
Fault Tolerance Middleware for  
Distributed Systems

CompSci 237
Prof. Nalini Venkatasubramanian
(with slides/animations  adapted from Prof. Ghosh, Uof Iowa and 
Prof. Gupta, UIUC, Prof. Birman, Cornell Univ., Prof. Lynch, MIT, 
Prof. Zhang, ETS Montreal)



Fundamentals

results incauses
Fault Error Failure

Characterizing faults
– fault tolerance and limits 

How to provide fault tolerance ?
● Replication/ Redundancy
● Checkpointing/rollback and 

message logging
● Hybrid

Fault - defect within the system 
(hardware/software/network) 

Error – is observed by a deviation from the 
expected behavior of the system

Failure occurs when the system can no longer 
perform as required (does not meet spec) 

Fault Tolerance – is ability of system to 
provide a service, even in the presence of 
errors 

Why fault tolerance?
● Availability, reliability, dependability



4

Attributes
• Availability
• Reliability
• Safety
• Confidentiality
• Integrity
• Maintainability

Consequences
• Fault
• Error
• Failure Strategies

• Fault prevention
• Fault tolerance
• Fault recovery
• Fault forcasting

What is  a Dependable system?

How to distinguish faults? 

How to handle faults?

Attributes, Consequences and 
Strategies



5

❑ System attributes:
·  Availability – system always ready for use, or probability that 

system is ready or available at a given time
·  Reliability – property that a system can run without failure, 

for a given time
·  Safety – indicates the safety issues in the case the system fails
·  Maintainability – refers to the ease of repair to a failed 

system
❑ Failure in a distributed system = when a service cannot be 

fully provided 
❑ System failure may be partial
❑ A single failure may affect other parts of a system (failure 

escalation)                    

Attributes of a Dependable 
System



6

Hard or Permanent Faults
● repeatable error, e.g. failed component, power fail, fire, flood, design error, sabotage

Soft Faults
● Transient – occurs once or seldom, often due to unstable environment (e.g. bird flies past 

microwave transmitter)
○ (Hardware) Arbitrary perturbation of the global state. May be induced by power surge, weak 

batteries, lightning, radio-frequency interferences, cosmic rays etc.
○ (Software) Heisenbugs temporary internal faults, intermittent. They are essentially 

permanent faults whose conditions of activation occur rarely or are not easily 
reproducible

● Intermittent – occurs randomly, but where factors influencing fault are not clearly 
identified, e.g. unstable component

● Operator error – human error

Types of Fault (wrt time)

Over 99% of bugs in IBM DB2 production code are non-deterministic and transient (Jim Gray)



7

Types of Fault (wrt attributes)

Type of failure Description

Crash failure
Amnesia crash
Pause crash
Halting crash

A server halts, but is working correctly until it halts
Lost history, reboot
Remembers state before crash, can be recovered
Hardware failure, must be replaced or re-installed

Omission failure
Receive omission
Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure A server's response lies outside the specified time 
interval

Response failure
Value failure
State transition 

failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary failure 
(Byzantine)

A server may produce arbitrary responses at 
arbitrary times (includes malicious behavior)



Crash failures

Crash failure = the process halts. It is irreversible.
● Synchronous systems:  easy to detect crash failure (using heartbeat signals

and timeout). 
● Asynchronous systems: Hard. Not possible to distinguish between a process 

that has crashed, and a process that is running very slowly.

Some failures may be complex and nasty. Fail-stop failure is a simple 
abstraction that mimics crash failure when program execution becomes 
arbitrary. Implementations help detect which processor has failed. If a system 
cannot tolerate fail-stop failure, then it cannot tolerate crash.



More Failure Classification
Fail-stop Failures

▪ crash failures that can be reliably detected
Fail-noisy Failures

▪ crash failures that can eventually be detected
▪ there may be some a priori unknown time in which the detection 

is unreliable
Fail-silent Failures 

▪ can not distinguish crash failures from omission failures
Fail-safe Failures

▪ arbitrary failures but benign
Fail-arbitrary Failures 

▪ failures may be unobservable in addition to being harmful



Temporal failures

● Poor algorithms
● Poor design strategy
● Loss of synchronization 

among the processor 
clocks

Inability to meet deadlines – correct results are generated, but too 
late to be useful. Very important in real-time systems.



12

Actions to identify and 
remove errors:
• Design reviews
• Testing
• Use certified tools
• Analysis:
• Hazard analysis
• Formal methods - proof & 

refinement

• No non-trivial system can 
be guaranteed free from 
error

• Must have an expectation of 
failure and make 
appropriate provision

• Fault avoidance
Techniques aim to prevent faults from entering the system 
during design stage

• Fault removal
Methods attempt to find faults within a system before it 
enters service

• Fault detection
Techniques used during service to detect faults within the 
operational system

• Fault tolerance and recovery
Techniques designed to tolerant faults, i.e. to allow the 
system operate correctly in the presence of faults.

Strategies to Handle Faults



13

■ Hardware redundancy
− Use more hardware: RAID, Triple Modular Redundancy …

■ Software redundancy
− Use more software 

■ Information redundancy, e.g.
− Parity bits
− Error detecting or correcting codes
− Checksums 

■ Temporal (time) redundancy
− Repeating calculations and comparing results
− For detecting transient faults

Redundancy - handling failures



Modular Redundancy

● Modular Redundancy
● Multiple identical replicas of hardware modules
● Voter mechanism
● Compare outputs and select the correct output

● Tolerate most hardware faults
● Effective but expensive

Consumer
Data

Producer 
B

voter

Producer 
A

fault

14



15

(a) Original circuit
(b) Triple modular redundancy

Triple Modular Redundancy



Software Redundancy: 
N-version Programming

● N-version Programming
● Different versions by different teams, different implementations of 

the same specification
● Different versions may not contain the same bugs
● Voter mechanism
● Tolerate some software bugs

Producer 
A Consumer

Data

voter

Progra
m i

Program 
j

Programmer K Programmer L

fault

17



18

Software Redundancy: Process Groups

● Organize several identical processes into a group - provides redundancy
○ Multicast/group communication ensures all members receive all messages (atomic, 

ordered)
○ Group membership 

● If one process in a group fails, another process can take over 
○ Processes dynamically join/leave  group - replace failed group members?? 
○ Membership protocol ensures agreement on group membership at any given time

● Design Issue : Reaching  agreement within a process group when one or more of its 
members cannot be trusted to give correct answers.



19

Fault Tolerance  with  Process Group

❑ A system is said to be k fault tolerant if it can survive 
faults in k components and still meets its specification.

❑ If the components (processes) fail silently, then having k + 
1 of them is enough to provide k fault tolerant.

❑ If processes exhibit Byzantine failures (continuing to run 
when sick and sending out erroneous or random replies, a 
minimum 2k + 1 processes are needed.

❑ If we demand that a process group reaches an agreement, 
such as electing a coordinator, synchronization, etc., we 
need even more processes to tolerate faults .



Failure Detection: Synchronous vs. 
Asynchronous 

● Single system – everything stops;  Distributed system - some parts may continue

● Synchronous Distributed System

● Each message is received within bounded time
● Each step in a process takes lb < time < ub; Each local clock’s drift has a known 

bound
● Example: Multiprocessor systems

● Asynchronous Distributed System
● No bounds on message transmission delays
● No bounds on process executionThe drift of a clock is arbitrary

● Example: Internet, wireless networks, datacenters, most real systems
20



Failure detection

The design of fault-tolerant algorithms will be simple if 
processes can detect failures.
● Impossibility results assume failures cannot be observed.
● In synchronous systems with bounded delay channels, 

crash failures can definitely be detected using timeouts.
● In asynchronous distributed systems, the detection of 

crash failures is imperfect.



Processes carry a Failure Detector  to detect crashed 
processes. 

Desirable Properties of a failure detector: 
● Completeness – Every crashed process is suspected
● Accuracy – No correct process is suspected. 
● Other factors 

● Speed -- time to first detection of a failure
● Overhead -- load on member process, network 

message load

Designing failure detectors



Example

0

6

1 3

5

247

0 suspects {1,2,3,7} to have failed. 
Does this satisfy completeness?
Does this satisfy accuracy?



Classification of completeness

● Strong completeness. Every crashed process
is eventually suspected by every correct
process, and remains a suspect thereafter.

● Weak completeness. Every crashed process is
eventually suspected by at least one correct
process, and remains a suspect thereafter.
Note that we don’t care what mechanism is used for suspecting a
process.



Classification of accuracy

● Strong accuracy. No correct process is ever
suspected.

● Weak accuracy. There is at least one correct
process that is never suspected.



Eventual accuracy

A failure detector is eventually strongly accurate, if there exists a 
time T after which no correct process is suspected. 

(Before that time, a correct process be added to and removed from 
the list of suspects any number of times) 

A failure detector is eventually weakly accurate, if there exists a time 
T after which at least one process is no more suspected.



Classifying failure detectors

Perfect P. (Strongly) Complete and strongly accurate
Strong S. (Strongly) Complete and weakly accurate
Eventually perfect ◊P.

(Strongly) Complete and eventually strongly accurate
Eventually strong ◊S

(Strongly) Complete and eventually weakly accurate

Other classes are feasible: W (weak completeness) and
weak accuracy) and ◊W



● Completeness = every process failure is eventually 
detected (no misses)

● Accuracy = every detected failure corresponds to a 
crashed process (no mistakes)

● Completeness and Accuracy 
● Can both be guaranteed 100% in a synchronous distributed 

system
● Can never be guaranteed simultaneously in an asynchronous 

distributed system

28

Failure detector properties



29

What Real Failure Detectors 
Prefer

● Completeness
● Accuracy
● Speed

● Time to first detection of a failure
● Scale

● Equal Load on each member
● Network Message Load

Guaranteed 

Partial/Probabilistic
guarantee



30

● Completeness
● Accuracy
● Speed

● Time to first detection of a failure
● Scale

● Equal Load on each member
● Network Message Load

Guaranteed 

Partial/Probabilistic
guarantee

Time until some
process detects the failure

What Real Failure Detectors 
Prefer



31

● Completeness
● Accuracy
● Speed

● Time to first detection of a failure
● Scale

● Equal Load on each member
● Network Message Load

Guaranteed 

Partial/Probabilistic
guarantee

Time until some
process detects the failure

No bottlenecks/single 
failure point

What Real Failure Detectors 
Prefer



pi pj

32

Detecting failures



pi pjX

Crash-stop failure
(pj is a failed 
process)

33

Detecting failures



pi pjX

needs to know about pj’s failure
(pi is a non-faulty process or 

alive process)

There are two main flavors of failure detectors
1. Ping-Ack (proactive)
2. Heartbeat (reactive)

crash-stop failure  
(pj is a failed process)

34

Detecting failures



pi pj

pi needs to know about pj’s failure

- pj replies
• pi queries pj once every T time units

• If pj does not respond within another T time units of being sent the 
ping, pi detects pj as failed

• Worst case Detection time = 2T, if pj fails, then within T time units, pi
will send it a ping message. pi will time out within another T time 
units.

• The waiting time T can be parameterized.

ping

ack

35

Ping-ack protocol



pi pj

- pj maintains a sequence number
- pj sends pi a heartbeat with incremented

sequence number after every T time units

If pi has not received a new heartbeat for the past, say 3T time units, since it 
received the last heartbeat, then pi detects pj as failed

heartbeat

If T >> round trip time of messages, then worst case detection time ~ 3*T 
(why?)

The 3 can be changed to any positive number since it is a parameter

36

Heartbeat protocol
pi needs to know about pj’s failure



● The Ping-ack and Heartbeat failure detectors are 
always “correct”
● If a process pj fails, then pi will detect its failure as long as 

pi itself is alive
● Why?
● Ping-ack: set waiting time T to be > round trip time 

upper bound 
● pi � pj latency + pj processing + pj � pi latency + pi

processing time
● Heartbeat: set waiting time 3T to be > round trip time 

upper bound

37

Synchronous DS case



● Impossible because of arbitrary message delays & 
message losses

● If a heartbeat/ack is dropped (or several are dropped) from 
pj, then pj will be mistakenly detected as failed � inaccurate 
detection

● How large would the T waiting period  in ping-ack or 3T
heartbeat waiting period, need to be to obtain 100% 
accuracy?

