQTE

o Message delivery guarantees (MQTT “QoS”)
— (0) At most once
— (1) At least once
— (2) Exactly once

e Maintaining guarantees despite distribution

ce e DISTRIBUTED
Ve dsg ’ SYSTEMS GROUP

Google Cloud Pub/Sub

Cloud
Pub/Sub
Overview

A N What is
Pub/Sub Made Easy - Cloud
Pub/Sub?

:};

Pub/Sub Made Easy

Cloud
Pub/Sub
in Action

:j; -

Pub/Sub Made Easy

Customized content
delivery with pub/sub

/Customize content\
to the required |
formats before

deli '
elivery!
I
| My <.
> |
! > “ 1Y 2]
TS |7
y PR
;V

CCD: Efficient Customized
Content Dissemination in
Hojjat Jafarpour Distributed Pub/Sub 78

Motivation

Leveraging pub/sub framework for dissemination of rich content
formats, e.g., multimedia content.

3 l‘g e
SRRV %

Same content
format may not be
consumable by all
subscribers!!!

Hojjat Jafarpour Distributed Pub/Sub

Challenges: Content customization

How is content customization done?

Through Adaptation operators

y ' N 199 ¥
e BANY. LR
y = : |\ a
/8 , M
e S A Low resolution and small
Original content Tg?:;‘;gfr content suitable for
SiZCI 28MB mobile clients

Size: SMB

How can customization be implemented in a
distributed pub/sub system?

80

CCD: Efficient Customized Content Dissemination in Distributed Pub/Sub Hojjat Jafarpour

Challenges

e e
e < ® o

Option 1: Perform all the required customizations in the sender broker

28+12+8 =48MB]

28+12+8 = 48MB

AS

o

8 — 15MB
SMB 12MB § g’
>
SMB 12MB 28MB 15MB 28MB SMB &MB

Hojjat Jafarpour CCD: Efficient Customized Content Dissemination in Distributed Pub/Sub

Challenges

- == e

Option 2: Perform all the required customization in the proxybrokersﬂeaves)

Repeated
Operator -

8MBt

_——

28MB

5]

28MB SMB 8MB

S >

SMB 28MB 15MB

Hojjat Jafarpour 82

Challenges

PETs s

e iy e e e It e

Option 3: Perform all the required customization in the broker overlay network

J & =)

28MB 15MB 28MB 8MB 8MB

SMB

Hojjat Jafarpour 83

Example: In network
customization of notifications

Translation

Speech
to text
-4
13:” ;!‘
g
=
Speech &
to text
ges B
= G = [(Shelter
J -4 : 1.} X d Information
= [(Shelter Information, I Irvin Schooi)
Irvine, School), - rollils, '

(English, Text)] (English, Text)]

DHT-based pub/sub

DHT-based routing schema, e,g. Tapestry

A e

CCD: Efficient Customized
Content Dissemination in
Hojjat Jafarpour Distributed Pub/Sub 85

Example using DHT based
pub-sub

Tapestry (DHT-based) pub/sub and routing
framework

Event space is partitioned among peers
Single content matching
Each partition is assigned to a peer (RP)

Publications and subscriptions are matched in RP
All receivers and preferences are detected after matching

Content dissemination among matched subscribers
are done through a dissemination tree rooted at RP
where leaves are subscribers.

86

Example: In network
customization of notifications

Translation

[(Shelter

s [(Shelter Information, Information,

i L Irvine, School)
Irvine, School), i 4
(English,Text))] (English, Text)]

Example: In network
customization of notifications

Translation

Speech
to text

¢
X
0 | [(Shelter
s [(Shelter Information, Ir_lformaﬂoni
3 Irvine, School), Irvine, School),

(English, Text)] (English, Text)]

Videos..

Twitter experiences

https://www.youtube.com/watch?v=zwo3ipH4LZU

https://www.youtube.com/watch?v=zwo3ipH4LZU

Enriched and customized notification systems are needed

& [II§ Eeas; mm

Broadcasting

WIRELES:!
EMERGENCY|
CAPABLE

> 1951 - 1963
CONE|

> 1963 - 1 997> 1997 - s2oo¢s> 2ogA6WSL—> {

Originally called the “Key
Station System,” the
CONtrol of
ELectromagnetic
RADiation (CONELRAD)
was established in
August 1951.

Participating stations
tuned to 640 & 1240 kHz
AM and initiated a special
sequence and procedure
designed to warn
citizens.

EBS was initiated to
address the nation through
audible alerts. It did not
allow for targeted
messaging.

