
Java based middlewares
JINI, EJB, J2EE

ICS 237- Distributed Systems
Middleware
 Nalini Venkatasubramanian

Java

● “lingua franca” to easily interconnect data and application across
organizational boundaries.

● Java-based middlewares
○ Application servers -- BEA WebLogic
○ Messaging products -- Active Software's ActiveWorks
○ DBMS based - exploit DBMS systems with server-based Java object

execution features.
● Features

○ JVM -- Java’s runtime execution environment
○ RMI, RMI registry (Java’s RPC and directory service)
○ Type safety and sandboxed execution (JVM process can service

multiple requests without interfering)

Old Article on Java middleware

https://www.infoworld.com/article/2076371/the-state-of-java-application-middleware--part-1.html

Java RMI

● 3 processes
● Client
● Server
● RMI registry

● Remote class must
● extendsRemote interface
● Server extends

java.rmi.server.UnicastRemoteObject

● rmic compiler
● stub and skeleton generation

● Other Issues
● Serialization
● Exception handling
● Constructors

● Java communication
● Sockets

● pt-to-pt, duplex
● Pre-determined format,

protocol
● RPC

● Abstract to procedure call
● Standard data

representations
● RMI

● Object oriented RPC
● RPC+Java serialization to

pack objects

public interface PrintService extends Remote {
 int print(Vector printJob) throws
RemoteException;
}

Java Serialization

● Store and retrieve objects
● Capture enough state for reconstruction
● Generate a bytestream

● Java interfaces for serialization
● java.io.Serializable: default serialization

mechanism
● java.io.Externalizable: custom serialization
● Serialize to file, serialize an entire class

Jini Motivation

● Need a distributed system based on the idea of
federating groups of users and the resources required
by those users.

● Need an open software architecture that enables the
creation of network-centric solutions which are highly
adaptive to change.

● Middleware solution to build adaptive networks that are
scalable, evolvable and flexible as typically required in
dynamic computing environments.

Jini – Java Middleware
● Network extension of Java

● Users share services and resources over a network
● Easy access to resources anywhere on the network while allowing network

location of the user to change

● Simplifying the task of building, maintaining, and altering a
network of devices, software, and users
● Support true plug and play in LAN-based networked systems
● SOHO (small office, home office environments)
● ROHO (remote office, home office environments)

● System of federated users and resources
● Appears to users as a single system
● A client/resource/service may belong to more than one Jini system

at a time

Environmental
Assumptions

● Existence of a network of “reasonable speed”
● “reasonable” network latency

● Connected devices have “some memory and
processing power”
● Those that don’t must have a Jini proxy that does

have memory and processing power

● Needs the Java Environment
● Members are assumed to agree on basic notions of

trust, administration, identification, and policy.

Jini Advantages

Jini Structure

Jini Services

● Anything that can be used in a Jini system
● Entity used by a person, program, another service, storage…

● Utilized through a Service Protocol
● Set of interfaces written in Java
● Services carry the code needed to use them
● A small set of protocols is predefined

● e.g. Discovery, Join, Lookup

● Communication happens through RMI
● Allows for objects and code to be sent around the network

● Security: incorporates Java’s security models

What Jini is

● Services carry the code needed to use them
● proxies are dynamically downloaded by clients when they need to

use a service
● A “meta-service” provides access to all other services

● Lookup services keeps track of all other services in a community.
● Entries are downloadable Java objects that act as local proxies to

the real service
● Bootstrapping process to find proxies for the lookup service
● Service discovery and join: service protocols that allows services (both

hardware and software) to discover, become part of, and advertise
supplied services to the other members of the federation

What Jini is not
● Not just RMI
● Jini is not just a name server
● Jini is not a system consisting of client and servers. It is system

consisting of services that can be collected together for the
performance of a particular task.