● In asynchronous systems, delay/losses on a network link are 
impossible to distinguish from a faulty process

● Heartbeat – satisfies completeness but not accuracy 

● Ping-Ack – satisfies completeness but not accuracy

38

Satisfying completeness and 
accuracy in asynchronous DS



● Most failure detector implementations are willing to tolerate some 
inaccuracy, but require 100% completeness

● Many distributed apps designed assuming 100% completeness, e.g., 
P2P systems
● “Err on the side of caution”
● Processes not “stuck” waiting for other processes

● If error in identifying is made then victim process rejoins as a new 
process and catches up

● Hearbeating and Ping-ack provide
● Probabilistic accuracy: for a process detected as failed, with 

some probability close to 1.0 (but not equal) it is true that it has 
actually crashed

39

Completeness or accuracy 
in asynchronous DS



● We want failure detection of not merely one 
process (pj), but all processes in the DS

● Approaches:
● Centralized heartbeat
● Ring heartbeat
● All-to-all heartbeat

Who guards the failure detectors?

40

Failure detection across the 
DS



Centralized Heartbeating

…

pi, Heartbeat Seq. l++ 

pi
☹ Hotspot

pj •Heartbeats sent periodically
•If heartbeat not received from pi within
timeout, mark pi as failed



Ring Heartbeating

pi, Heartbeat Seq. l++

☹ Unpredictable on
simultaneous multiple 

failures
pi

……

pj

Approach used in cluster settings



All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

Equal load per member
☹ Single hb loss � false 

detection
pi

pj

Variant - gossip style heartbeating (heartbeats with a member subset) -- AWS??? 
Determine gossip-period;  send o(N) heartbeats to a subset every gossip period



Detection of omission failures

For FIFO channels: Use sequence numbers with messages. 
(1, 2, 3, 5, 6 … ) ⇒ message 4 is missing

Non-FIFO bounded delay channels - use timeout

What about non-FIFO channels for which the upper bound
of the delay is not known? 

Use unbounded sequence numbers and acknowledgments.
But acknowledgments may be lost too!



Tolerating omission failures 
A real example

A central issue in networking
A

B

router

router

Routers may drop messages, but
reliable end-to-end transmission is an 
important requirement. If the sender

does not receive an ack within a time period,
it retransmits (it may so happen that the 

was not lost, so a duplicate is generated).
This implies, the communication must

tolerate Loss, Duplication, and Re-ordering 
of messages 



● Bandwidth: 
● the number of messages sent in the system during 

steady state (no failures)
● Small is good

● Detection time
● Time between a process crash and its detection
● Small is good

● Scalability: 
● How do bandwidth and detection properties scale 

with N, the number of processes?
● Accuracy
● Large is good

46

Detection efficiency metrics



● False Detection Rate/False Positive Rate 
(inaccuracy)
● Multiple possible metrics

1. Average number of failures detected per second, when 
there are in fact no failures

2. Fraction of failure detections that are false

● Tradeoffs: If you increase the T waiting period  
in ping-ack or 3T waiting period in heartbeating 
what happens to:
● Detection Time?
● False positive rate?
● Where would you set these waiting periods?

47

Accuracy metrics



● Maintain a list of other alive (non-faulty) processes at 
each process in the system

● Failure detector is a component in membership protocol
● Failure of pj detected � delete pj from membership list
● New machine joins � pj sends message to everyone �

add pj to membership list
● Flavors
● Strongly consistent: all membership lists identical at all 

times (hard, may not scale)
● Weakly consistent: membership lists not identical at all 

times
● Eventually consistent: membership lists always moving 

towards becoming identical eventually (scales well)

48

Membership protocols



Array of Heartbeat 
Seq. i for member 
subset

☺ Good accuracy 
properties

pi

49

Gossip protocols

• Mimic gossip in a social network, 
efficient to use due to DS large scale 

• In a random search the access time 
to any VM is of at most n3 for a 
regular graph and a third degree 
polynomial for any graph 



Gossip based failure 
detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol
• Each process maintains a membership 
list
• Each process periodically increments its 
own heartbeat counter

• Each process periodically gossips its 
membership list
• On receipt, the heartbeats are merged, 
and local times are updated

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2
(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

50



● O(log(N)) time for a heartbeat update to propagate to 
everyone with high probability

● Very robust against failures – even if a large number of 
processes crash, most/all of the remaining processes still 
receive all heartbeats

● Failure detection: If the heartbeat has not increased for 
more than Tfail seconds, 
the member is considered failed

● Tfail usually set to O(log(N)).
● But entry not deleted immediately: wait another Tcleanup

seconds (usually = Tfail)
● Why?

51

Gossip based failure 
detection



● What if an entry pointing to a failed node is 
deleted right after Tfail (=24) seconds?

● Solution: remember for another Tcleanup

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at node 2

52

Gossip based failure 
detection



● Worst case load L* per member in the group 
(messages per second)
● as a function of T, PM(T), N
● Independent Message Loss probability pml

53

What’s the Best/Optimal we 
can do?



54

Heartbeating

● Optimal L is independent of N (!)
● All-to-all and gossip-based: sub-optimal

● L=O(N/T)
● try to achieve simultaneous detection at all processes
● fail to distinguish Failure Detection and 

Dissemination components

�Can we reach this bound?
�Key:
• Separate the two components
• Use a non heartbeat-based Failure Detection Component



55

SWIM Failure Detector 
Protocol

Protocol period
= T’ time units

X
K random
processes

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj



56

● Prob. of being pinged in T’=

● E[T ] = 

● Completeness: Any alive member detects failure
● Eventually
● By using a trick: within worst case O(N) protocol periods

Detection Time



57

Accuracy, Load

● PM(T) is exponential in -K. Also depends on pml
(and pf )
● See paper

● for up to 15 % loss rates



58

SWIM Failure Detector

Parameter SWIM

First Detection Time
• Expected                    periods

• Constant (independent of group size)

Process Load • Constant per period
• < 8 L* for 15% loss

False Positive Rate • Tunable (via K)
• Falls exponentially as load is scaled

Completeness • Deterministic time-bounded
• Within O(log(N)) periods w.h.p.



59

Time-bounded Completeness

● Key: select each membership element once as 
a ping target in a traversal
● Round-robin pinging
● Random permutation of list after each traversal

● Each failure is detected in worst case 2N-1 
(local) protocol periods

● Preserves FD properties



60

SWIM versus Heartbeating

Process Load

First Detection
Time

Constant

Constant

O(N)

O(N)

SWIM

For Fixed :
• False Positive Rate
• Message Loss Rate

Heartbeating

Heartbeating



Next

● How do failure detectors fit into the big 
picture of a group membership protocol? 

● What are the missing blocks?

61



62

pjI pj crashed 

Group Membership Protocol

Unreliable Communication
Network

pi Some process 
finds out quickly

Failure DetectorII

Dissemination
III

Fail-stop Failures only



63

Dissemination Options

● Multicast (Hardware / IP)
● unreliable 
● multiple simultaneous multicasts

● Point-to-point (TCP / UDP)
● expensive

● Zero extra messages: Piggyback on Failure 
Detector messages
● Infection-style Dissemination



64

Infection-style 
Dissemination

Protocol period
= T time units

X

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

Piggybacked 
membership 
information

K random
processes



65

Infection-style 
Dissemination

● Epidemic/Gossip style dissemination
● After              protocol periods, processes would not 

have heard about an update

● Maintain a buffer of recently joined/evicted processes
● Piggyback from this buffer
● Prefer recent updates

● Buffer elements are garbage collected after a while
● After protocol periods, i.e., once they’ve propagated 

through the system; this defines weak consistency



66

Suspicion Mechanism

● False detections, due to
● Perturbed processes
● Packet losses, e.g., from congestion

● Indirect pinging may not solve the problem
● Key: suspect a process before declaring it as 

failed in the group



67

Suspicion Mechanism

Dissmn
FD

pi

Alive

Suspected

Failed

Dissmn  (Suspect pj)

Dissmn  (Alive pj) Dissmn  (Failed pj)

FD:: pi ping failed

Dissm
n::(S

uspect pj)
Time out

FD::pi ping success

Dissm
n::(A

live pj)



68

Suspicion Mechanism

● Distinguish multiple suspicions of a process
● Per-process incarnation number
● Inc # for pi can be incremented only by pi

● e.g., when it receives a (Suspect, pi) message
● Somewhat similar to DSDV (routing protocol in ad-hoc 

nets)
● Higher inc# notifications over-ride lower inc#’s
● Within an inc#: (Suspect inc #) > (Alive, inc #)
● (Failed, inc #) overrides everything else



69

SWIM In Industry

● First used in Oasis/CoralCDN 
● Implemented open-source by Hashicorp Inc.

● Called “Serf”
● Later “Consul”

● Today: Uber implemented it, uses it for failure 
detection in their infrastructure
● See “ringpop” system



70

Wrap Up

● Failures the norm, not the exception in 
datacenters

● Every distributed system uses a failure detector
● Many distributed systems use a membership 

service

● Ring failure detection underlies
● IBM SP2 and many other similar clusters/machines

● Gossip-style failure detection underlies
● Amazon EC2/S3 (rumored!)



CAP Theorem (1)

● In 2000, Eric Brewer introduced the idea 
that there is a fundamental trade-off 
between
● Consistency
● Availability
● Partition tolerance.
●

● This trade-off, which has become known as 
the CAP Theorem



CAP Theorem (2)

● Consistency

● Availability

● Partition tolerance. 



Theoretical context

● CAP Theorem
● a general trade-off that appears everywhere 

in the study of distributed computing
● the impossibility of guaranteeing both 

safety and liveness in an unreliable
distributed system



Theoretical context

● Safety: nothing bad ever happens
● Consistency is a classic safety property

● Liveness: eventually something good happens
● Availability is a classic liveness property

● Unreliable:
● Partitions
● crash failures
● message loss
● malicious attacks (or Byzantine failures) etc

● The CAP Theorem: you cannot achieve both safety and 
liveness in an unreliable distributed system.



Practical implications

● It is necessary in practice to sacrifice either
● Consistency
● Availability

● There are systems that 
● Guarantee strong consistency and provide best effort 

availability
● Guarantee availability and provide best effort consistency
● May sacrifice both consistency and availability



The CAP Theorem

● Brewer’s original conjecture
● CAP Theorem in the context of a web service
● A set of distributed servers
● Clients make requests for the service
● Server receives a request and sends a response
● The CAP Theorem: a trade-off between Consistency, 

Availability and Partition tolerance



The CAP Theorem-
Consistency

● Consistency: 
● each server returns the right response to each request
● meaning of consistency depends on the service

● Trivial services: 
● no coordination
● return the value of the constant PI=3.1416……

● Weakly consistent services: weaker consistency 
requirements that still provide useful services and yet 
avoid sacrificing availability
● A distributed web cache



The CAP Theorem-
Consistency

● Simple services:
● Sequential specification: defines a service in 

terms of its execution on a single, centralized server
● Atomic:  for every operation, there is a single 

instant in between the request and the response at 
which the operation appears to occur

● Complicated services: 
● cannot be specified by sequential specifications
● complicated coordination
● transactional semantics



The CAP Theorem-
Consistency

● Lets focus on a service that implements a 
read/write atomic shared memory:

● The service provides its clients with a single (emulated) 
register

● Each client can read or write from that register



The CAP Theorem-
Availability

● Availability: second requirement of the 
CAP Theorem
● means that each request eventually receive 

a response
● a faster response is better
● But, requiring an eventual response is 

sufficient to create problems



The CAP Theorem- Partition-
tolerance

● Partition-tolerance: third requirement 
of the CAP theorem
● Communication not reliable
● Partitioned into multiple groups
● Messages delayed
● Messages lost forever



The CAP Theorem- Stated

“ In a network subject to communication 
failures, it is impossible for any web 
service to implement an atomic read/write 
shared memory that guarantees a 
response to every request ”



The CAP Theorem- Proof 
sketch

● servers are partitioned into two disjoint sets: 
{p1} and {p2, …, pn}

● Some client sends a read request to server p2
● p1 is in a different component of the partition 

from p2, every message from p1 to p2 is lost
● Thus, it is impossible for p2 to distinguish the 

following two cases:
● There has been a previous write of value v1 

requested of p1 and p1 has sent an ok response.
● There has been a previous write of value v2 

requested of p1 and p1 has sent an ok response



The CAP Theorem- Proof 
sketch

● No matter how long p2 waits, it cannot 
distinguish these two cases, and hence it 
cannot determine whether to return 
response v1 or response v2

● It has the choice to either 
● eventually return a response (and risk 

returning the wrong response) 
● or to never return a response.