System upgraded in 1976
to provide for better and
more accurate handling of
alert receptions.

Originally designed to
provide the President with
an expeditious method of
communicating with the
American Public, it was
expanded for use during
peacetime at state and local
levels.

EAS jointly coordinated
by the FCC, FEMA and
NWSs.

Designed for President to
speak to American people
within 10 minutes.

EAS messages composed
of 4 parts:

« Digitally encoded header
* Attention Signal

* Audio Announcement

« Digitally encoded end-of-

message marker

IPAWS modernizes and
integrates the nation’s alert
and warning infrastructure.

Integrates new and existing
public alert and warning
systems and technologies

Provides authorities a
broader range of message
options and multiple
communications pathways

Increases capability to alert
and warn communities of all
hazards impacting public
safety.

Ida's‘History Aug. 26-Sept. 1, 2021

=
Depression
2

‘ S
14150 mph Cat. 4

Storm Hurricane Cat 3+

Aug. 29

Aug. 29
Strengthens Into
Major Hurricane

| Aug. 27
[Becomes a

| Hurricane

Enriched, actionable and customized notifications:
o Customized notifications, e.g., nearby traffic and road

conditions, etc.

Sept. 1
Ida's Remnants and a Front
Cause Major Flooding

o Enriched notifications: maps, pictures, videos, shelter
locations, alternate routes, etc.
Population scale and active notification systems:
o Accommodate a large-scale workload, many end-users

o Allow users to subscribe and provide active data
delivery

BREAKING OVERNIGHT =
DEADLY FLASH FLOOD EMERGENCY

Buses were able to operate at
90%

Next Generation Notification Systems

Big Data Publish Subscribe Systems — Pub/Sub
Paradigms Based on Big Data

PetaBytes to
MegaFolks
in Millisecond

Big Data Publish . Big Data Management ‘ Distributed Publish
Subscribe System o System Subscribe System

Scalable data
delivery

Scalable data ingestion
and processing

Big Data Pub Sub

Traditional Publish Subscribe Systems

Communication paradigm that decouples
data publishers and data subscribers:
o Entities: publishers, subscribers,
brokers, publications, subscriptions
o Types: topic-based, content-based, ...
o Architectures: client-server, P2P
o Subscription language:

[class, eq, 'STOCK’] A [symbol, eq, "YHOO’] A
[price, >, 300]

Publi

Broker
Network

Subscribers

BDPS: Enriched Publications and Subscriptions

Publishers @ @ %\% 0 A‘
* * * * * Publications

@ Enriched Publications ™
- Subscriptions i

Broker
Network

Subscribers

BDPS - How do we enrich and scale at BDMS?

2\ .
BDMS: AsterixDB, open-source BDMS @ & %? @ A‘ Publishers
Data Ingestion
Active Toolkit (A BAD Thesis, Jacobs. Steven, 2018) * * * * * &
o Data feeds: persist data streams into BDMS
o Repetitive channels: shared functions which AsterixDB
o Channels
produces individualized results for many users
repetitively

create function recentEmergenciesOfType(emergencyType){
(select r as reports from
(select value r from EmergencyReports r
where r.timestamp > current_datetime() —
day_time_duration("PT10S")) r
where r.emergencyType = emergencyType)

Data Enrichment
o User defined function (UDF): during ingestion
o Publications and enrichment datasets

Activate Big Data at Scale (Xikui Wang, 2020)

o Dynamic data feeds: ingest data at scale, adapt k
to changes in referenced data .

o Continuous channels: deliver incremental
updates

create repetitive channel recentEmergenciesOfTypeChannel
using recentEmergenciesOfType@1 period duration("PT10S");

subscribe to recentEmergenciesOfTypeChannel(“tornado”);

BDPS : Support for scaling in distributed Broker
Network

Fan-out Distributed Broker Network

o Front-end Subscriptions
o Back-end Subscriptions

o Subscription Aggregation

o Result Sharing Broker
Network

BDPS: Information Flow and components

Publishers ‘.‘ ‘
@ @ @ Publications

\
Broker Coordination Server
Subscription /E BDMS
Broker Results | / Subscriptions Broker State Management
Subscribers \ ’ ‘ Load Balancing
Subscriptons | =~ L BCS .. ‘ Fault Tolerance
Result cache ‘@‘
0% T T
(eQ’, - ,I ‘\\

Guest Lecture

Data Distribution Service (DDS)
from RTI Inc.

