
1

Middleware for Networked &
Distributed Systems

Prof. Nalini Venkatasubramanian
Dept. of Information & Computer Science

University of California, Irvine

Intro to Distributed Systems
Middleware 2

CS 237/NetSys 260
Distributed Systems Middleware

Spring 2022

Lecture 1 - Introduction to Distributed Systems
Middleware

TuTh 5:00 - 6:20 p.m.
Nalini Venkatasubramanian

nalini@uci.edu

mailto:nalini@uci.edu

Intro to Distributed Systems
Middleware 3

Course logistics and details

● Course Web page -
● http://www.ics.uci.edu/~cs237

● Lectures – TuTh 5:00 – 6:20 p.m
● Reading List

● Technical papers and reports
● Reference Books

● TA/Rdr for Course
TBD

Intro to Distributed Systems
Middleware 4

Course logistics and details

● Homeworks
● 4 Homeworks (2 papers per topic + problem solving)

● Class Presentation (group presentation)
● Potential topics/systems will be announced

● Course Project
● In groups of 2/3
● Initial project proposal
● Project Survey Paper
● Past projects available on webpage to give you an idea

Intro to Distributed Systems Middleware 5

CompSci 237 Grading Policy

● Homeworks - 40% of final grade
• 4 homeworks with summary sets based on reading list
• A summary set due approximately every 2 weeks (usually 2

papers in each summary)
• Each summary set worth 10% of the final grade
• Make sure to follow instructions while writing and creating

summary sets.

● Class Presentation (as a group) – 10% of final grade
● Project Survey Paper (group) -- 10% of final grade
● Class Project - 40% of final grade
● Final assignment of grades will be based on a curve.

Course Events and Schedules
Week Dates Tentative submission Tasks

2 Project group formation

2 Apr 10 Initial Project proposal
due

Project proposals
complete

3 Apr 17 HW1: Paper Reviews System architecture
complete

4 Project meetings 1

5 May 1 HW2: Paper Reviews Implementation initiated

6 May 8 Project survey due Project survey complete

7 May 16 HW3: Paper Reviews

8 Implementation done?

9 Project meetings 2

10 Jun 5 HW 4: Paper Reviews Experimental Validation

11 Finals Week Project demos, reports, slides
Intro to Distributed Systems Middleware 6

P
ro

je
ct

 m
ee

tin
g

Lecture schedule
● Distributed Middleware Concepts

● Distributed Computing Fundamentals: Time, State and Coordination in
Distributed Systems (Spanner, Zookeeper,Chubby, Schedulers and VM
Migration)

● Distributed Computing Architectures: Client-server systems, P2P systems,
cluster computing platforms (Pastry, BitTorrent)

● Messaging Middlewares, Pub/Sub systems, Streaming Systems and Complex
Event Processing (DDS, Kafka, Pulsar, Storm, Flink)

● Fault Tolerance: Practical Consensus, Practical Failure Detectors, Byzantine
consensus (Paxos, Raft, Blockchain)

● Middleware Frameworks
● DCE, CORBA, Hadoop, Spark, Storm
● Java-based Technologies: RMI, JINI, EJB, J2EE
● Service-Oriented Technologies: XML, Web Services, .NET
● Cloud Computing Platforms: AWS, Azure, Google Cloud Services etc.
● Container Technologies: Docker, Kubernetes, Cloud Native

● Middleware for Target Application Environments
● Real-time and QoS based Middleware, Mobile and pervasive computing,

wireless sensor networks, CPS/IoT
7

What is a Distributed System?

8

What is a Distributed System?

9

What is a Distributed System?

Internet

10
Banking systems, Communication (messaging, email), Distributed information systems (WWW, federated DBs,
Manufacturing and process control, Inventory systems, ecommerce, Cloud platforms, mobile computing
infrastructures, pervasive/IoT systems

Intro to Distributed Systems
Middleware 11

Distributed Systems
● Lamport’s Definition

● “ You know you have one when the crash of a computer you have never heard
of stops you from getting any work done.”

● “A number of interconnected autonomous computers that provide services to
meet the information processing needs of modern enterprises.”