The CAP Theorem-
Theoretical Context

● Connection of Consistency and safety
● A safety property is one that states nothing bad ever 

happens
● Consistency requirements are almost always safety 

properties
● every response is correct

● Connection of Availability and Liveness
● Liveness property is one that states that eventually 

something good happens
● Availability is a classic liveness property
● eventually, every request receives a response



Concept: Consensus

Reaching Agreement is a fundamental problem in 
distributed computing
●Mutual Exclusion

● processes agree on which process can enter the critical section
●Leader Election

● processes agree on which is the elected process 
●Totally Ordered Multicast

● the processes agree on the order of message delivery
●Commit or Abort in distributed transactions
●Reaching agreement about which processes have failed
●Other examples

● Air traffic control system: all aircrafts must have the same view
● Spaceship engine control – action from multiple control processes( “proceed” or 

“abort” )
● Two armies should decide consistently to attack or retreat.



Agreement is Impossible

● In 1985, Fischer, Lynch, and Paterson 
showed that:
● fault-tolerant agreement is impossible in an 

asynchronous system

● They focused on the problem of consensus
● each process pi begins with an initial value vi 
● all processes have to agree on one of those 

values



Consensus

● There are three requirements: 
● agreement: every process must output the same value
● validity: every value output must have been provided 

as the input for some process
● termination: eventually, every process must output a 

value.

Safety Agreement

Validity

Liveness Termination



Consensus

● Heart of the replicated state machine approach
● To improve availability, a service may be replicated at 

a set of servers
● to maintain consistency, the servers agree on every 

update to the service
● The safety requirements of consensus are strictly 

harder than simply implementing an atomic read/write 
register

● CAP Theorem also implies that you cannot achieve 
consensus in a system subject to partitions



Variant of Consensus Problem

● Consensus Problem (C)
● Each process proposes a value
● All processes agree on a single value

● Byzantine Generals Problem (BG)
● Process fails arbitrarily, byzantine failure
● Still processes need to agree

● Interactive Consistency (IC)
● Each process propose its value
● All processes agree on the vector



Solving Consensus

● No failures – trivial 
● All-to-all broadcast followed by applying a choice function

● With failures
● One assumption: Processes fail only by crash-stopping

● Synchronous system: Possible? 
● Asynchronous system: ??? 

What about other failures?? 
● Omission Failures
● Byzantine Failures



Consensus

● Fischer et al. considered a system
● no partitions
● one (unknown) process in the system may 

fail by crashing
● communicate reliably

● They Concluded
● consensus is impossible



Coping with the Safety/Liveness 
Trade-off for Consensus

● After the publication of Fischer’s work
● researchers in distributed computing began 

examining this inherent trade-off between 
safety and liveness in more depth

● Knowing safety and liveness are 
impossible in systems that are sufficiently 
unreliable, gave birth to two questions



Question no 1

● Under what conditions it is possible to 
achieve both safety and livness?
● what level of synchrony is necessary to 

avoid the inherent trade-off?
● How many failures can be tolerated?
● what level of network reliability is needed to 

achieve both consistency and availability?



Question no 2

● focuses on the question of consistency
● given that the network is unreliable, what 

is the maximum level of consistency that 
can be achieved?



Answer to Question 1

● network synchrony
● A network is synchronous if it satisfies 

the following properties-
● every process has a clock, and all the clocks 

are synchronized
● every message is delivered within a fixed 

and known amount of time
● every process takes steps at a fixed and 

known rate

Under what conditions it is possible to 
achieve both safety and livness?



Answer to Question 1

● network synchrony
● systems as progressing in rounds
● within each round, each process: 

● sends some messages
● receives all the messages that were sent to 

it in that round
● performs some local computation

Under what conditions it is possible to 
achieve both safety and livness?



Answer to Question 1
Time complexity

❑ Synchronous system
❑ consensus can be solved
❑ consensus requires f + 1rounds, if up to f 

servers may crash
❑ asynchronous system

❑ consensus is impossible
❑ How much synchrony is needed to solve 

consensus?
❑ Do real systems provide that necessary level of 

synchrony?
❑ Dwork et al. attempted to answer this question

Under what conditions it is possible to 
achieve both safety and livness?



Answer to Question 1
Time complexity

❑ Dwork et al. introduced the idea of 
❑ Eventual synchrony

❑ a system may experience some periods of 
synchrony

❑ some periods of asynchrony
❑ eventually stabilizes and maintains synchrony 

for a sufficiently long period of time
❑ If a system is Eventually synchronous, we 

can solve consensus

Under what conditions it is possible to 
achieve both safety and livness?



Answer to Question 1
Time complexity

❑ How long a “window of synchrony” is 
necessary to solve consensus?

❑ Dutta and Guerraoui showed that at least 
f + 2 rounds are necessary

❑ Alistarh et al. recently showed that f + 2 
rounds of synchrony are also sufficient.

Under what conditions it is possible to 
achieve both safety and livness?



Answer to Question 1
Time complexity

● connection between the synchrony of a 
system and the crash-tolerance

● synchronous system:
● can solve consensus for any number of failures

● asynchronous system:
● consensus is impossible for even one failure

● eventually synchronous system:
● can solve consensus if there are < n/2 crash 

failures
● n is the number of servers

Under what conditions it is possible to 
achieve both safety and livness?



Answer to Question 1
Failure detectors

● Different approach
● Chandra et al. introduced the idea of a 

failure detector
● An oracle that provides sufficient 

information for processes to solve consensus 
in an asynchronous crash-prone system

● particular failure detector Ω is the weakest 
failure detector for solving consensus. 

● The failure detector essentially encapsulates 
a leader election service

Under what conditions it is possible to 
achieve both safety and livness?



Answer to Question 2

● What is the strongest form of consistency we can 
guarantee in a system with f crash failures?

● Chaudhuri introduced the problem of set 
agreement
● each process begins with some value
● eventually chooses an output
● the validity and termination conditions are identical 

to concensus
● some disagreement in the output is allowed. 
● k-set agreement: there may be up to k-different 

output values



Answer to Question 2

● 1-set agreement: consensus
● n-set agreement: trivial (i.e., each 

process simply outputs its own initial 
value)

● 1-set agreement is impossible if there is 
even one crash failure

● n-set agreement can tolerate an arbitrary 
number of crash failures

What is the strongest form of 
consistency we can guarantee 
in a system with f crash 
failures?



Answer to Question 2

● Borowski, Gafni, Herlihy, Saks, Shavit, 
and Zaharoglou showed that k-set 
agreement can be solved if and only if 
there are at most k -1crash failures

● Chaudhuri et al showed: in a 
synchronous system with t failures, at 
least |t/k|+1rounds are necessary and 
sufficient for k-set agreement

What is the strongest form of 
consistency we can guarantee 
in a system with f crash 
failures?



Practical Implications
● implication of the CAP Theorem: 

● we cannot achieve consistency and availability in a partition-prone 
network. 

● CAP theorem indicates 
● the difficulties in providing distributed services. 

● Yet, distributed services exist !!!
● practitioners building distributed services

● successfully build and deploy distributed systems
● overcome challenges posed by the CAP Theorem in various ways

● Best Effort Availability
● Best Effort Consistency
● Trading Consistency for Availability
● Segmenting Consistency and Availability



Best Effort Availability
● a common approach to dealing with unreliable networks

● design a service that guarantees consistency
● provide correct operation

● optimize the service to provide best effort availability, 
● be as responsive as is possible given the current network conditions.

● more suitable to networks with
● reliable and timely communication

● a good approach 
● when all the servers running a service are located in the same data 

center



Best Effort Availability 
(contd.)

● A recent popular approach: Chubby Lock Service 
● built by Google and used extensively in the Google infrastructure
● supports the Google File System, BigTable, etc

● Chubby provides strong consistency
● has a distributed database, based on a primary-backup design. 
● consistency among the servers is ensured by using a replicated state 

machine protocol to maintain synchronized logs. 
● continues to operate as long as no more than half the servers fail



Best Effort Availability 
(contd.)

● Chubby guaranteed to make progress
● whenever the network is reliable. 

● Chubby is optimized for the case where 
● there is a stable primary and there are no partitions. 

● delivers a very high degree of availability. 
● Chubby “cell” is deployed in a single data center 
● Chubby cell

● communication fast and reliable
● failure of a primary is not too frequent.



Best Effort Consistency

● for some application sacrificing availability is not acceptable
● when the application is deployed over a wide area 

● the level of availability that can be achieved by a strongly consistent 
service may degrade rapidly. 

● in such case, sacrifice consistency: 
● a response (preferably fast) is guaranteed at all times. 

● the response may not always be correct. 
● consistency is provided only in a best effort sense. 

● The classic example: Web Caching



Best Effort Consistency 
(contd.)

● web content are cached on servers 
● placed in data centers throughout the world. 

● whenever user requests a given web page, 
● the content can be delivered from a nearby web cache. 

● guarantees a very high level of availability
● the responses are rapid
● network connectivity issues rarely prevent a response. 

● the consistency guarantees are (potentially) quite minimal. 
● after a web page update, propagating new content to all the cache 

servers needs some time
● no guarantee that all users accessing a web page at any given time 

receive the exact same content. 
● content viewed by a user is slightly out-of-date, induces little harm. 
● less time for loading a web page is desired



Trading Consistency for 
Availability

● tune the trade-off between consistency and availability. 
● it may be acceptable for some content to be one hour out of date, 

but not one day out of date. 
● with good network connectivity  for some time period

● a service should be able to provide this level of consistency with good 
availability

● for long-lasting partitions (e.g., more than one day)
● availability is impossible

● specify the CAP trade-off
● set the threshold for how out of date the data can be



Trading Consistency for 
Availability (contd.)

● TACT toolkit
● enables replicated applications to specify exactly the desired 

consistency
● most of the seats on the airplane are available, 

● safe for the reservation system to rely on somewhat out-of-date data
● with a few seats booked, new reservation can likely be accommodated. 
● As the plane is filled the reservation system requires increasingly 

accurate data to ensure that the plane is not overbooked. 
● TACT enables the reservation system to 

● request increasing levels of consistency as the number of available 
seats diminishes. 

● such a system provides neither strong consistency nor guaranteed 
availability
● data can be out of date
● yet with network partition, the service may still be unavailable. 



Segmenting Consistency and 
Availability

● Many systems do not have a single uniform requirement. 
● Some aspects of the system require strong consistency, and some 

require high availability. 
● segment the system into components that provide 

● different types of guarantees. 
● a service that, as a whole, guarantees neither consistency nor 

availability. 
● each part of the service provides exactly what is needed. 

● some of the dimensions along which a system might be 
partitioned.
● Data partitioning
● Operation partitioning
● Functional partitioning
● User partitioning
● Hierarchical partitioning



Segmenting Consistency and 
Availability (contd.)

● Different types of data may require different levels of 
consistency and availability. 
● an on-line shopping cart may be 

● highly available, responding rapidly to user requests; 
● but occasionally inconsistent, losing a recent update in anomalous 

circumstances.
● on-line product information for an e-commerce site may be

● somewhat inconsistent: users will tolerate somewhat out-of-date 
inventory information. 

● The check-out/billing/shipping records, however, have to be strongly 
consistent: a user will be very unhappy if a finalized order does not 
reflect her intended purchase



Segmenting Consistency and 
Availability (contd.)

● Different operations may require different levels of 
consistency and availability. 
● consider a system that guarantees 

● high availability for read-only operations,
• a “query” operation might return out of date data. 