Guest Speaker: Dr. Kyle Benson

Student lecture

Kafka presentation

KSQL and ksqlDB

KSQL

an open source streaming SQL engine that enables
continuous, interactive queries on Apache Kafka
continuously transforms streams of data -- take existing
Apache Kafka® topics and filter, process them to create
new derived topics

ksqlDB : integrates traditional database-
like lookups on top of these materialized
tables of data.

Zeonfluent

NTRODUCING

Streaming SQL for
Apache Kafka®

https://www.confluent.io/ksql

Videos..

Twitter experiences

https://www.youtube.com/watch?v=zwo3ipH4LZU

https://www.youtube.com/watch?v=zwo3ipH4LZU

EXTRA SLIDES

Group Communication

Communication to a collection of processes — process group

Group communication can be exploited to provide

Simultaneous execution of the same operation in a group of
workstations

Software installation in multiple workstations
Consistent network table management

Who needs group communication ?
Highly available servers
Conferencing
Cluster management
Distributed Logging....

Group communication - Types

Peer
All members are equal
All members send messages to the group

All members receive all the messages ©06060

Client-Server Syrs Clients

Common communication pattern O
replicated servers

Client may or may not care which server answers —Q

Diffusion group

Servers sends to other servers and clients
Hierarchical

Highly and easy scalable

Message Passing Basics

A system is said to be asynchronous if there is no fixed upper

bound on how long it takes a message to be delivered or how much
time elapses between consecutive steps

Point-to-point messages
snd;(m)
revi(m,j)

Group communication
Broadcast

one-to-all relationship
Multicast

one-to-many relationship

A variation of broadcast where an object can target its messages to a
specified subset of objects

Using Traditional
Transport Protocols

TCP/IP

Automatic flow control, reliable delivery,
connection service, complexity
linear degradation in performance

Unreliable broadcast/multicast

UDP, IP-multicast - assumes h/w support

message losses high(30%) during heavy load
Reliable IP-multicast very expensive

Group Communication
Issues

Ordering

Delivery Guarantees
Membership

Failure

Ordering Service

Unordered

Single-Source FIFO (SSF)

For all messages my, m, and all objects g;, a;, if a; sends m; before it
sends m,, then m; is not received at a; before m; is

Totally Ordered

For all messages m;y, m; and all objects a;, a;, if m; is received at a;
before m; is, the m; is not received at a;before m; is

Causally Ordered

For all messages my, m, and all objects a;, a;, if m; happens before m,,
then m, is not received at a; before m; is

Delivery guarantees

Agreed Delivery

guarantees total order of message delivery and allows a
message to be delivered as soon as all of its
predecessors in the total order have been delivered.

Safe Delivery

requires in addition, that if a message is delivered by the
GC to any of the processes in a configuration, this
message has been received and will be delivered to each
of the processes in the configuration unless it crashes.

Membership

Messages addressed to the group are received by all group
members

If processes are added to a group or deleted from it (due to
process crash, changes in the network or the user's preference),
need to report the change to all active group members, while
keeping consistency among them

Every message is delivered in the context of a certain configuration,
which is not always accurate. However, we may want to guarantee

Failure atomicity
Uniformity

Termination

Failure Model

Failures types
Message omission and delay

Discover message omission and (usually) recovers lost messages
Processor crashes and recoveries

Network partitions and re-merges

Assume that faults do not corrupt messages (or that message
corruption can be detected)

Most systems do not deal with Byzantine behavior

Faults are detected using an unreliable fault detector, based on a
timeout mechanism

Some GC Properties

Atomic Multicast
Message is delivered to all processes or to none at all. May
also require that messages are delivered in the same order
to all processes.

Failure Atomicity
Failures do not result in incomplete delivery of multicast
messages or holes in the causal delivery order

Uniformity
A view change reported to a member is reported to all other
members

Liveness

A machine that does not respond to messages sent to it is
removed from the local view of the sender within a finite
amount of time.

Virtual Synchrony

Virtual Synchrony

Introduced in ISIS, orders group membership changes along
with the regular messages

Ensures that failures do not result in incomplete delivery of
multicast messages or holes in the causal delivery order(failure
atomicity)

Ensures that, if two processes observe the same two
consecutive membership changes, receive the same set of
regular multicast messages between the two changes

A view change acts as a barrier across which no multicast can pass
Does not constrain the behavior of faulty or isolated processes

Reliable multicast by multiple

P1 joins the group po:nt -to-point messages P3 crashes P3 rejoins
P \‘4 ; /7| -/ 7
P2 \ Z |
P3 : ' |

]] |

: \ & : :
P4 — 1 :f

'G = (P1,P2,P3,P4) / G={P1P2P4 ' G={P1,P2,P3,P4)
Time —»

Partial multicast
from P3 is discarded

Figure 7-12. The principle of virtual synchronous multicast.