● Andrew Tanenbaum
A distributed system is a collection of independent computers that appear
to the users of the system as a single computer

● FOLDOC (Free on-line Dictionary)
A collection of (probably heterogeneous) automata whose distribution is
transparent to the user so that the system appears as one local machine. This is in
contrast to a network, where the user is aware that there are several machines,
and their location, storage replication, load balancing and functionality is not
transparent. Distributed systems usually use some kind of “client-server
organization”

Intro to Distributed Systems
Middleware 12

Characterizing Distributed Systems

● Multiple Computers
● each consisting of CPU’s, local memory, stable

storage, I/O paths connecting to the environment

● Interconnections
● some I/O paths interconnect computers that talk to

each other

● Shared State
● systems cooperate to maintain shared state
● maintaining global invariants requires correct and

coordinated operation of multiple computers.

Intro to Distributed Systems
Middleware 13

Why Distributed Computing?

● Inherent distribution
● Bridge customers, suppliers, and companies at

different sites.

● Speedup - improved performance
● Fault tolerance
● Resource Sharing

● Exploitation of special hardware

● Scalability
● Flexibility

Intro to Distributed Systems
Middleware 14

Why are Distributed Systems Hard?

● Scale
● numeric, geographic, administrative

● Loss of control over parts of the system
● Unreliability of message passing

● unreliable communication, insecure communication,
costly communication

● Failure
● Parts of the system are down or inaccessible
● Independent failure is desirable

15

The 8 Fallacies of
Distributed Computing

16

https://www.google.com/url?q=http://www.youtube.com/watch?v%3DJG2ESDGwHHY&sa=D&source=editors&ust=1648773892847726&usg=AOvVaw2jxdVKhWZ_zRMdm2vbsSND

Intro to Distributed Systems
Middleware 17

Design goals of a distributed system

● Sharing
● HW, SW, services, applications

● Openness(extensibility)
● use of standard interfaces, advertise services, microkernels

● Concurrency
● compete vs. cooperate

● Scalability
● avoids centralization

● Fault tolerance/availability
● Transparency

● location, migration, replication, failure, concurrency

Intro to Distributed Systems
Middleware 18

A
pp

lic
at

io
n

D
ev

el
op

er

• Code Reusability
• Interoperability
• Portability
• Reduced
 Complexity

• Reduce
 Complexity

• Better Mgmt.
 Tools

• Deal w/ changing
 technology

• Personalized Environment
• Predictable Response
• Location Independence
• Platform Independence

• Flexibility
• Real-Time Access
 to information

• Scalability
• Faster Developmt.
 and deployment of
 Business Solutions

ORGANIZATION

Sy
st

em
 A

dm
in

is
tra

to
r

END-USER

[cf: Khanna94]

Intro to Distributed Systems
Middleware 19

What is Middleware?

● Middleware is the software between the application programs and
the Operating System/base networking.
● An Integration Fabric that knits together applications, devices, systems

software, data
● Distributed Middleware

● Provides a comprehensive set of higher-level distributed computing
capabilities and a set of interfaces to access the capabilities of the
system.

● Includes software technologies to help manage complexity and heterogeneity
inherent to the development of distributed systems/applications/information
systems

● Higher-level programming abstraction for developing distributed applications
● Higher than “lower” level abstractions, such as sockets, monitors provided by the OS

operating system
● Socket: a communication end-point from which data can be read or onto which data can

be written

cf: Arno Jacobsen lectures, Univ. of Toronto

Middleware Systems Views

● An operating system is “the software that makes the
underlying hardware usable”

● Similarly, a middleware system makes the distributed
system programmable and manageable

● Bare machines without an OS could be programmed
● programs could be written in assembly, but higher-level

languages are far more productive for this purpose

● Distributed applications can be developed without
middleware
● But far more cumbersome

cf: Arno Jacobsen lectures, Univ. of Toronto

The Evergrowing Alphabet Soup
Distributed
Computing

Environment (DCE)

Object Request Broker
 (ORB)

opalORB
Distributed Component
 Object Model (DCOM)