● modify database operations may not respond during network 
partitions 
• a “purchase” operation should guarantee consistency, 

● PNUTS system, Yahoo!



Segmenting Consistency and 
Availability (contd.)

● Many services can be divided into different subservices which 
have different requirements. 
● an application might use a service such as Chubby for 

● distributed coordination (i.e., strong consistency)
● at the same time it uses a service such as DNS to handle naming: 

● relatively weak consistency but high availability. 
● The same service might use yet a third subservice

● with a different consistency/availability trade-off for content distribution. 



Segmenting Consistency and 
Availability (contd.)

● Network partitions, and poor network performance correlate with 
real geo-graphic distance: 
● users that are far away are more likely to see poor performance. 

● Some applications are organized hierarchically
● At the top level, an application encompasses the entire world or the entire 

database; 
● subsequent levels of the hierarchy partition the world into geographically 

smaller pieces, or the database into smaller parts.
● At each level of the hierarchy, the system may provide a different level of 

performance:
● better availability toward the leaves, or less consistency toward the root. 

● For example, as you descend a geographically-organized hierarchy, the 
limitations of the CAP Theorem becomes less and less onerous as the relevant 
servers become better and better connected.



The CAP Theorem in Future 
Systems

● Scalability
● scalable systems grow while using new resources efficiently to 

handle more load.
● inherent trade-offs between scalability and consistency. 

● in order to efficiently use new resources, there must be coordination 
among those resources; 

● the consistency required for this coordination appears subject to the CAP 
Theorem trade-offs.



The CAP Theorem in Future 
Systems (contd.)

● Tolerating Attacks
● The CAP Theorem focuses on network partitions
● A denial-of-service attack cannot be modeled as a network partition
● malicious users hack servers, disrupt major internet services

● Tolerating these more problematic forms of disruption requires 
● a somewhat different understanding of the fundamental 

consistency/availability trade-offs.



The CAP Theorem in Future 
Systems (contd.)

● Mobile Wireless Networks
● The CAP Theorem initially focused on wide-area internet services
● wireless communication is notoriously unreliable

● partitions are less common
● unpredictable message loss is very common
● message latencies can vary significantly

● the types of applications being deployed in wireless networks may be 
somewhat different



Conclusion

● the CAP Theorem 
● a fundamental trade-off between safety and liveness in fault-prone 

systems. 
● helps device systems  that can be designed to meet an application’s 

needs
● despite unreliable networks, software architects have explored 

● strongly consistent solutions, with best-effort availability; 
● weakly consistent solutions with high availability
● systems that mix both weaker availability and weaker consistency in 

varying ways.
● highlight on future research directions



Dolev-Strong Byzantine 
Agreement Problem 

●



Dolev-Strong Authenticated 
Broadcast Protocol

●



Dolev Strong Protocol Analysis

●



Dolev Strong Protocol 
Correctness

●



Synchronous Distributed System   
● Drift of each process’ local 

clock has a known bound
● Each step in a process 

takes lb < time < ub
● Each message is received 

within bounded time

Consensus is possible in the 
presence of failures!!

Consensus Synchronous vs. 
Asynchonous Models 

127

• Asynchronous Distributed 
System  

• No bounds on process 
execution

• The drift rate of a clock 
is arbitrary 

• No bounds on message 
transmission delays

Consensus is impossible with 
the possibility of even 1 
failure!!



N processes
● Every process contributes a value
● Goal:  To have all processes decide on the same (some) value

● Once made, the decision cannot be changed. 
Each process p has 

● input variable xp : initially either 0 or 1
● output variable yp : initially b (b=undecided) – can be changed only 

once

Consensus problem: design a protocol so that either
1. all non-faulty processes set their output variables to 0 
2. Or non-faulty all processes set their output variables to 1
3. There is at least one initial state that leads to each outcomes 1 and 2 

above

Defining Consensus



Consensus Properties/Terms

● Termination 
● Every non-faulty process 

must eventually decide. 
● Integrity

● The decided value must 
have been proposed by 
some process 

● Validity
● If every non-faulty process 

proposes the same value v, 
then their final decision 
must be v.

● Agreement
○ The final decision of every 

non-faulty process must be 
identical.

● Non-triviality
○ There is at least one initial 

system state that leads to 
each of the all-0’s or all-1’s 
outcomes



Consensus in a Synchronous 
System

● Possible
● With one or more faulty processes

● Solution - Basic Idea: 
● all processes exchange (multicast) what other 

processes tell them in several rounds

● To reach consensus with f failures, the algorithm 
needs to run in f + 1 rounds.



For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds” of time. 

Round length >> max transmission delay.
- The algorithm proceeds in f+1 rounds (with timeout), using reliable 

communication to all members 

Consensus in Synchronous 
Systems

Round 1 Round 2 Round 3

131



Consensus with at  most f 
failures : Synchronous Systems

132



After f+1 rounds, all non-faulty processes would have received the same set of Values. 

Proof by contradiction.
● Assume that two non-faulty processes, say pi and pj , differ in their final set of values (i.e., 

after f+1 rounds)
● Assume that pi possesses a value v that pj does not possess.

o pi must have received v in the very last round; else, pi would have sent v to pj in that last 
round 

o So, in the last round: a third process, pk, must have sent v to pi, but then crashed before 
sending v to pj.

o Similarly, a fourth process sending v in the last-but-one round must have crashed; 
otherwise, both pk and pj should have received v.

o Proceeding in this way, we infer at least one (unique) crash in each of the preceding rounds. 
o This means a total of f+1 crashes, while we have assumed at most f crashes can occur => 

contradiction.

Proof: Consensus in Synchronous 
Systems (extra)

133



Asynchronous Consensus

● Messages have arbitrary delay, 
processes arbitrarily slow

● Impossible to achieve!
● a slow process 

indistinguishable from a 
crashed process

● Result due to Fischer, Lynch, 
Patterson (commonly known as 
FLP 85). 

Theorem: In a purely asynchronous distributed system,  
the consensus problem is impossible to solve  if even a 
single process crashes. 



Intuition Behind FLP 
Impossibility Theorem

● Jill and Sam will meet for lunch.  They’ll eat in the 
cafeteria unless both are sure that the weather is good

● Jill’s cubicle is inside, so Sam will send email
● Both have lots of meetings, and might not read email.  So 

she’ll acknowledge his message.  
● They’ll meet inside if one or the other is away from their 

desk and misses the email.

● Sam sees sun.  Sends email.  Jill acks’s.  Can they meet 
outside?

135



Sam and Jill

CS5412 Spring 2012 (Cloud 
Computing: Birman) 136

Sam Jill
Jill, the weather is beautiful!  
Let’s meet at the sandwich 
stand outside.

I can hardly wait.  I haven’t 
seen the sun in weeks!



They eat inside!  Sam 
reasons:

● “Jill sent an acknowledgement but doesn’t 
know if I read it

● “If I didn’t get her acknowledgement I’ll 
assume she didn’t get my email

● “In that case I’ll go to the cafeteria
● “She’s uncertain, so she’ll meet me there

137



Sam had better send an 
Ack

138

Sam Jill
Jill, the weather is beautiful!  
Let’s meet at the sandwich 
stand outside.

I can hardly wait.  I haven’t 
seen the sun in weeks!

Great!  See yah…



Why didn’t this help?

● Jill got the ack… but she realizes that Sam 
won’t be sure she got it

● Being unsure, he’s in the same state as 
before

● So he’ll go to the cafeteria, being dull and 
logical.  And so she meets him there.

139



New and improved 
protocol

● Jill sends an ack.  Sam acks the ack.  Jill 
acks the ack of the ack….

● Suppose that noon arrives and Jill has 
sent her 117’th ack.
● Should she assume that lunch is outside in 

the sun, or inside in the cafeteria?

140



How Sam and Jill’s 
romance ended

141

Jill, the weather is beautiful!  
Let’s meet at the sandwich 
stand outside.

I can hardly wait.  I haven’t seen the sun 
in weeks!

Great!  See yah…

Got that…

Maybe tomorrow?

Yup…

Oops, too late for lunch

. . .



Things we just can’t do

● We can’t detect failures in a trustworthy, 
consistent manner

● We can’t reach a state of “common 
knowledge” concerning something not 
agreed upon in the first place

● We can’t guarantee agreement on things 
(election of a leader, update to a 
replicated variable) in a way certain to 
tolerate failures

142



But what does it mean?

● In formal proofs, an algorithm is totally correct if
● It computes the right thing
● And it always terminates

● When we say something is possible, we mean “there is a 
totally correct algorithm” solving the problem

● FLP proves that any fault-tolerant algorithm solving 
consensus has runs that never terminate
● These runs are extremely unlikely (“probability zero”)
● Yet they imply that we can’t find a totally correct solution
● And so “consensus is impossible” ( “not always possible”)

● In practice, fault-tolerant consensus is ..
● Definitely possible. 
● E.g. Paxos [Lamport 1998, 2001] that has become quite 

popular – discussed later!



● For impossibility proof, OK to 
consider: 

▪ more restrictive system model, and 
▪ easier problem

• Why?

Proof Setup

144



145

p p’

Global Message Buffer

send (p’,m)

receive (p’)
may return null

“Network”

Network



● State of a process
● Configuration = global state. Collection of states, one for each process; 

alongside state of the global buffer.
● Each Event (different from Lamport events) is atomic and consists of three 

steps
- receipt of a message by a process (say p)
- processing of message (may change recipient’s state)
- sending out of all necessary messages by p

● Schedule: sequence of events

146

State



C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

Equivalent 147



148

C

C’

C’’

Schedule s1

Schedule s2

s2

s1

s1 and s2 involve disjoint sets 
of receiving processes, and 
are each applicable on C

Disjoint schedules are commutative 

148

Lemma 1



● Easier Consensus Problem: some process eventually sets yp 
to be 0 or 1

● Only one process crashes – we’re free to choose which one

149

Easier Consensus Problem



● Let configuration C have a set of decision values V 
reachable from it
- If |V| = 2, configuration C is bivalent
- If |V| = 1, configuration C is 0-valent or 1-valent, as is the case

● Bivalent means outcome is unpredictable

150

Easier Consensus Problem



1. There exists an initial configuration that is bivalent

1. Starting from a bivalent configuration, there is always 
another bivalent configuration that is reachable

151

What the FLP proof shows?



Some initial configuration is bivalent

1         1          0        1        0         1

152

Lemma 2

• Suppose all initial configurations were either 0-valent or 1-valent.
• If there are N processes, there are 2N possible initial configurations
• Place all configurations side-by-side (in a lattice), where adjacent 

configurations differ in initial xp value for exactly one process.

• There has to be some adjacent pair of 1-valent and 0-valent configurations



Some initial configuration is bivalent

1         1          0        1        0         1

153

• There has to be some adjacent pair of 1-valent and 0-valent 
configs.

• Let the process p, that has a different state across these two 
configs., be the process that has crashed (i.e., is silent throughout)

● Both initial configs. will lead to the 
same config. for the same sequence 
of events

● Therefore, both these initial configs. 
are bivalent when there is such a 
failure

Lemma 2



1. There exists an initial configuration that is bivalent

1. Starting from a bivalent configuration, there is always another 
bivalent configuration that is reachable

154

What we’ll show



Starting from a bivalent configuration, there is always 
another bivalent configuration that is reachable

155

Lemma 3

A bivalent initial config.
let e=(p,m) be some event

applicable to the initial config.

Let C be the set of configurations 
reachable without applying e



A bivalent initial config.

e       e       e           e        e

let e=(p,m) be some event
applicable to the initial config.

156

Lemma 3

Let C be the set of configurations reachable 
without applying e
Let D be the set of configurations obtained 
by applying e to some configurations in C



D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]

157

Lemma 3



Claim. Set D contains a bivalent configuration
Proof. By contradiction. That is, suppose D has only 0- and 1- valent states (and no 

bivalent ones)
● There are states D0 and D1 in D, and C0 and C1 in C such that 

- D0 is 0-valent, D1 is 1-valent
- D0=C0 foll. by e=(p,m)
- D1=C1 foll. by e=(p,m)
- And C1 = C0 followed by some event 

e’=(p’, m’)

(why?)