More Interesting GC
Properties

There exists a mapping & from the set of messages appearing in all
rcv,(m) for all i, to the set of messages appearing in snd,(m) for all
i, such that each message min a rcv() is mapped to a message
with the same content appearing in an earlier snd() and:
Integrity

k is well defined. /.e. every message received was previously sent.
No Duplicates

k is one to one. /.e. no message is received more than once
Liveness

Kk is onto. /.e. every message sent is received

Reliability Service

A service is reliable (in presence of Ffaults) if exists a partition of
the object indices into faulty and non-faulty such that there are at
most fFfaulty objects and the mapping of A must satisfy:

Integrity

No Duplicates
no message is received more than once at any single object

Liveness

Non-faulty liveness

When restricted to non-faulty objects, kis onto. /.e. all messages broadcast by a
non-faulty object are eventually received by all non-faulty objects

Faulty liveness

Every message sent by a faulty object is either received by all non-faulty objects
or by none of them

Faults and Partitions

When detecting a processor P

from which we did not hear for
a certain timeout, we issue a ’
fault message

When we get a fault message,

.
we adopt it (and issue our
copy) /
Problem: maybe P is only slow ./

When a partition occurs, we

can not always completely

determine who received . .
which messages (there is no

solution to this problem)

Extended virtual synchrony

Failures

Processes can fail and recover
Networks can partition and remerge

Virtual synchrony handles recovered processes as
New processes

Can cause inconsistencies with network partitions

Network partitions are real
Gateways, bridges, wireless communication

Extended VS (introduced in Totem)

Does not solve all the problems of recovery in fault-tolerant
distributed systems, but avoids inconsistencies

Extended Virtual
Synchrony Model

Network may partition into finite number
of components
Two or more may merge to form a larger
component
Each membership with a unique identifier

IS @ configuration.

Membership ensures that all processes in a
configuration agree on the membership of that
configuration

Regular and Transitional
Configurations

To achieve safe delivery with partitions and
remerges, the EVS model defines:

Regular Configuration
New messages are broadcast and delivered
Sufficient for FIFO and causal communication modes

Transitional Configuration
No new messages are broadcast, only remaining messages
from prior regular configuration are delivered.
Regular configuration may be followed and
preceeded by several transitional configurations.

Configuration change

Process in a regular or transitional configuration can

deliver a configuration change message s.t.

Follows delivery of every message in the terminated
configuration and precedes delivery of every message in the
new configuration.

Algorithm for determining transitional configuration

When a membership change is identified
Regular conf members (that are still connected) start
exchanging information
If another membership change is spotted (e.g. failure
cascade), this process is repeated all over again.
Upon reaching a decision (on members and messages) —

process delivers transitional configuration message to
members with agreed list of messages.

After delivery of all messages, new configuration is delivered.

Totem

Provides a Reliable totally ordered multicast service over LAN
Intended for complex applications in which fault-tolerance and soft
real-time performance are critical

High throughput and low predictable latency

Rapid detection of, and recovery from, faults

System wide total ordering of messages

Scalable via hierarchical group communication

Exploits hardware broadcast to achieve high-performance
Provides 2 delivery services

Agreed

Safe

Use timestamp to ensure total order and sequence numbers to
ensure reliable delivery

ISIS

Tightly coupled distributed system developed over loosely coupled
processors

Provides a toolkit mechanism for distributing programming,
whereby a DS is built by interconnecting fairly conventional non-
distributed programs, using tools drawn from the kit

Define
how to create, join and leave a group
group membership
virtual synchrony

Initially point-to-point (TCP/IP)
Fail-stop failure model

Horus

Aims to provide a very flexible environment to configure group of
protocols specifically adapted to problems at hand
Provides efficient support for virtual synchrony

Replaces point-to-point communication with group communication
as the fundamental abstraction, which is provided by stacking
protocol modules that have a uniform (upcall, downcall) interface

Not every sort of protocol blocks make sense
HCPI - Horus Common Protocol Interface for protocol composition
Stability of messages
membership
Electra
CORBA-Compliant interface
method invocation transformed into multicast

Application (group)

/_//"'/Ca{‘on Programmer Interg;, CC\

Apph
/ _MHN\
= ==] =
TOTAL PARCLD
FC
MBRSHIP .]
FRAG o
NAK e
COM STABLE

Transis

How different components of a partition network can operate
autonomously and then merge operations when they become

reconnected ?

Are different protocols for fast-local and slower-cluster

communication needed ?