ZEN

RTCORBA

JINITM
Remote Method

 Invocation
 (RMI)

Remote Procedure Call
 (RPC)

Enterprise
JavaBeans
Technology

 (EJB)

BEA WebLogic®
Encina/9000

Extensible Markup Language
(XML)

SOAP

EAI

Orbix

ORBlite

WS-BPEL
WSIL

WSDL

XQuery

XPath

BEA Tuxedo®

Message Queuing (MSMQ)

Borland® VisiBroker®

IDL

IOP
 IIOP
 GIOP

Rendezvous

BPEL

Java Transaction API
(JTA) JNDI JMS LDAP

Just Apache Platforms

22

Amazon, Google, Microsoft

23

Microsoft Azure Product Family…

24

Intro to Distributed Systems
Middleware 25

More Middlewares…

● DCE,CORBA, OMG, CanCORBA, ORBIX, JavaORB, ORBLite, TAO,
Zen, RTCORBA, FTCORBA,DCOM, POA,IDL,IOP,IIOP, ObjectBroker,
Visibroker, Orbix, ObjectBus,ESBs

● MOM – TIBCO TIB/Rendezvous, BEA MessageQ, Microsoft MSMQ,
ActiveWorks

● JVM, JINI, RMI, J2EE, EJB,J2ME, JDBC,JTA, JTS,JMS, JNDI,
● SOAP, Web Services, WSDL, BPEL
● Enterprise Middleware Technologies -- BEA WebLogic, IBM

WebSphere, TivoliBeans
● XML, XQuery, XPath, JSON, MQTT, CoAP
● Hadoop, MapReduce, VM, IaaS, PaaS, NaaS, DAS
● Cassandra, Dynamo,

Intro to Distributed Systems
Middleware 26

Distributed Systems
Middleware

● Enables the modular interconnection of distributed
systems software (typically via services)

● abstract over low level mechanisms used to
implement management services.

Application Program

Middleware
Service 1

API
Middleware

Service 3

API
Middleware

Service 2

API

Intro to Distributed Systems
Middleware 27

Useful Middleware Services

● Naming and Directory Service
● State Capture Service
● Event Service
● Transaction Service
● Fault Detection Service
● Trading Service
● Replication Service
● Migration Service

Intro to Distributed Systems
Middleware 28

Traditional Systems -
Three Tier Client/Server Computing

● Allocates application
processing between
the client and
server processes.

● Basic components
of a 3 tier
architecture
● Presentation logic
● Application logic
● Data management

logic

Intro to Distributed Systems
Middleware 29

Application Systems:

Enterprise Systems:
•Engineering systems
•Business systems

M
an

ag
em

en
t

an
d

Su
pp

or
t

N
et

w
or

k
M

an
ag

em
en

t

In
te

ro
pe

ra
bi

lit
y

Po
rta

bi
lit

y
In

te
gr

at
io

n

• Manufacturing
• Office systems

User
Interfaces

Processing
programs

Data files &
Databases

Distributed Computing Platform
• Application Support Services

C/S Support Distributed
OS

Dist. Data
Trans. Mgmt.

Common Network Services
• Network protocols & interconnectivity

OSI
protocols

TCP/IP

Event-driven Architecture for a Real-time Enterprise

Enterprise Cloud Computing

31

Key problem space challenges
•Highly dynamic behavior
•Transient overloads
•Time-critical tasks
•Context-specific requirements
•Resource conflicts
•Interdependence of (sub)systems
•Integration with legacy (sub)systems

New application domains cf: Doug Schmidt

Key solution space challenges
•Enormous complexity
•Continuous evolution & change
•Highly heterogeneous platform,
language, & tool environments

Key problem space challenges
•Highly dynamic behavior
•Transient overloads
•Time-critical tasks
•Context-specific requirements
•Resource conflicts
•Interdependence of (sub)systems
•Integration with legacy (sub)systems

New application domains cf: Doug Schmidt

Key solution space challenges
•Enormous accidental & inherent
complexities

•Continuous evolution & change
•Highly heterogeneous platform,
language, & tool environments

Key problem space challenges
•Highly dynamic behavior
•Transient overloads
•Time-critical tasks
•Context-specific requirements
•Resource conflicts
•Interdependence of (sub)systems
•Integration with legacy (sub)systems

Mapping problem space requirements to solution space artifacts is very hard!