D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]

158



Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]

C
0

D
1

D
0

C
1

e

ee’

e’

Why? (Lemma 1)
But D0 is then bivalent!

159



Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]

C
0

D
1

D
0

C
1

e e’

A

E
0

e

sch. s

sch. s

E
1

sch. s

(e’,e)

e

sch. s
• finite
• deciding run from 
C0
• p takes no steps

But A is then bivalent!
160



FLP Proof Sketch:

▪ Bivalent and Univalent states: A decision state is bivalent, if starting from 
that state, there exist two distinct executions leading to two distinct decision 
values 0 or 1. Otherwise it is univalent.   

Bivalent ---> outcome is unpredictable 
▪ Process: has state
▪ Network: Global buffer (processes put and get messages)
▪ Configuration -- global state (state for each process + state of global buffer) 
▪ Atomic Events -- receipt of message by process p, processing of message 

(may change state), send out all needed messages from p 
▪ Schedule: sequence of atomic events

Lemma 1:  Schedules are commutative 
Lemma 2: There exists an initial configuration that is bivalent.
Lemma 3:  Starting from a bivalent config., there is always another bivalent 
config. that is reachable



● Consensus Problem 
▪ Agreement in distributed systems
▪ Solution exists in synchronous system model (e.g., supercomputer)
▪ Impossible to solve in an asynchronous system (e.g., Internet, Web)

Key idea: with even one (adversarial) crash-stop process failure, there 
are always sequences of events for the system to decide any which way
Holds true regardless of whatever algorithm you choose!

▪ FLP impossibility proof

● One of the most fundamental results in distributed 
systems 162

Summary



Landmark papers by Leslie Lamport (1998)
– Does not solve pure consensus problem (impossibility); But, 

provides consensus with a twist 
– Paxos provides safety and eventual liveness

• Safety: Consensus is not violated
• Eventual Liveness: If things go well sometime in the 

future (messages, failures, etc.), there is a good chance 
consensus will be reached. But there is no guarantee.

– FLP result still applies: Paxos is not guaranteed to reach 
Consensus (ever, or within any bounded time)

– Used in Zookeeper (Yahoo!), Google Chubby, and many other 
companies

The PAXOS Algorithm 
-- Towards a Practical Approach to Consensus

163



Brieft History

● People thought that Paxos was a joke. 
● Lamport published it 8 years after it was written in 1990. –

Title: The Part-Time Parliament [1] 
● People did not understand the paper. 
● Lamport gave up and wrote another paper that explains 

Paxos in simple English. 
– Title: Paxos Made Simple [2]
– Abstract: “The Paxos algorithm, when presented in plain English, 
is very simple.” 

● It’s still not the easiest algorithm to understand. 
● People have written papers and lecture notes to explain 

Paxos Made Simple. (e.g., Paxos Made Moderately Complex 
[4], Paxos Made Practical [5], etc.) 



more:  Stoppable Paxos, Vertical Paxos, Egalitarian Paxos, …  



N processes
● Every process contributes a value
● Goal:  To have all processes decide on the same (some) value

● Once made, the decision cannot be changed. 
Each process p has 

● input variable xp : initially either 0 or 1
● output variable yp : initially b (b=undecided) – can be changed only once

Consensus problem: design a protocol so that either
1. all non-faulty processes set their output variables to 0 
2. Or non-faulty all processes set their output variables to 1
3. There is at least one initial state that leads to each outcomes 1 and 2 

above

Recall the Consensus Problem



167

Assumptions
● Failures

● “Fail Stop” assumption
− When a node fails, it ceases to function entirely.
− May resume normal operation when restarted.

● Messages
− May be lost.
− May be duplicated.
− May be delayed (and thus reordered).
− May not be corrupt.

● Stable Storage 
● preserves info recorded before a failure



• Paxos has rounds; each round has a unique ballot id
• Rounds are asynchronous

– Time synchronization not required
– If you’re in round j and hear a message from round j+1, abort everything and 

move over to round j+1
– Use timeouts (then - eventually synchronous)

• Each round itself broken into phases 
– Phase 1: A leader is elected (Election)
– Phase 2: Leader proposes a value to others (acceptors), processes ack (Bill)
– Phase 3: Leader multicasts final value (Law)

The Paxos Strategy

168
• http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf


• Potential leader chooses a unique ballot id, higher than seen anything so far
• Sends to all processes
• Processes wait, respond once to highest ballot id

– If potential leader sees a higher ballot id, it can’t be a leader
– Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case
– Processes also log received ballot ID on disk

• If a process has in a previous round decided on a value v’, it includes value v’ in its response
• If majority (i.e., quorum) respond OK then you are the leader

– If no one has majority, start new round 
• (If things go right) A round cannot have two leaders (why?)

Please elect me! OK!

Paxos Strategy
Phase 1 – Election

169



• Leader sends proposed value v to all 
– use v=v’ if some process already decided in a previous 

round and sent you its decided value v’
– If multiple such v’ received, use latest one

• Recipient logs on disk; responds OK

Please elect me! OK!

Value v ok?

OK!

Paxos Strategy 
Phase 2 – Proposal 

170



• If leader hears a majority of OKs, it lets everyone know of the 
decision

• Recipients receive decision, log it on disk
• Consensus is reached

Please elect me! OK!

Value v ok?

OK!

v!

Paxos Strategy
Phase 3 – Decision 

171



Paxos Algorithm 

Assumptions
● Asynchronous system
● Non-Byzantine model
● Information can be remembered by a process that has failed and restarted

Paxos Agents:
● The algorithm is performed by three classes of agents:

- Proposer: send a value to a set of acceptors
- Acceptor: can accept a value
- Learner: learn the accepted value

Proposer

Learner

Acceptor



●

Paxos Algorithm: choose a value 



n
v v

n
r
v

Proposer

v

Desired Consensus Value

Proposal number (unique)

Constrained Consensus value

Learner

Consensus value

Acceptor

Highest Proposal Number Seen

Proposal Number of Last Accepted Value

Value Last Accepted

Paxos Agents



5
-,-

-,-

-,-

-,-,-

-,-,-

-,-,-

-

-

-

Prepare(1)

Paxos Execution Example



5
1,-

1,-

1,-

-,-,-

-,-,-

-,-,-

-

-

-

Prepare(1)

Paxos Execution Example



5
1,-

1,-

1,-

1,-,-

1,-,-

1,-,-

-

-

-

Prepare(1)

Paxos Execution Example



5
1,-

1,-

1,-

1,-,-

1,-,-

1,-,-

-

-

-

Promise (1,-,-)

Paxos Execution Example



5
1,-

1,-

1,-

1,-,-

1,-,-

1,-,-

-

-

-

Accept (1,5)

Paxos Execution Example



5
1,-

1,-

1,-

1,1,5

1,1,5

1,1,5

-

-

-

Learner(1,5)

Paxos Execution Example



5
1,-

1,-

1,-

1,1,5

1,1,5

1,1,5

5

5

5

Learner(1,5)

Paxos Execution Example



182

● Proposal

● An alternative proposed by a 
proposer.

● Consists of a unique number
and a proposed value.
( 42, B )

● We say a value is chosen when 
consensus is reached on that value.

Paxos Protocol Implementation -
Terms

● Proposer

● Suggests values for consideration 
by Acceptors. 

● Advocates for a client.

● Acceptor

● Considers the values proposed 
by proposers.

● Renders an accept/reject 
decision.

● Learner

● Learns the chosen value.

● In practice, each node will usually 
play all three roles.

A1

P1



183

Strong Majority
● “Strong Majority” / “Quorum”

● A set of acceptors consisting of more 
than half of all acceptors.

● Any two quorums have a nonempty 
intersection.

● Helps avoid “split-brain” problem.
● Acceptors decisions are not in 

agreement.
● Common node acts as “tie-breaker.”

● In a system with 2F+1 acceptors, F 
acceptors can fail and we'll be OK. Quorums in a system with 

seven acceptors.

A1 A6

A4

A5

A7

A3

A2



184

Consensus time
(N5, V3)

(N3, V3)

(N2, V2)

(N4, V1)

(N1, V1)

(N6, V3)

consensus reached, V3 chosen

(N7, V3)

(N7, V3)

● Values proposed by proposers are constrained so that once consensus has been reached, 
all future proposals will carry the chosen value.

● P2c . For any v and n, if a proposal with value v and number n is issued, then there is a set 
S consisting of a majority of acceptors such that either:

● (a) no acceptor in S has accepted any proposal numbered less than n, or

● (b) v is the value of the highest-numbered proposal among all proposals numbered less 
than n accepted by the acceptors in S.

(N2, V2)

A1

A2

A3

A4

A5



185

Phase 1a: “Prepare”
Select proposal number* N and send a prepare(N) request to a 
quorum of acceptors.

Phase 1b: “Promise”
If N > number of any previous promises or acceptances,

* promise to never accept any future proposal less than 
N,

- send a promise(N, U) response
(where U is the highest-numbered proposal value accepted so far (if any))

Phase 2a: “Accept!”
If proposer received promise responses from a quorum,

- send an accept(N, W) request to those acceptors
(where W is the value of the highest-numbered proposal among the promise

responses, or any value if no promise contained a proposal)

Phase 2b: “Accepted”
If N >= number of any previous promise,

* accept the proposal
- send an accepted notification to the learner

Acceptor

Proposer

Basic Paxos Algorithm

* = record to stable 
storage



186

A1P1 A2 A3

time

start

promise(1, -)

promise(1, -)

prepare(1)

prepare(1)

accept(1, A)

accepted(1, A)
accept(1, A)

accepted(1, A)



187

A1P1 A2 A3

time

P2

accepted(1, A)

prepare(2)

promise(2, -)

promise(2, (1,A))

accept(2, A)

accepted(2, A)

continued...



CS 5204 – Operating Systems 188

Other Considerations

● Liveness
● Can't be guaranteed in 

general.
● Distinguished Proposer

− All proposals are 
funneled through one 
node.

● Can re-elect on failure.

● Learning the Chosen Value
● Acceptors notify some 

set of learners upon 
acceptance.

● Distinguished Learner

● A node may play the role of both distinguished proposer and 
distinguished learner – we call such a node the master.



Multi-Paxos

● A single instance of Paxos yields a single chosen value.
● To form a sequence of chosen values, simply apply Paxos 

iteratively.
● To distinguish, include an instance number in messages.

● Facilitates replication of a state machine.

“time”
instance 39 40 41 42

chosen value
S P ??? O



Paxos Variations

● Cheap Paxos
● Reconfiguration

− Eject failed acceptors.
− Fault-tolerant with only F+1 nodes (vs 

2F+1)
− Failures must not happen too quickly.

● Fast Paxos
● Clients send accept messages 

to acceptors.
● Master is responsible for 

breaking ties.
● Reduces message traffic.

● Byzantine Paxos
● Arbitrary failures – lying, collusion, 

fabricated messages, selective non-
participation.

● Adds an extra “verify” phase to the 
algorithm.



Raft distributed consensus

https://www.cs.rutgers.edu/~pxk/417/notes/raft.html

https://www.cs.rutgers.edu/~pxk/417/notes/raft.html


Consensus problem

• The problem of consensus is getting a group of processes 
to unanimously agree on a single result. There are four requirements to 
such an algorithm:

▪ Validity. The result must be a value that was submitted by at least 
one of the processes. The consensus algorithm cannot just make up a 
value.

▪ Uniform agreement. All nodes must select the same value.
▪ Integrity. A node can select only a single value. That is, a node 

cannot announce one outcome and later change its mind.
▪ Termination. Also known as progress, every node must eventually 

reach a decision.



Replicated state machines

● Multiple systems in an identical state so that the system can withstand the 
failure of some of its members and continue to provide its service

● Replicated state machines is a fault tolerant technique which is commonly 
used distributed systems where a central coordinator is needed:

▪ Google Chubby provides a centralized namespace and lock 
management service for the Google File System and various other 
services

▪ Apache ZooKeeper coordinates various Apache services, including 
the HDFS

▪ Big data processing frameworks such as MapReduce,  Apache Spark, 
and Kafka



State Machine

● State machines are programs that store “state” – data that 
changes based on inputs received by the programs

● Programs are deterministic as multiple identical copies of the 
program will all modify their data (“state”) in the same way when 
presented with the same input

● State machine system examples:
▪ Key-value store
▪ Database updates
▪ File updates



REPLICATED LOGS

Consensus modules

• A way to implement replicated state machines

• Log is a list of commands that are received and stored by each state machine and is used as 
input by the state machine. 