● Jini is not JavaBeans
● JavaBeans provides a way for software components to find and

introspect each other
● intended for use within a single address space
● less dynamic (design-time, not runtime)

● Jini is not EJB
● similar to Jini but intended to hook together legacy systems

covered by Java wrappers to form the back-end business logic of
enterprise applications

●

Jini Overview

Lookup
Service

Service

Client

Service

Service

Service

Lookup
Service

Lookup
Service

Service

Service

Jini group: publicJini group: cs237.uci.edu

Jini Lookup Service
● Core/ Central bootstrapping mechanism for the system

● provides the major point of contact between the system and
users of the system.

● Maps interfaces to objects that implement those
interfaces
● Interface only describes functionality of a service
● Descriptive entries can be associated with a service to allow

more flexible searching

● Services can appear/disappear in a lightweight way
● A service is added to a lookup service by a pair of protocols

called Discovery and Join.
● The service locates an appropriate lookup service using the

discovery protocol.
● The service is added using the join protocol.

Lookup Service

Pro
xy

Service item
Attribute

Attribute

Attribute

Proxy

Service item
Attribute

Attribute

Attribute

Proxy

Service item
Attribute

Attribute

Attribute

Lookup Service

● Jini Lookup Service is an interface
● Implementations can incorporate other

lookup services
● Hierarchical Lookup
● Bridge between lookup services

● Discover, Join and Lookup Protocols
● Discover to find a lookup service
● Join to add to the lookup service
● Lookup to find a service and use it

Jini Service Discovery

Jini
Join & Lookup Protocols

Join

Discovery, Join & Lookup
Protocols

Lookup

Discovery, Join & Lookup
Protocols

Invocation

Attributes in Jini

● Attributes describe service
● rich and flexible way for services to annotate their

proxies with information describing that service
● Attributes are Java objects

● assigned to service proxies

● Attribute matching
● set of rules to determine when attributes match one

another

● template matching
● for matching against multiple attributes

Discovery Protocol in Jini

● Serendipitous discovery
● Jini allows serendipitous interactions between

services and users of those services
● Service initiated discovery

● used when a service starts to find all lookup services in its vicinity
● Lookup service initiated discovery

● used when a lookup service starts and announces its presence to
Jini services

● Hardwired (Direct discovery)
● hardwire a Jini service to a lookup service

Discovery Protocol
● Happens when a device first connects to the Jini System

● Device could find/join multiple groups

● Unicast Discovery
● For applications and services that know about particular lookup services.

● Multicast Discovery

● Multicast Request - Device looking for Lookup Service in a group

● Multicast Announce - Lookup Service Advertises its presence

● Uses IP multicast based on UDP/IP
● each message has a scope (distance) associated with it
● promotes efficiency in routing
● can set IP TTL (how many hops) parameter

Join Protocol

● Registers a service with a Lookup Service in a Jini
System
● Each Service has a list of properties, Service ID,

Attributes, a list of groups to register with, etc.

● Uses Discovery to find Lookup Services
● Maintains a list of Lookup Services to register with
● Registers with all Lookup Service that responds
● Creates a lease during registration, which is renewed

periodically

Lookup Protocol

● Client queries the Lookup Service
● Find a service by name, or attributes
● Receive a copy of the service interface onto

the client

● Client interacts with service through this
“proxy” object
● Client also gets a lease on the service

Lookup Join

Join and Lookup: An
Example

Lookup Service
Service Object

Service Attributes

Service
Service Object

Service Attributes

Client

Service Object

● Join: Service object is registered.
● Copy sent to reside on Lookup Service through RMI

● Lookup: Service is copied to Client
● Service Object acts a proxy

Client uses Service

Service Architecture

● The service object on the client
communicates with Service by:
● RMI
● Local implementation
● Combination of the above (smart proxy)

● From client point of view:
● Services look the same across the network or

in local address space
● All services are Java objects

Security

● Based on principals and access contol lists
● Services accessed on behalf of some entity-

the principal
● Usually traces back to the user

● Access is determined through an ACL
associated with an object

Programming Model

● The leasing interface
● defines a way of allocating and freeing resources using a renewable,

duration-based model

● The event and notification interface
● an extension of the event model used by JavaBeans™ components to the

distributed environment that enables event-based communication between
Jini services