New application domains

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems &
Protocols

Extending the OSI Layering for the
Software Infrastructure

SCADA
infrastructure

Systems

Air Traffic
Mgmt

Aerospace

Mission critical
applications

Software stack

Hardware
infrastructure

Intro to Distributed Systems
Middleware 36

Types of Middleware

● Integrated Sets of Services -- DCE
● Domain Specific Integration frameworks
● Distributed Object Frameworks
● Component services and frameworks
● Web-Services and Service-Oriented Frameworks
● Virtualization
● Cloud Based (Elastic) Frameworks
● Container Technologies

Middleware Evolution (views)

37

38

Middleware Evolution (views)

Intro to Distributed Systems
Middleware 39

Integrated Sets Middleware

● An Integrated set of services consist of a set of
services that take significant advantage of each
other.

● Example: DCE

Intro to Distributed Systems
Middleware 40

Distributed Computing
Environment (DCE)

● DCE - from the Open Software Foundation (OSF), offers an environment
that spans multiple architectures, protocols, and operating systems
(supported by major software vendors)
● It provides key distributed technologies, including RPC, a distributed naming service, time

synchronization service, a distributed file system, a network security service, and a threads
package.

Operating System Transport Services

DCE Threads Services

DCE Remote Procedure Calls

DCE
Distributed

Time Service

DCE
Directory
Service

Other Basic
Services

DCE Distributed File Service

Applications

DCE
Security
Service

M
an

ag
em

en
t

Intro to Distributed Systems
Middleware 41

Integration Frameworks
Middleware (Domain-specific)

● Integration frameworks are integration
environments that are tailored to the
needs of a specific application domain.

● Workgroup framework - for
workgroup computing.

● Transaction Processing monitor
frameworks

● Network management frameworks

Fault Management—Detect, isolate, notify, and correct faults encountered in the network.

Configuration Management—Configuration of network devices, configuration file management, software

Performance Management—Monitor and measure various aspects of performance

Security Management—Provide access to network devices and corporate resources to authorized individuals.

Accounting Management—Usage information of network resources.

ISO Model for Network Management Services

A Sample Network Management
Framework (WebNMS)

Intro to Distributed Systems
Middleware 42

http://www.webnms.com/webnms/ems.html

Intro to Distributed Systems
Middleware 43

Distributed Object Computing

● Combining distributed computing with an object model.
● More abstract level of programming
● The use of a broker like entity or bus that keeps track of

processes, provides messaging between processes and other
higher level services

● CORBA, COM, DCOM, JINI, EJB, J2EE
● . Note: DCE uses a procedure-oriented distributed systems

model, not an object model.

Objects and Threads

● C++ Model
● Objects and threads are tangentially related
● Non-threaded program has one main thread of control

● Pthreads (POSIX threads)
• Invoke by giving a function pointer to any function in the system
• Threads mostly lack awareness of OOP ideas and environment
• Partially due to the hybrid nature of C++?

● Java Model and Concurrency
● Objects and threads are separate entities

● Primitive control over interactions
● Properties of connection between object and thread are not well-defined or

understood
● Synchronization capabilities primitive

● “Synchronized keyword” guarantees safety but not liveness
● Deadlock is easy to create
● Fair scheduling is not an option

Distributed Objects

● Issues with Distributed Objects
● Abstraction
● Performance
● Latency
● Partial failure
● Synchronization
● Complexity
● …..

● Techniques
● Message Passing

● Object knows about network;
● Network data is minimum

● Argument/Return Passing
● Like RPC.
● Network data = args + return

result + names
● Serializing and Sending Object

● Actual object code is sent. Might
require synchronization.