• The commands in the log must be identical and in the same order across all replicas to ensure 
state machine synchronization

• Consensus algorithm is applied to keep the logs consistent



RAFT

● A consensus algorithm designed for managing a replicated log
● Created at Stanford University in 2014 by Diego Ongaro and John 

Ousterhout
● An alternative to Paxos for log replication but also easier to 

understand, implement, and validate
● Raft separates the functions of leader election and log replication. 



Raft environment

● A group of servers containing:
▪ The state machine (the service that the server provides)
▪ A log that contains inputs fed into the state machine
▪ The Raft protocol

• One server is elected to be the leader
• Other servers function as followers
• Clients send requests only to the leader. 
• The leader forwards them to followers. 
• Each of the servers stores receiver requests in a log.



Server states

● A server operates in one of three states:
▪ Leader. The leader handles all client requests and responses. 

There is only one leader at a time.
▪ Candidate. A server may become a candidate during the 

election phase. One leader will be chosen from one or more 
candidates. Those not selected will become followers.

▪ Follower. The follower does not talk to clients. It responds to 
requests from leaders and candidates.



RAFT Messages

● The Raft protocol comprises two remote procedure 
calls (RPCs):

▪ RequestVotes: Used by a candidate during elections to 
try to get a majority vote

▪ AppendEntries:  Used by leaders to communicate with 
followers to:
o Send log entries (data from clients) to replicas.
o Send commit messages to replicas. That is, inform a 

follower that a majority of followers received the message
o Send heartbeat messages. This is simply an empty 

message to indicate that the leader is still alive.



RAFT Terms
● The timeline of operations in Raft is broken up into terms
● Each term has a unique number and begins with a leader election 

phase
● After a leader is elected, it propagates log entries to followers

● If, at some point in time, a follower ceases to receive RPCs from the 
leader or a candidate:

▪ Another election takes place and another term begins with an incremented 
term number

• If a server discovers that its current term number is smaller than that 
in a received message, it updates its term number to that in the 
received message

• If a leader or candidate receives a message with a higher term number 
then it changes its state back to a follower state.



Leader election

● All servers start up as followers and wait for a message from the 
leader:

▪ AppendEntries RPC
• If a follower does not receive a message from a leader within a 

specific time interval, it becomes a candidate and starts an election 
to choose a new leader:

▪ Sends RequestVotes messages to all the other servers asking 
them for a vote

▪ If it gets votes from a majority of servers then it becomes 
a leader



Leader election: timeouts

● Each follower sets an election timeout:
▪ maximum amount of time that a follower is willing to wait without 

receiving a message from a leader before it starts an election
▪ Randomized election timeout per follower to reduce the chance 

that multiple servers will start elections at the same time
• A follower starts an election to choose a new leader when timeout:

▪ Increments its current term
▪ Set itself to the candidate state.
▪ Sets a timer
▪ Sends RequestVote RPCs to all the other servers

• If a server receives a RequestVote message and hasn’t yet voted, 
it votes for that candidate and resets its election timeout timer.



Leader election: timeouts (2)

● If a follower receives a majority votes from the group, including itself:
▪ becomes the leader
▪ starts sending out AppendEntries messages to the other servers at 

a heartbeat interval
● If a candidate receives an AppendEntries message while it is waiting for its 

votes:
▪ If the term number in the message is the same or greater than the 

candidate’s term then the candidate will recognize the sender as the 
legitimate leader and become a follower.

▪ If the term number in the message is smaller than the candidate’s term 
then the candidate rejects the request and continues with its election.

● Election split vote: if two or more nodes started elections with neither 
receiving a majority vote:

▪ Each node time out waiting for a majority and start a new election



Log Replication

● Clients only communicate with that leader

● If the client query is a read: 
▪ the server can simply respond to the client

• If the client query is an update:
▪ the leader will add the request to its log
▪ the leader will add the request to its log

• Each server maintains a log of requests, each contains:
▪ The client request (the command to be run by the server).
▪ The term number when the command was received by the leader (to detect 

inconsistencies)
▪ An integer that identifies the command’s position in the log.



Log Replication (2)

● A log entry is considered committed when the message has 
been replicated to the followers:

▪ The leader can then execute the request and return any result 
to the client

▪ Followers execute the same requests and keep their state 
machines in sync with the leader and each other



Log replication: consistency checks

● AppendEntries message from the leader to a follower contains:
▪ The client request (the command to be run by the server)
▪ The index number that identifies the command’s position in the log.
▪ The current term number.
▪ The index number and term number of the preceding entry in the log.

• The follower does a consistency check when receives 
an AppendEntries message:

▪ If the leader’s term (in the message) is less than the follower’s term then 
reject the message – some old leader missed an election cycle.

▪ If a follower does not see the preceding index and term number in its log 
then it rejects the message

▪ If the log contains a conflicting entry at that index – a different term number, 
delete the entry and all following entries from the log.

• If the message passes the consistency check, the follower will add 
the entry to its log and acknowledge the message

• When a log entry has been accepted by a majority of servers, it is 
considered committed



Log replication: making logs 
consistency

● Logs may get inconsistent: leader crashes, followers crash
● The leader is responsible for bringing a follower’s log up to date 

if inconsistencies are detected:
▪ The leader finds out the latest log entry in common between the 

leader’s and follower’s log
▪ The leader can send subsequent entries to synchronize the log and 

make it consistent



Elections: ensuring safety

● During the voting phase, a candidate cannot win an election if its 
log does not contain all committed entries

● The RequestVotes RPC sends information about the log length and 
the term of the latest log entry:

▪ If a server receives a RequestVotes message and the 
candidate has an earlier term then the server will reject the 
vote.

▪ If the term numbers are the same but the log length of a 
candidate is shorter than that of the server that receives the 
message, the server will reject the vote.



References

● Diego Ongaro and John Ousterhout, In Search of an Understandable Consensus 
Algorithm, 2014 USENIX Annual Technical Conference, June 2014, pp. 305–319

● Presentation video: Diego Ongaro and John Ousterhout, In Search of an Understandable 
Consensus Algorithm, 2014 USENIX Annual Technical Conference, June 2014.

● Video: Designing for Understandability: The Raft Consensus Algorithm, John Ousterhout, 
August 29, 2016.

● Brian Curran, What are the Paxos & Raft Consensus Protocols? Complete Beginner’s 
Guide, Blockonomi, November 14, 2018.

● Leslie Lamport, The Part-Time Parliament, August 2000. This is the original Paxos Paper.
● Leslie Lamport, Paxos Made Simple, November 2001.
● David Mazières, Paxos Made Practical, Stanford University, 2007
● The Raft Consensus Algorithm, Project page @ github: RaftScope visualization and lots of 

links to papers, videos, and implementations.
● Parikshit Hooda, Raft Consensus Algorithm, GeeksforGeeks, 2018

https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.usenix.org/node/184041
https://www.youtube.com/watch?v=vYp4LYbnnW8
https://blockonomi.com/paxos-raft-consensus-protocols/
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://raft.github.io/
https://www.geeksforgeeks.org/raft-consensus-algorithm/


● Replication = An object has identical copies, each 
maintained by a separate server
● Copies are called “replicas”

● Why replication?
● Fault-tolerance: With k replicas of each object, can tolerate 

failure of any (k-1) servers in the system
● Load balancing: Spread read/write operations out over the k 

replicas => load lowered by a factor of k compared to a single 
replica

● Replication => Higher Availability

Replication: What and Why

210



● If each server is down a fraction f of the time 
● Server’s failure probability

● With no replication, availability of object 
= Probability that single copy is up 
= (1 – f)

● With k replicas, availability of object 
Probability that at least one replicas is up
= 1 – Probability that all replicas are down
= (1 – f k)

Availability

211



● One-copy serializability
● A concurrent execution of transactions in a replicated database is one-

copy-serializable if it is equivalent to a serial execution of these 
transactions over a single logical copy of the database.

● (Or) The effect of transactions performed by clients on replicated objects 
should be the same as if they had been performed one at a time on a 
single set of objects (i.e., 1 replica per object). 

● In a non-replicated system, transactions appear to be performed one 
at a time in some order. 
● Correctness means serial equivalence of transactions 

● When objects are replicated, transaction systems for correctness need 
one-copy serializability

Transactions and Replication



Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 
2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Sequential Consistency (1)

● Behavior of two processes operating on the same 
data item. The horizontal axis is time. 

● P1: Writes “W” value a to variable “x”
● P2: Reads `NIL’ from “x” first and then `a’



Sequential Consistency (2)

● A data store is sequentially consistent when:

● The result of any execution is the same as if the (read and 
write) operations by all processes on the data store …
● Were executed in some sequential order and …
● the operations of each individual process appear …

▪ in this sequence 
▪ in the order specified by its program.



Sequential Consistency (3)

(b) A data store that is not 
sequentially consistent.

(a) A sequentially 
consistent data store. 



Causal Consistency (1)

● For a data store to be considered causally consistent, it 
is necessary that the store obeys the following condition:
● Writes that are potentially causally related …

• must be seen by all processes
• in the same order. 

● Concurrent writes …
● may be seen in a different order 
● on  different machines.



Causal Consistency (2)

● This sequence is allowed with a causally-consistent store, but not with a 
sequentially consistent store.



Causal Consistency (3)

● A violation of a causally-consistent store. 



● Maintain two properties:

1. Replication Transparency
● A client ought not to be aware of multiple copies of objects 

existing on the server side

2. Replication Consistency
● All clients see single consistent copy of data, in spite of 

replication
● For transactions, guarantee ACID

Challenge?

219



Replication Transparency

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication 

transparency

Client
Front End

Client

Requests 
(replies flow opposite)

Replicas of an
object O

220



● Two ways to forward updates from front-ends (FEs) to 
replica group
● Passive Replication: uses a primary replica (master)
● Active Replication: treats all replicas identically

● Both approaches use the concept of “Replicated State 
Machines”
● Each replica’s code runs the same state machine
● Multiple copies of the same State Machine begun in the Start 

state, and receiving the same Inputs in the same order will 
arrive at the same State having generated the same Outputs.
[Schneider 1990]

Replication Consistency

221



● Passive Replication (Primary-backup)
● Operations handled by primary, it streams copies to backup(s)
● Replicas are “passive”, i.e. follow the primary 
● Good:  Simple protocol.  Bad:  Clients must participate in 

recovery.

● Active Replication (Quorum consensus)
● Designed to have fast response time even under failures
● Replicas are “active” - participate in protocol;  there is no 

master, per se.
● Good:  Clients don’t even see the failures.  Bad:  More 

complex.

Replication Model



Passive Replication

Client Front End

Replica 1

Replica 2

Replica 3

Client
Front End

Client

Requests 
(replies flow opposite)

Master (elected leader)

• Master => total ordering of 
all updates

• On master failure, run 
election

223



Active Replication

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication 

transparency

Client
Front End

Client

Requests 
(replies flow opposite)

Multicast inside 
Replica group

224



When to Replicate: Pull 
versus Push Protocols

Comparison between push- and pull-based protocols in 
the case of multiple-client, single-server systems.

● Pull Based: Replicas/Clients poll for updates (caches)
● Push Based: Server pushes updates (stateful) 



Remote-Write PB Protocol

Updates are blocking, although non-blocking possible



Local-Write P-B Protocol

Primary migrates to the process wanting to process update
For performance, use non-blocking op. 

What does this scheme remind you of?



Primary-Backup

● Note:  If you don’t care about strong consistency (e.g., the 
“mail read” flag), you can reply to client before reaching 
agreement with backups (sometimes called “asynchronous 
replication”).