● Transaction interfaces
● enable entities to cooperate in such a way that either all of the changes

made to the group occur atomically or none of them occur
● Jini provides an interface for two-phase commit transactions

● Does not provide implementation
● Does not define semantics of transactions
● Only provides protocol to coordinate

Leasing

● Set of interfaces that allow time-based
resource allocation
● Guarantees access to a service while lease is

in effect
● Can be renewed (depends in the service)
● Can be exclusive or non-exclusive
● Lease can be cancelled or it automatically

expires at the end of the terms of the lease

Jini Events

● Allows an object in one JVM to register for
events occurring on another
● Possibly across a network
● Can register for different kinds of events
● Can schedule notifications

● Provides interfaces that implement a
protocol
● No guarantees made interfaces, only by

implementations

Transactions in Jini

● Create a transaction
● Jini transactionFactory object to create a

transaction object to hold grouped operations

● pass to it all the transactions to be
grouped

● tell to try to execute all operations
atomically, which will either succeed or fail
● commit() call

Component Overview

JINI summary

● Federate devices and software components into a
single, dynamic distributed system

● Service: an entity that can be used by a person, a
program, or another service

● Lookup Service: discovery, join, lookup
● RMI: Remote Method Invocation
● Security: principal, access control list
● Leasing: a grant of guaranteed access over a time

period
● Transactions
● Events

Java-based Enterprise
Platforms and Middleware

J2EE and EJB

J2EE Architecture

Enterprise JavaBeans

A Server side distributed transaction component
architecture (for J2EE)

● Encapsulates business logic and data in a container
● integrates directory services, configuration,

security, transactions etc..

● Standard component model for application
servers

● EJB enables rapid and simplified development
of distributed, transactional, secure and
portable Java applications.

EJB Architecture

Remote Interface

● WebAddressAccount.java
● defines the business methods that a client may call. The

business methods are implemented in the enterprise bean
code

public interface WebAddressAccount extends EJBObject {

 public String getUrlName();
public String getUrlDescript();

 }

Home Interface

● WebAddressAccountHome.java
● defines the methods that allow a client to create, find, or

remove an enterprise bean

● public interface WebAddressAccountHome extends EJBHome
{

● public WebAddressAccount create(String urlName, String
urlDescript);

● public WebAddressAccount findByPrimaryKey(String
urlName) ;

●

● }

Enterprise Bean Class

● WebAddressAccountBean.java
● implements the business methods

public class WebAddressAccountBean implements EntityBean {

 public String getUrlName() { return urlName; }
public String getUrlDescript() { return urlDescript; }
public String ejbCreate(String urlName, String urlDescript) {

insertRow(urlName, urlDescript);
}
public String ejbFindByPrimaryKey(String primaryKey) {

result = selectByPrimaryKey(primaryKey);
}

Thin Client Design Model

Later -- Message Driven Beans that talked to messaging platforms or backend databases;
entity beans integrated into persistence architecture (JPA)

Session Beans

▪ Represents business rules or process
▪ Perform work for individual clients on the
server
▪ Encapsulate complex business logic
▪ Can coordinate transactional work on
multiple entity beans
▪ 2 types: Stateful and Stateless
● Stateful : session bean holds client state data

Entity Beans

● Represents business model data
⦿ Persisted in storage system (usually

Database)
⦿ Might contain Application logic intrinsic to

entity
● Maps business data to java class

EJB Application Usecase

● Distributed Airline Travel Reservation System

EJB Use Case
Banking System

Classes

ATM Customer transfers money from
checking to savings account

EJB
Representation

EJB Packaging
● Packed in a jar file
● Factory
● Proxy
● XML Deployment Descriptor

Bean Provider

Application Assembler

Deployer

Service/ Container Provider

Travel Reservation System:
Bean Provider

Application Assembler

Deployment in a target
container

Features

● Portable
● Contained and Managed at Runtime
● Simplifies the complexity of building n-tier

application
● Scalable & distributable
● Easy to upgrade and maintain

J2EE Motivation

⦿ New multi-tier enterprise computing model in
web environment

● A way to bring in different elements of
enterprise application:

● Web interface design
● Transaction processing
● Meeting non-functional system requirements:

• Availability, reliability, extensibility, performance,
scalability, reusability, interoperability

● Timely development and deployment

Java Based Enterprise
Platforms

● Platform introduced - 1999
● J2SE – Java 2 Standard Edition

● Java for the desktop / workstation
● http://java.sun.com/j2se

● J2ME – Java 2 Micro Edition
● Java for the consumer device
● http://java.sun.com/j2me

● J2EE - Java 2 Enterprise Edition
● Java for the server
● http://java.sun.com/j2ee

http://java.sun.com/j2se
http://java.sun.com/j2me
http://java.sun.com/j2ee

What is J2EE?

● A Multi-tiered distributed application
model

● A collection of Standards: JDBC, JNDI,
JMX, JMS

● A Component Technology: EJB
● An Application Server

J2EE Architecture

J2EE Tiers

● Client Presentation
� HTML or Java applets deployed in Browser
� XML documentations transmitted through

HTTP
� Java clients running in Client Java Virtual

Machine (JVM)
● Presentation Logic
� Servlets or JavaServer Pages running in web

server
● Application Logic
� Enterprise JavaBeans running in Server

J2EE Tiers

J2EE Components and
Services

● Components
● Java Servlets
● JavaServer Pages (JSP)
● Enterprise JavaBeans (EJB)

● Standard services & supporting technologies
● Java database connectivity(JDBC) data access API
● Java Messaging Service (JMS)
 (Remote Method Invocations (RMI))
● Extensible Markup Languages(XML)
● JavaIDL (Interface Description Language)
● JavaMail
● Java Security
● CORBA technology
● Design Patterns

J2EE Clients

● Web Clients (thin clients): dynamic web
pages and a web browser

● Applets: Client application in Java that
runs on JVM on the web browser

● Application Clients: Runs on a client
machine to provide a way for users to
handle tasks that require a richer user
interface

Enterprise Information
System Tier

● Information Infrastructure for an
enterprise

● Handles enterprise information system
software and includes enterprise
infrastructure systems such as enterprise
resource planning (ERP)

● Necessary to ensure transactional access
to EIS system from various applications

J2EE Containers

An interface between a component and a
low-level platform specific functionality

J2EE APIs

● Enterprise JavaBeans Technology 2.0
● JDBC API 2.0
● Java Servlet Technology 2.3
● Java Server Pages Technology 1.2
● Java Message Service 1.0
● Java Naming and Directory Interface 1.2
● Java Transaction API 1.0
● Java Mail API 1.2
● Java API for XML Processing 1.1
● Java Authentication &Authorization Service 1.0

What is Java Servlet?

● Conforms to Java Servlet API in J2EE
● Container managed Web Component
● Generate dynamic response to requests

from web based clients
● Synchronize multiple concurrent client

request

What is Java Server
Pages?

● Conforms to J2EE Web Application
● Web Component that sits on top of Java

Servlet mode
● Dynamically generates Web pages based

on HTML, XML
● Text based documents describe how to

process a request and create a response

References

● http://www.scribd.com/doc/6173018/J2EE-T
utorial

● http://java.sun.com/j2ee/tutorial/1_3-fcs/doc
/Overview6.html

● http://download.oracle.com/docs/cd/B31017
_01/migrate.1013/b25219/overview.htm

● http://en.wikipedia.org/wiki/J2ee
● http://rangiroa.essi.fr/cours/ejb/00-ejbcodec

amp_ch1of6.PDF

http://www.scribd.com/doc/6173018/J2EE-Tutorial
http://www.scribd.com/doc/6173018/J2EE-Tutorial
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Overview6.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Overview6.html
http://download.oracle.com/docs/cd/B31017_01/migrate.1013/b25219/overview.htm
http://download.oracle.com/docs/cd/B31017_01/migrate.1013/b25219/overview.htm
http://en.wikipedia.org/wiki/J2ee