● Network data = object code +
object state + sync info

● Shared Memory
● based on DSM implementation
● Network Data = Data touched +

synchronization info

Intro to Distributed Systems
Middleware 45

Intro to Distributed Systems
Middleware 46

The Object Management
Architecture (OMA)

Application objects: document
handling objects.

 ORB: the communication hub for
all objects in the system

Object Services: object events, persistent
objects, etc.

Common facilities: accessing databases,
printing files, etc.

Intro to Distributed Systems
Middleware 47

CORBA

● CORBA is a standard specification for developing
object-oriented applications.

● CORBA was defined by OMG in 1990.
● OMG is dedicated to popularizing

Object-Oriented standards for integrating
applications based on existing standards.

Distributed Object Models

● Combine techniques
● Goal: Merge parallelism and OOP

● Object Oriented Programming
● Encapsulation, modularity
● Separation of concerns

● Concurrency/Parallelism
● Increased efficiency of algorithms
● Use objects as the basis (lends itself well to natural design

of algorithms)
● Distribution

● Build network-enabled applications
● Objects on different machines/platforms communicate

Actors:
A Model of Distributed Objects

Thread
State

Procedure

Thread State

Procedur
e

Thread
State

Procedure

Interface

Interface

Interface

Messages

Actor system - collection of
independent agents interacting via
message passing

An actor can do one of three things:
1.Create a new actor and initialize its behavior
2.Send a message to an existing actor
3.Change its local state or behavior

Features
• Acquaintances

•initial, created, acquired
•History Sensitive
•Asynchronous communication

Erlang, E Language, Scala/Akka, Ptolemy, SALSA,
Charm++, ActorFoundry, Asynchronous Agents Library
and Orleans.

Used in: Twitter's message queuing system, Lift Web
Framework, Facebook chat, Vendetta's game engine.

 Modeling Distributed Systems

Key Questions
● What are the main entities in the system?
● How do they interact?
● How does the system operate?
● What are the characteristics that affect their

individual and collective behavior?

Intro to Distributed Systems
Middleware 51

Characterize Distributed Systems

● Based on Architectural Models
● Client-Server, Peer-to-peer, Proxy based,…

● Based on computation/communication - degree
of synchrony
● Synchronous, Asynchronous

● Based on communication style
● Message Passing, Shared Memory

● Based on Fault model
● Crash failures, Omission failures, Byzantine failures
● how to handle failure of processes/channels

Architectural Styles for
Distributed Systems

52

Layered Architectures

53

Intro to Distributed Systems
Middleware 54

3 Tier Client/Server Model:
Distributing Functionality

Presentation logic module running on the client system and the other two modules
running on one or more servers.

Presentation logic and application logic modules running on the client system and the
data management logic module running on one or more servers.

Presentation logic and a part of application logic module running on the client system
and the other part(s) of the application logic module and data management module
running on one or more servers

Architectural Models

● Multiple servers, proxy servers and caches, mobile code, …

Proxy

Multiple
servers

Mobile code

Architectural Model
Peer-to-peer systems

• No single node server
as a server

• All nodes act as client
(and server) at a time

Cloud Computing

A model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services)

57

Edge Computing

58

Serverless Computing

59

Azure Synapse Analytics

Intro to Distributed Systems
Middleware 60

Computation in distributed
systems

Two variants based on bound on timing of events

● Asynchronous system
● no assumptions about process execution speeds and message

delivery delays

● Synchronous system
● make assumptions about relative speeds of processes and delays

associated with communication channels
● constrains implementation of processes and communication

Correctness of distributed computations
● Safety, Liveness, Fairness
● E.g. ACID properties in transactional systems

Intro to Distributed Systems
Middleware 61

Communication in Distributed
Systems

● Provide support for entities to communicate
among themselves
● Centralized (traditional) OS’s - local communication

support
● Distributed systems - communication across machine

boundaries (WAN, LAN).
● 2 paradigms

● Distributed Shared Memory (DSM)
● Communication through a virtual shared memory.