● This looks cool.  What’s the problem?
● What do we do if a replica has failed?
● We wait... how long?  Until it’s marked dead.
● Primary-backup has a strong dependency on the failure 

detector
● This is OK for some services, not OK for others
● Advantage:  With N servers, can tolerate loss of N-1 copies



Implementing P-B

● Remember logging? :-)

● Common technique for replication in databases and 
filesystem-like things:  Stream the log to the backup.  They 
don’t have to actually apply the changes before replying, just 
make the log durable.

● You have to replay the log before you can be online again, but 
it’s pretty cheap.



p-b:  Did it happen?

Commit!

Client Primary Backup

Log Commit!

Log
OK!

OK!

Failure here:
Commit logged only at primary

Primary dies?  Client must re-send to backup

OK!



p-b:  Happened twice

Commit!

Client Primary Backup

Log

Commit!

Log
OK!

Failure here:
Commit logged at backup

Primary dies?  Client must check with backup

OK!

(Seems like at-most-once / at-least-once... :)



Problems with p-b

● Not a great solution if you want very tight response time even 
when something has failed:  Must wait for failure detector

● For that, quorum based schemes are used

● As name implies, different result: To handle f failures, must have 
2f + 1 replicas  (so that a majority is still alive)

● Also, for replicated-write => write to all replica’s not just one. 



Prof Srinivasan Seshan 

School of Computer Science 
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213-3891

http://www.cs.cmu.edu/~srini/15-440-
all/2016.Fall/lectures/10-Logging-Recovery.ppt

http://www.cs.cmu.edu/~srini/15-440-all/2016.Fall/lectures/10-Logging-Recovery.ppt


Recovery Strategies
● When a failure occurs, we need to bring the system 

into an error free state (recovery). This is fundamental 
to Fault Tolerance.  

1. Backward Recovery: return the system to some 
previous correct state (using checkpoints), then 
continue executing. Example? 

● Packet retransmit in case of lost packet 

2. Forward Recovery: bring the system into a correct 
new state, from which it can then continue to execute. 
Example? 

● Erasure coding, (n,k) where k < n <= 2k 



Forward and Backward 
Recovery

● Major disadvantage of Backward Recovery: 
● Checkpointing can be very expensive (especially when errors 

are very rare).  
● [Despite the cost, backward recovery is implemented more 

often.  The “logging” of information can be thought of as a 
type of checkpointing.].

● Major disadvantage of Forward Recovery: 
● In order to work, all potential errors need to be accounted for 

up-front.  
● When an error occurs, the recovery mechanism then knows 

what to do to bring the system forward to a correct state. 



Checkpointing

A recovery line to detect the correct distributed snapshot
This becomes challenging if checkpoints are un-coordinated 



Independent Checkpointing

The domino effect – Cascaded rollback
P2 crashes, roll back, but 2 checkpoints inconsistent (P2 

shows m received, but P1 does not show m sent) 



Coordinated Checkpointing 

● Key idea: each process takes a checkpoint after a globally 
coordinated action. (why is this good?) 

● Simple Solution: 2-phase blocking protocol
● Co-ordinator multicast checkpoint_REQUEST message
● Participants receive message, takes a checkpoint, stops sending 

(application) messages, and sends back checkpoint_ACK
● Once all participants ACK, coordinator sends checkpoint_DONE to 

allow blocked processes to go on

● Optimization: consider only processes that depend on the recovery 
of the coordinator (those it sent a message since last checkpoint)  

238



Logging

● …in the presence of failures 
● Machines can crash. Disk Contents (OK), Memory (volatile), 

Machines don’t misbehave 
● Networks are flaky, packet loss, handle using timeouts 

● If we store database state in memory, a crash will cause loss of 
“Durability”. 

● May violate atomicity, i.e. recover such that uncommited 
transactions COMMIT or ABORT.

● General idea: store enough information to disk to determine 
global state  (in the form of a LOG) 

239



Challenges: 

● Disk performance is poor (vs memory)
● Cannot save all transactions to disk 
● Memory typically several orders of magnitude faster

● Writing to disk to handle arbitrary crash is hard
● Several reasons, but HDDs and SSDs have buffers

● Same general idea: store enough data on disk so as to 
recover to a valid state after a crash: 
● Shadow pages and Write-ahead Logging (WAL)  

240



Shadow Paging Vs WAL 
● Shadow Pages

● Provide Atomicity and Durability,  “page” = unit of 
storage

● Idea: When writing a page, make a “shadow” copy 
● No references from other pages, edit easily! 

● ABORT: discard shadow page 
● COMMIT: Make shadow page “real”. Update pointers to 

data on this page from other pages (recursive). Can be 
done atomically 

● Essentially “copy-on-write” to avoid in-place page 
update

241



Shadow Paging vs WAL
● Write-Ahead-Logging  

● Provide Atomicity and Durability
● Idea: create a log recording every update to database 
● Updates considered reliable when stored on disk
● Updated versions are kept in memory (page cache) 
● Logs typically store both REDO and UNDO operations
● After a crash, recover by replaying log entries to 

reconstruct correct state   
● WAL is more common, fewer disk operations, 

transactions considered committed once log written.  

242



Write-Ahead Logging
● View as sequence of entries, sequential number

● Log-Sequence Number (LSN) 
● Database: fixed size PAGES, storage at page level 

● Pages on disk, some also in memory (page cache)
● “Dirty pages”: page in memory differs from one on disk 

● Reconstruction of global consistent state 
● Log files + disk contents + (page cache) 

● Logs consist of sequence of records 
● Begin LSN, TID #Begin TXN 
● End LSN, TID, PrevLSN #Finish TXN (abort or commit)
● Update LSN, TID, PrevLSN, pageID, offset, old 

value, new value

243



Write-Ahead Logging

● Logs consist of sequence of records 
● To record an update to state 
● Update LSN, TID, PrevLSN, pageID, offset, old value, new value
● PrevLSN forms a backward chain of operations for each TID
● Storing “old” and “new” values allow REDO operations to bring a 

page up to date, or UNDO an update reverting to an earlier 
version 

● Transaction Table (TT): All TXNS not written to disk
● Including Seq Num of the last log entry they caused   

● Dirty Page Table (DPT): all dirty pages in memory
● Modified pages, but not written back to disk.  

244



Write-Ahead-Logging

● Commit a transaction
● Log file up to date until commit entry 
● Don't update actual disk pages, log file has information 
● Keep "tail" of log file in memory => not commits 
● If the tail gets wiped out (crash), then partially executed 

transactions will lost. Can still recover to reliable state

● Abort a transaction 
● Locate last entry from TT, undo all updates so far 
● Use PrevLSN to revert in-memory pages to start of TXN
● If page on disk needs undo, wait (come back to this) 

245



Recovery using WAL – 3 
passes

● Analysis Pass 
● Reconstruct TT and DPT (from start or last checkpoint)
● Get copies of all pages at the start 

● Recovery Pass (redo pass) 
● Replay log forward, make updates to all dirty pages
● Bring everything to a state at the time of the crash

● Undo Pass 
● Replay log file backward, revert any changes made by 

transactions that had not committed (use PrevLSN)
● For each write Compensation Log Record (CLR)
● Once you reach BEGIN TXN, write an END TXN entry  

246



WAL can be integrated 
with 2PC

● WAL can integrate with 2PC
● Have additional log entries that capture 2PC 

operation
● Coordinator: Include list of participants 
● Participant: Indicates coordinator 
● Votes to commit or abort 
● Indication from coordinator to Commit/Abort 

247



Optimizing WAL 

● As described earlier: 
● Replay operations back to the beginning of time 
● Log file would be kept forever, (entire Database)

● In practice, we can do better with CHECKPOINT
● Periodically save DPT, TT  
● Store any dirty pages to disk, indicate in LOG file 
● Prune initial portion of log file: All transactions upto checkpoint 

have been committed or aborted.  

248



Summary

● Fault Tolerance – Backward recovery using 
checkpointing, both Independent and coordinated

● Fault Tolerance –Recovery using Write-Ahead-Logging, 
balances the overhead of checkpointing and ability to 
recover to a consistent state

249



State Machine Replication

Drew Zagieboylo



Authors

● Fred 
Schneider



Takeaways

● Can represent deterministic distributed 
system as Replicated State Machine

● Each replica reaches the same conclusion 
about the system independently

● Key examples of distributed algorithms
that generically implement SMR 

● Formalizes notions of fault-tolerance in 
SMR



Outline

● Motivation
● State Machine Replication 
● Implementation
● Fault Tolerance Requirements
● An Example - Chain Replication
● Evaluation



Motivation

Client

Client

Server

X = 10
10

get(x)

get(x)

…No response



Motivation

Server

Client
X = 10X = 10

X = 10 X = 10



Motivation

●Need replication for fault tolerance

●What happens in these scenarios without replication?

●Storage  - Disk Failure

●Webservice - Network failure

●Be able to reason about failure tolerance

●How badly can things go wrong and have our system 
continue to function?



State Machines

X = Yc

X = Z

f(c)● c is a Command
● f is a Transition 

Function



State Machine Replication 
(SMR)

●The State Machine 
Approach to a fault 
tolerant distributed 
system

●Keep around N
copies of the state 
machine

X = Y

X = Y

X = Y

X = Yc

State Machine 
Replica



State Machine Replication 
(SMR)

●The State Machine 
Approach to a fault 
tolerant distributed 
system

●Keep around N
copies of the state 
machine

X = Y

X = Y

X = Y

X = Y

State Machine 
Replica

f(c) f(c)

f(c) f(c)



X = 3

X = 3

X = 3

X = 3Put(x,10)

SMR Requirements



X =10

X =10

X =10

X =10

SMR Requirements

Great!



X = 3

X = 3

X = 3

X = 3Put(x,10)

SMR Requirements



X =10

X =10 X =10

SMR Requirements

X = 3

Problem!

get(x)

3

●Replicas need to agree
on the which
requests have been 
handled



SMR Requirements

X =3

X =3

X =3

X =3put(x,10) put(x,30)
r0 r1



SMR Requirements

X = 10

X = 10

X = 10

X = 10

OR

X = 30

X = 30

X = 30

X = 30



SMR Requirements

X = 3

X = 3

X = 3

X = 3put(x,10) put(x,30)
r0 r1



SMR Requirements

X = 3

X = 3

X = 3

X = 3r0 r1

put(x,10)
r0

put(x,30)
r1

r0 r1



SMR Requirements

X =10

X =10

X =30

X =30r0 r1

put(x,10)
r0

put(x,30)
r1

r0 r1



SMR Requirements

X = 10

X = 10

X = 30

X = 30r0
r1

put(x,10)
r0

put(x,30)
r1

r0
r1

r1
r0

r1
r0



SMR Requirements

X = 30

X = 30

X = 10

X = 10r0
r1

r0
r1

r1
r0

r1
r0

● Replicas need to handle requests in 
the same order



SMR

● All non faulty servers need:
● Agreement

● Every replica needs to accept the same set of 
requests

● Order
● All replicas process requests in the same relative 

order



Implementation

● Agreement
● Someone proposes a request; if that person 

is nonfaulty all servers will accept that 
request

● Strong and Dolev [1983] and Schneider 
[1984] for implementations

● Client or Server can propose the request



SMR Implementation

X = 3

X = 3

X = 3

X = 3put(x,10)



SMR Implementation

X = 3

X = 3

X = 3

X = 3

put(x,10)

Non-faulty Transmitter



Implementation

● Order
● Assign unique ids to requests, process them 

in ascending order.
● How do we assign unique ids in a distributed 

system?
● How do we know when every replica has 

processed a given request?



SMR Requirements

X = 3

X = 3

X = 3

X = 3put(x,30) put(x,10)
r0 r1



SMR Requirements

X = 3

X = 3

X = 3

X = 3put(x,30) put(x,10)
r0 r1

Request ID
r0 1
r1 2

Assign Total 
Ordering



X = 3

X = 3

X = 3

X = 3r0
r1

r0
r1

r1
r0

r1
r0

Request ID
r0 1
r1 2

Assign Total Ordering

SMR Requirements



X = 3

X = 3

X = 3

X = 3r0
r1

r0
r1

r0
r1

r0
r1

Request ID
r0 1
r1 2

Assign Total Ordering

SMR Requirements



X = 30

X = 30

X = 30

X = 30r0
r1

r0
r1

r0
r1

r0
r1

Request ID
r0 1
r1 2

Assign Total Ordering

r0 is now stable! 