A large-scale multicast service designed with the following goals
Tackling network partitions and providing tools for recovery from them
Meeting needs of large networks through hierarchical communication
Exploiting fast-clustered communication using IP-Multicast

Communication modes
FIFO
Causal
Agreed
Safe

Other Challenges

Secure group communication architecture
Formal specifications of group communication systems
Support for CSCW and multimedia applications
Dynamic Virtual Private Networks
Next Generations

Spread

Ensemble

MaelStrom, Ricochet - for cloud data centers
Wireless networks

Group based Communication with incomplete spatial coverage
Dynamic membership

*VSynC - ISIS2 (VS + PaXOS) https://www.youtube.com/watch?v=3081K10Ix0Q

https://www.youtube.com/watch?v=3o81K1olx0Q

Horus

A Flexible Group
Communication Subsystem

Horus: A Flexible Group
Communication System

Flexible group communication model to
application developers.

System interface

Properties of Protocol Stack

Configuration of Horus
Run in userspace
Run in OS kernel/microkernel

Architecture

Central protocol => Lego Blocks

Each Lego block implements a communication
feature.

Standardized top and bottom interface (HCPI)
Allow blocks to communicate
A block has entry points for upcall/downcall
Upcall=receive mesg, Downcall=send mesg.

Create new protocol by rearranging blocks.

Application (group)

/_//"'/Ca{‘on Programmer Interg;, CC\

Apph
/ _MHN\
= ==] =
TOTAL PARCLD
FC
MBRSHIP .]
FRAG o
NAK e
COM STABLE

Message send

Lookup the entry in topmost block and
invokes the function.

Function adds header

Message_send is recursively sent down
the stack

Bottommost block invokes a driver to
send message.

Each stack shielded from each other.
Have own threads and memory

~~rhAaAdnilAav
thread memaory
scheduler scheduler
=) e e
TOTAL = = TOTAL
FC MERGE -

MBRSHIP MBRSHIP FRAG MBRSHIP /
FRAG FRAG NAK FRAG /
NAK NAK COM NAK /
COM COM COM

Endpoints, Group, and Message

Objects
Endpoints

Models the communicating entity
Have address (used for membership), send and
receive messages

Group
Maintain local state on an endpoint.
Group address: to which message is sent
View: List of destination endpoint addr of
accessible group members

Message
Local storage structure
Interface includes operation pop/push headers
Passed by reference

Client Application

Request Replies

CORBA

Object
Retfterence

’
1
1
1
1
1
1
1
1
1

N S S M S S S

Object Group

CORBA
Object

Host A

CORBA

¥
BN BN N BN N A N N . .

,----

Object

Host B

CORBA
Object

Host C

N S S BN N BSOS S S

ﬁ---------------*

Figure 5. Object
group communication
in Electra

Transis

A Group Communication
Subsystem

Transis : Group
Communication System

Network partitions and recovery tools.

Multiple disconnected components in the
network operate autonomously.

Merge these components upon recovery.
Hierachical communication structure.
Fast cluster communication.

dystems that depend on primary
component:

Isis System: Desighate 1 component as
primary and shuts down non-primary.

Period before partition detected, non-primaries
can continue to operate.

Operations are inconsistent with primary
Trans/Total System and Amoeba:
Allow continued operations

Inconsistent Operations may occur in different
parts of the system.

Don't provide recovery mechanism

Group Service

Work of the collection of group modules.

Manager of group messages and group
vViews

A group module maintains

Local View: List of currently connected and
operational participants

Hidden View: Like local view, indicated the
view has failed but may have formed in
another part of the system.

application

message delive
send messages \J/ T g ry

group status

Safe
Agreed group
module
Causal
FIFO

e : Transis

@

network

Figure 1: The System Model Structure

Network partition wishlist

At least one component of the network should
be able to continue making updates.

Each machine should know about the update
messages that reached all of the other
machines before they were disconnected.

Upon recovery, only the missing messages
should be exchanged to bring the machines
back into a consistent state.

Transis supports partition

Not all applications progress is dependent on
a primary component.

In Transis, local views can be merged
efficiently.
Representative replays messages upon merging.

Support recovering a primary component.

Non-primary can remain operational and wait to
merge with primary
Non-primary can generate a new primary if it is

lost.

Members can totally-order past view changes events.
Recover possible loss.

Transis report Hidden-views.

connectivity

.QQ A

time ,J..“
O A
. AB }
™ | e?

N

A

i

i —

: —

; GD ot
:

G D A

Figure 3: Breaking the symmetry between A and C