● Message Passing
● Processes communicate by sharing messages

Intro to Distributed Systems
Middleware 62

Distributed Shared Memory

● Abstraction used for processes on machines that
do not share memory
● Motivated by shared memory multiprocessors that do

share memory

● Processes read and write from virtual shared
memory.
● Primitives - read and write
● OS ensures that all processes see all updates

● Caching on local node for efficiency
● Issue - cache consistency

Message Passing

State State

Message

● Basic primitives
● Send message, Receive message

Properties of communication channel
Latency, bandwidth and jitter

Intro to Distributed Systems
Middleware 64

Messaging issues

● Unreliable communication

● Best effort, No ACK’s or
retransmissions

● Application programmer
designs own reliability
mechanism

● Reliable communication
● Different degrees of reliability

● Processes have some
guarantee that messages will
be delivered.

● Reliability mechanisms - ACKs,
NACKs.

Synchronous
● atomic action requiring the

participation of the sender and
receiver.

● Blocking send: blocks until
message is transmitted out of the
system send queue

● Blocking receive: blocks until
message arrives in receive queue

Asynchronous
● Non-blocking send:sending process

continues after message is sent
● Blocking or non-blocking receive:

Blocking receive implemented by
timeout or threads. Non-blocking
receive proceeds while waiting for
message. Message is
queued(BUFFERED) upon arrival.

Synchronous vs. Asynchronous

Communication Type (sync/async)
Personal greetings Sync
Email Async
Voice call Sync
Online messenger/chat Sync ?

Letter correspondence Async

Skype call Sync
Voice mail/voice SMS Async

Text messages Async

Intro to Distributed Systems
Middleware 66

Remote Procedure Call

● Builds on message passing
● extend traditional procedure call to perform transfer of control

and data across network
● Easy to use - fits well with the client/server model.
● Helps programmer focus on the application instead of the

communication protocol.
● Server is a collection of exported procedures on some shared

resource
● Variety of RPC semantics

● “maybe call”
● “at least once call”
● “at most once call”

Intro to Distributed Systems
Middleware 67

Fault Models in Distributed
Systems

● Crash failures
● A processor experiences a crash failure when it ceases

to operate at some point without any warning. Failure
may not be detectable by other processors.

● Failstop - processor fails by halting; detectable by
other processors.

● Byzantine failures
● completely unconstrained failures
● conservative, worst-case assumption for behavior of

hardware and software
● covers the possibility of intelligent (human) intrusion.

Failure Models in Distributed Systems

Class of
failure

Affe
cts

Descripti
onFail-stop Process Process halts and remains halted. Other processes may
detect this
state.Cras

h
Process Process halts and remains halted. Other processes may

not be able to detect this
state.Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omissio
n

Process

A process completes a sen
d,

 but the message is not put
in its outgoing message
buffer.Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantin
e)

Process
orchannel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take
anincorrect step.

Timing Failure Models

Class of
Failure

Affe
cts

Descripti
onCloc

k
Process Process’s local clock exceeds the bounds on its

rate of drift from real
time.Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Timing failures

Distributed Systems & Middleware
Research at UC Irvine

Adaptive and Reflective Middleware
Contessa, CompOSE|Q: Adaptive System Interoperability,

Composable Open Software Environment with QoS
MIRO: Adaptive Middleware for a Mobile Internet Robot

Laboratory
MetaSIM: Reflective Middleware Solutions for Integrated

Simulation Environmetns

Pervasive and Ubiquitous Computing
BAD: Big Active Data (Big Data Publish Subscribe)
SIGNAL: Societal Scale Geographical Notification and Alerting
PC3: Pervasive Computing for Developing Nations
SATWARE:A Middleware for Sentient Spaces ,
 Quasar: Quality Aware Sensing Architecture,
SUGA:Middleware Support for Cross-Disability Access

Mission Critical Applications
RESCUE: Responding to Crises and Unexpected Events,
Customized Dissemination in the Large
SAFIRE: Situational Awareness for Firefighters
Responsphere: An Testbed for Responding to the Unexpected

Cyber Physical Systems and IoT
Cypress: CYber Physical RESilliance and Sustainability
 I-sensorium: A shared experimental laboratory housing

state-of-the-art sensing, actuation, networking and mobile
computing devices

SCALE – IoT-based smart and resilient communities
AquaSCALE – IoT-based Resilience in Water Infrastructures
TIPPERS – IoT and Privacy