SMR Requirements



X = 10

X = 10

X = 10

X = 10r0
r1

r0
r1

r0
r1

r0
r1

Request ID
r0 1
r1 2

Assign Total Ordering

r0 is now stable! 
r1 is now stable! 

SMR Requirements



Implementation
Client Generated IDs

● Order via Clocks (Client timestamps 
represent IDs)
● Logical Clocks
● Synchronized Clocks

● Ideas from last week! [Lamport 1978]



Implementation
Replica Generated IDs

● 2 Phase ID generation
● Every Replica proposes a candidate
● One candidate is chosen and agreed upon 

by all replicas



Replica ID Generation

X = 3

X = 3

X = 3

X = 3
put(x,30)

r0
put(x,10)

r1



Replica ID Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID
r0 1.1
r1 2.1

Req. CUID UID
r0 1.2
r1 2.2

Req. CUID UID
r1 1.3
r0 2.3

Req. CUID UID
r1 1.4
r0 2.4

1) Propose Candidates



Replica ID Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID
r0 1.1 2.4
r1 2.1

Req. CUID UID
r0 1.2 2.4
r1 2.2

Req. CUID UID
r1 1.3
r0 2.3 2.4

Req. CUID UID
r1 1.4
r0 2.4 2.4

2) Accept r0



Replica ID Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID
r0 1.1 2.4
r1 2.1 2.2

Req. CUID UID
r0 1.2 2.4
r1 2.2 2.2

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

3) Accept r1



Replica ID Generation

X = 3

X = 3

X = 3

X = 3
Req. CUID UID
r1 2.1 2.2
r0 1.1 2.4

Req. CUID UID
r1 2.2 2.2
r0 1.2 2.4

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

r1 is now stable



Replica ID Generation

X = 10

X = 10

X = 10

X = 10
Req. CUID UID
r1 2.1 2.2
r0 1.1 2.4

Req. CUID UID
r1 2.2 2.2
r0 1.2 2.4

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

4) Apply r1



Replica ID Generation

X = 30

X = 30

X = 30

X = 30
Req. CUID UID
r1 2.1 2.2
r0 1.1 2.4

Req. CUID UID
r1 2.2 2.2
r0 1.2 2.4

Req. CUID UID
r1 1.3 2.2
r0 2.3 2.4

Req. CUID UID
r1 1.4 2.2
r0 2.4 2.4

5) Apply r0



Implementation 
Replica Generated IDs

●2 Rules for Candidate Generation/Selection
●Any new candidate ID must be > the id of any accepted

request.
●The ID selected from the candidate list must be >= each 

candidate
●In the paper these are written as:
●If a request r’ is seen by a replica smi after r has been

accepted by smi then uid(r) < cuid(smi,r’)
●cuid(smi,r) <= uid(r)



Implementation
Replica Generated IDs

● When do we know a candidate is stable?
● A candidate is accepted
● No other pending requests with smaller 

candidate ids



Fault Tolerance

●Fail-Stop
●A faulty server can be detected as faulty 
●Byzantine
●Faulty servers can do arbitrary, perhaps malicious 

things
●Crash Failures - NOT covered in paper
●Server can stop responding without notification

(subset of Byzantine)



Fail-Stop Tolerance

X = 3

X = 3

X = 3

X = 3
put(x,30)

r0



Fail-Stop Tolerance

X = 3

X = 3

X = 3

X = 3Req. CUID UID

r0 1.1

1) Propose Candidates….



Fail-Stop Tolerance

X = 3

X = 3

X = 3

X = 3Req. CUID UID

r0 1.1 1.1

2) Accept r0



Fail-Stop Tolerance

X = 3

X = 30

X = 3

X = 3Req. CUID UID

r0 1.1 1.1

2) Apply r0



Fail-Stop Tolerance

X = 3

X = 30

X = 3

X = 3

2) Apply r0

GAME OVER!!!



Fail-Stop Tolerance

● To tolerate t failures, need t+1 servers.
● As long as 1 server remains, we’re OK!
● Only need to participate in protocols with 

other live servers



Byzantine Tolerance

X = 3

X = 3

X = 3

X = 3
get(x)
r0



Byzantine Tolerance

X = 3

X = 3

X = 3

X = 3
get(x)
r0



Byzantine Tolerance

X = 3

X = 3

X = 3

X = 3

7

3



Byzantine Tolerance

X = 3

X = 3

X = 3

X = 3

7

3

Client trusts the majority =>
Need majority to participate in replication



Byzantine Tolerance

X = 3

X = 3

X = 3

X = 3

7

3

Who to trust?? 3 or 7?



Byzantine Tolerance

X = 3

X = 3

X = 3

X = 3
put(x,30)

r0



Byzantine Tolerance

X = 3

X = 3

X = 3

X = 3Req. CUID UID

r0 1.1

Req. CUID UID

r0 1.2

Req. CUID UID

r0 1.4

Req. CUID UID

r0 ??? ???

1) Propose Candidates



Byzantine Tolerance
a) No response

X = 3

X = 3

X = 3

X = 3Req. CUID UID

r0 1.1

Req. CUID UID

r0 1.2

Req. CUID UID

r0 1.4

Req. CUID UID

r0 ??? ???

a) Wait for majority candidates
Timeout long requests & notify others



Byzantine Tolerance
a) No response

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1 1.4

Req. CUID UID

r0 1.2 1.4

Req. CUID UID

r0 1.4 1.4

Req. CUID UID

r0 ??? ???

a) Accept 
r0



Byzantine Tolerance
Small ID

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1

Req. CUID UID

r0 1.2

Req. CUID UID

r0 1.4

Req. CUID UID

r0 -5 ???

1) Propose Candidates



Byzantine Tolerance
Small ID

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1

Req. CUID UID

r0 1.2

Req. CUID UID

r0 1.4

Req. CUID UID

r0 -5 ???

2) Accept 
r0

uid = max(cuid(smi,r))
Ignore low candidates! 



Byzantine Tolerance
Small ID

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1 1.4

Req. CUID UID

r0 1.2 1.4

Req. CUID UID

r0 1.4 1.4

Req. CUID UID

r0 -5 ???

2) Accept 
r0

uid = max(cuid(smi,r))
Ignore low candidates! 



Byzantine Tolerance
Large ID

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1

Req. CUID UID

r0 1.2

Req. CUID UID

r0 1.4

Req. CUID UID

r0 10 ???

1) Propose Candidates



Byzantine Tolerance
Large ID

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1

Req. CUID UID

r0 1.2

Req. CUID UID

r0 1.4

Req. CUID UID

r0 10 ???

Large numbers follow 
protocol!



Byzantine Tolerance
Large ID

X = 3

X = 3

X = 3

X = 3
Req. CUID UID

r0 1.1 10

Req. CUID UID

r0 1.2 10

Req. CUID UID

r0 1.4 10

Req. CUID UID

r0 10 ???

2) Accept
r0

Large numbers follow 
protocol!



Fault Tolerance

● Byzantine Failures
● To tolerate t failures,  need 2t + 1 servers
● Protocols now involve votes

● Can only trust server response if the majority of 
servers say the same thing

● t + 1 servers need to participate in 
replication protocols



Other Contributions

● Tolerating Faulty Output Devices
● (e.g. a faulty network, or user-facing i/o)

● Tolerating Faulty Clients

● Reconfiguration



Takeaways

Lamport 1978



Takeaways

● Can represent deterministic distributed 
system as Replicated State Machine

● Each replica reaches the same conclusion 
about the system independently

● Key examples of distributed algorithms
that generically implement SMR 

● Formalizes notions of fault-tolerance in 
SMR



Chain Replication

● Authors 
● Rober

t Van 
Rene
sse 
(RVR)

● Fred
Schn
eider



Chain Replication

● Fault Tolerant Storage Service (Fail-Stop)
● Requests:

● Update(x, y) => set object x to value y
● Query(x) => read value of object x



Chain Replication

X = 3

X = 3

X = 3

X = 3



Chain Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

get(x) 3



Chain Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

put(x,30)



Chain Replication

X = 3X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r0 1

1) Head assigns uid



Chain Replication

X = 30X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r0 1

Req. UID
r0 1

2) Head sends message
to next node



Chain Replication

X = 30X = 30 X = 30 X = 3

Head Tail

Client

put(x,30)

Req. UID
r0 1

Req. UID
r0 1

Req. UID
r0 1

3) Repeat until
tail is reached 



Chain Replication

X = 30X = 30 X = 30 X = 30

Head Tail

Client

put(x,30)

Req. UID
r0 1

Req. UID
r0 1

Req. UID
r0 1

Req. UID
r0 1

x= 30 4) respond to client 
with
success 



Chain Replication

● How does Chain Replication implement 
State Machine Replication?

● Agreement
● Only Update modifies state, can ignore 

Query
● Client always sends update to Head. Head

propagates request down chain to Tail. 
● Everyone accepts the request!



Chain Replication

●How does Chain Replication implement State Machine 
Replication?
●Order
●Unique IDs generated implicitly by Head’s ordering
●FIFO order preserved down the chain
●Tail interleaves Query requests
●How can clients test stability? (How can clients tell 

when their Updates have been handled)



Chain Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1



Chain Replication

X = 3X = 10 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID

r1 1

Req. UIDReq. UID



Chain Replication

X = 10X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID
r1 1
r0 2

Req. UIDReq. UID
r1 1



Chain Replication

X = 10X = 30 X = 10 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1



Chain Replication

X = 10X = 30 X = 10 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Client
put(x,10)

r1

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1

x=10



Chain Replication

X = 10X = 30 X = 10 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1



Chain Replication

X = 30X = 30 X = 10 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1
r0 2



Chain Replication

X = 30X = 30 X = 30 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1
r0 2



Chain Replication

X = 30X = 30 X = 30 X = 10

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2



Chain Replication

X = 30X = 30 X = 30 X = 30

Head Tail

Client

put(x,30)

Req. UID
r1 1
r0 2

r0

Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

x= 30



Fault Tolerance

X = 3X = 30 X = 3 X = 3

Head Tail

Req. UID
r1 1
r0 2

Req. UID Req. UIDReq. UID



Fault Tolerance

X = 3X = 30 X = 3 X = 3

Head Tail

Req. UID
r1 1
r0 2

Req. UID Req. UIDReq. UID

Dropped requests r1 and r0



Fault Tolerance

X = 30X = 30 X = 30 X = 10

Head Tail
Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1
r0 2



Fault Tolerance

X = 30X = 30 X = 30 X = 10

Head Tail
Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1
r0 2

New tail is stable for superset
of old tail’s requests



Fault Tolerance

X = 30X = 30 X = 10 X = 10

Head Tail
Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1
r0 2



Fault Tolerance

X = 30X = 30 X = 10 X = 10

Head Tail
Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1
r0 2



Fault Tolerance

X = 30X = 30 X = 10 X = 10

Head Tail
Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1

Req. UID
r1 1
r0 2

Need to re-send r0



Fault Tolerance

X = 30X = 30 X = 10 X = 10

Head Tail
Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Req. UID
r1 1
r0 2

Need to re-send r0

How is all of this assignment managed?



Chain Replication
Fault Tolerance

● Trusted Master
● Fault-tolerant state machine
● Trusted by all replicas
● Monitors all replicas & issues commands



Chain Replication
Fault Tolerance

●Failure cases:
●Head Fails

●Master assigns 2nd node as Head

●Tail Fails
●Master assigns 2nd to last node as Tail

●Intermediate Node Fails
●Master coordinates chain link-up



Chain Replication
Evaluation

● Compare to other primary/backup 
protocols

● Tradeoffs?
● Latency
● Consistency

● Trusted Master



Conclusions

●Implements the “exercise left to the reader” hinted at by Lamport’s 
paper

●Provides some of the concrete details needed to actually 
implement this idea
●But still a fair number of details in real implementations that would 

need to be considered
●Chain replication illustrates a “simple” example with fully concrete 

details
●Does some work to justify why such synchronization might be useful 

(plane actuators)
●A key contribution that bridges the gap between academia and 

practicality for SMR