Middleware Support for Mobile Applications
FORGE: A Framework for Optimization of Distributed Embedded

Systems Software
Dynamo: Power Aware Middleware for Distributed Mobile

Computing
MAPGrid: Mobile Applications Powered by Grids
Xtune: Cross Layer Tuning of Mobile Embedded Systems

Intro to Distributed Systems
Middleware 70

https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/contessa/Contessa_index.html&sa=D&source=editors&ust=1648773903916805&usg=AOvVaw3RZqV78DPGuV1n65Yw_3kX
https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/project/signal/index.html&sa=D&source=editors&ust=1648773903917007&usg=AOvVaw2tRV2gi_J3IUL4yBqPpu91
https://www.google.com/url?q=http://www.ics.uci.edu/~projects/SATware/index.html&sa=D&source=editors&ust=1648773903917148&usg=AOvVaw2IS8SNd0vOWpfyVEviOWaa
https://www.google.com/url?q=http://www-db.ics.uci.edu/pages/research/quasar/&sa=D&source=editors&ust=1648773903917342&usg=AOvVaw0mShNgxC_R3nnkogRwJYQx
https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/suga/&sa=D&source=editors&ust=1648773903917527&usg=AOvVaw1bKp235G-IjZRs1T8xgW43
https://www.google.com/url?q=http://www.itr-rescue.org/aboutus/index.php&sa=D&source=editors&ust=1648773903917670&usg=AOvVaw3ud-upA33xFHWXtfoygBXM
https://www.google.com/url?q=http://cert.ics.uci.edu/SAFIRE/index.html&sa=D&source=editors&ust=1648773903917790&usg=AOvVaw3sqoh0qKrCQEcTmwTRLRr0
https://www.google.com/url?q=http://www.responsphere.org/index.php&sa=D&source=editors&ust=1648773903917900&usg=AOvVaw1KSAfHCmOyQfEXsTGuXzhr
https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/cypress/index.html&sa=D&source=editors&ust=1648773903936286&usg=AOvVaw3miUJic4b02EoHS8hh0Jyc
https://www.google.com/url?q=http://i-sensorium.ics.uci.edu/&sa=D&source=editors&ust=1648773903936475&usg=AOvVaw09T4ohsfFoaFb2hyeyIrlh
https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/cypress/index.html&sa=D&source=editors&ust=1648773903936599&usg=AOvVaw3WYat54d8vsWhTEM6NQQRM
https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/cypress/index.html&sa=D&source=editors&ust=1648773903936718&usg=AOvVaw0kEAgVSo2IfRScc9X6qwzl
https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/cypress/index.html&sa=D&source=editors&ust=1648773903936835&usg=AOvVaw3DT8axudEHpO10-F-IPVU4
https://www.google.com/url?q=http://www.ics.uci.edu/~forge&sa=D&source=editors&ust=1648773903936940&usg=AOvVaw37bVDPMOBOpJ8Il03mdIhM
https://www.google.com/url?q=http://www.ics.uci.edu/~dsm/dyn/release/publication.html&sa=D&source=editors&ust=1648773903937064&usg=AOvVaw1JkJYPw7NMuAcvTPlx2BPu
https://www.google.com/url?q=http://mapgrid.ics.uci.edu/&sa=D&source=editors&ust=1648773903937192&usg=AOvVaw2CAMPXJjdTD_5RmSAAgH23
https://www.google.com/url?q=http://xtune.ics.uci.edu/&sa=D&source=editors&ust=1648773903937317&usg=AOvVaw0InyDTg7d-uS5mE4jyArGz

71

Mobile Middleware

72

To build a power-cognizant distributed middleware framework that can
o exploit global changes (network congestion, system loads, mobility patterns)
o co-ordinate power management strategies at different levels

 (application, middleware, OS, architecture)
o maximize the utility (application QoS, power savings) of a low-power device.
o study and evaluate cross layer adaptation techniques for performance vs. quality vs.
power tradeoffs for mobile handheld devices.

 Dynamo: Power Aware Mobile Middleware

Wide Area
Network

Wireless
Network

Low-power
mobile device

proxy

Use a Proxy-Based Architecture

Network Infrastructure

Execute Remote Tasks

Caching Compress

DecryptionEncryption

Compositing Transcode

73

Middleware for Pervasive Systems -
UCI I-Sensorium Infrastructure

73

Campus-wide infrastructure to instrument, experiments,
monitor, disaster drills & to validate technologies

sensing, communicating, storage & computing infrastructure

Software for real-time collection, analysis, and processing of
sensor information

used to create real time information awareness & post-drill
analysis

74

Mote Sensor Deployment

IEEE 802.15.4 (zigbee)

Crossbow MIB510
Serial Gateway

Polar Heart
Rate
Module

Polar T31 Heart rate
strap transmitter

Proprietary EMF
transmission

To
SAFIRE
Server

IMU (5 degrees of

freedom)

Crossbow MDA 300CA
Data Acquisition
board on MICAz
2.4Ghz Mote

Heart Rate

Inertial positioning

Carbon monoxide

Temperature, humidity Carboxyhaemoglobin, light

UC Irvine Sensorium Boxes
(building on Caltech CSN project)

● SheevaPlug computer
● Accelerometer
● Ethernet
● Battery backup
● Additional Sensors

● Wi-Fi dongle, Smoke, Toxic
gases (e.g. CO), Radiation,
Humidity, Microphone,
Camera

● Humidity
● control (de)humidifer, particularly for

individuals with respiratory ailments
● Camera

● boiling pot, monitor pet's food and
water, face recognition

● Microphone / accelerometer
● detect gunshot in an apartment building

/ complex
● Microphone / light sensor

● monitor thunderstorm activity

76

SATware: A semantic middleware for
multisensor applications

Abstraction
- makes programming
easy
- hides heterogeneity,
failures, concurrency

Provides core services across
sensors

- alerts, triggers, storage,
queries

Mediates app needs and
resource constraints

- networking, computation,
device

77

SAFIRENET – Next Generation MultiNetworks

● Multitude of technologies
● WiFi (infrastructure, ad-hoc), WSN,

UWB, mesh networks, DTN, zigbee
● SAFIRE Data needs

● Timeliness
● immediate medical triage to a

FF with significant CO exposure
● Reliability

● accuracy levels needed for CO
monitoring

● Limitations
● Resource Constraints

● Video, imagery
● Transmission Power, Coverage,

● Failures and Unpredictability
● Goal

● Reliable delivery of data over
unpredictable infrastructure

Sensors
Dead Reckoning
(don’t send
Irrelevant data)

Multiple
networks

Information need

D
AT

A N
E

E
D

S

MINA: Middleware for Multinetworks

1. Tier based overlay architecture
(Using Network centrality,
clustering)

2. Heterogeneous
Networks and
devices 3. Diverse services

and applications

Next Generation Notification Systems

Infrastructure
Networks

Content Delivery

Non-Cooperative Cooperative

Reliable
and Fast
Content
Delivery

Massive
Video

Streaming

Cost-Driven
Content
Delivery

Delay-
Guaranteed

Content
Delivery

Content Delivery with
Hybrid Networks

Middleware for Societal Scale Information
Sharing

Societal scale delay-tolerant
information sharing

Societal scale instant
information sharing

Information
Layer

Dissemination
Layer

80

DYNATOPS: efficient
Pub/Sub under societal

scale dynamic
information needs

GSFord: Reliable
information delivery

under regional failures

Efficient mobile
information

crowdsourcing and
querying

OFacebook: efficient
offline access to online
social media on mobile

devices

81

82

Topics for presentations

Pastry,Chord, BitTorrent

Google Spanner

Apache Spark

Google Chubby, Apache Zookeeper,

Amazon Pub/Sub, Apache Kafka, Azure EventHub

Apache Storm,

Apache Pulsar,

Apache Flink,

Amazon Dynamo

Facebook Memcached

Docker/Kubernetes

CloudNative

