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Java 

● “lingua franca”  to easily interconnect data and application across 
organizational boundaries.

● Java-based  middlewares 
○ Application servers --  BEA WebLogic
○ Messaging products -- Active Software's ActiveWorks 
○ DBMS based - exploit DBMS systems with server-based Java object 

execution features. 
● Features 

○ JVM -- Java’s runtime execution environment
○ RMI,  RMI registry  (Java’s RPC and directory service)
○ Type safety and sandboxed execution (JVM process can service 

multiple requests without interfering)

Old Article on Java middleware

https://www.infoworld.com/article/2076371/the-state-of-java-application-middleware--part-1.html


Java RMI

● 3 processes 
● Client
● Server
● RMI registry

● Remote class must
● extendsRemote interface
● Server extends 

java.rmi.server.UnicastRemoteObject

●  rmic compiler 
● stub and skeleton generation

● Other Issues
● Serialization
● Exception handling
● Constructors

● Java communication
● Sockets 

● pt-to-pt, duplex
● Pre-determined format, 

protocol
● RPC

● Abstract to procedure call
● Standard data 

representations
● RMI 

● Object oriented RPC
● RPC+Java serialization to 

pack objects

public interface PrintService extends Remote {
  int print(Vector printJob) throws 
RemoteException;
}



Java Serialization

● Store and retrieve objects
● Capture enough state for reconstruction
● Generate a bytestream

● Java interfaces for serialization
● java.io.Serializable: default serialization 

mechanism
● java.io.Externalizable: custom serialization
● Serialize to file, serialize an entire class



Jini Motivation

● Need a distributed system based on the idea of 
federating groups of users and the resources required 
by those users.

● Need an open software architecture that enables the 
creation of  network-centric solutions which are highly 
adaptive to change.

● Middleware solution to build adaptive networks that are  
scalable, evolvable and flexible as typically required in  
dynamic computing environments.



Jini – Java Middleware
● Network extension of Java

● Users share services and resources over a network
● Easy access to resources anywhere on the network while allowing network 

location of the user to change

● Simplifying the task of building, maintaining, and altering a 
network of devices, software, and users
● Support true plug and play in LAN-based networked systems
● SOHO (small office, home office environments)
● ROHO (remote office, home office environments)

● System of federated users and resources
● Appears to users as a single system
● A client/resource/service may belong to more than one Jini system 

at a time



Environmental 
Assumptions

● Existence of a network of “reasonable speed”
● “reasonable” network latency

● Connected devices have “some memory and 
processing power”
● Those that don’t must have a Jini proxy that does 

have memory and processing power

● Needs the Java Environment
● Members are assumed to agree on basic notions of 

trust, administration, identification, and policy.



Jini Advantages



Jini Structure



Jini Services

● Anything that can be used in a Jini system
● Entity used by a person, program, another service, storage…

● Utilized through a Service Protocol
● Set of interfaces written in Java
● Services carry the code needed to use them
● A small set of protocols is predefined

● e.g. Discovery, Join, Lookup

● Communication happens through RMI
● Allows for objects and code to be sent around the network

● Security: incorporates Java’s security models 



What Jini is

● Services carry the code needed to use them
● proxies are dynamically downloaded by clients when they need to 

use a service
● A “meta-service” provides access to all other services

● Lookup services keeps track of all other services in a community.
● Entries are downloadable Java objects that act as local proxies to 

the real service
● Bootstrapping process to find proxies for the lookup service
● Service discovery and join: service protocols that allows services (both 

hardware and software) to discover, become part of, and advertise 
supplied services to the other members of the federation



What Jini is not
● Not just RMI
● Jini is not just a name server
● Jini is not a system consisting of client and servers. It is system 

consisting of services that can be collected together for the 
performance of a particular task.

● Jini is not JavaBeans
● JavaBeans provides a way for software components to find and 

introspect each other
● intended for use within a single address space
● less dynamic (design-time, not runtime)

● Jini is not EJB
● similar to Jini but intended to hook together legacy systems 

covered by Java wrappers to form the back-end business logic of 
enterprise applications

●



Jini Overview
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Jini Lookup Service 
● Core/ Central bootstrapping mechanism for the system 

● provides the major point of contact between the system and 
users of the system.

● Maps interfaces to objects that implement those 
interfaces
● Interface only describes functionality of a service
● Descriptive entries can be associated with a service to allow 

more flexible searching

● Services can appear/disappear in a lightweight way
● A service is added to a lookup service by a pair of protocols  

called Discovery and Join.
● The service locates an appropriate lookup service using the 

discovery protocol.
● The service is added using the join protocol.
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Lookup Service

● Jini Lookup Service is an interface
● Implementations can incorporate other 

lookup services
● Hierarchical Lookup
● Bridge between lookup services

● Discover, Join and Lookup Protocols
● Discover to find a lookup service
● Join to add to the lookup service
● Lookup to find a service and use it



Jini Service Discovery



Jini 
Join & Lookup Protocols

Join



Discovery, Join & Lookup 
Protocols

Lookup



Discovery, Join & Lookup 
Protocols

Invocation



Attributes in Jini

● Attributes describe service
● rich and flexible way for services to annotate their 

proxies with information describing that service
● Attributes are Java objects

● assigned to service proxies

● Attribute matching
● set of rules to determine when attributes match one 

another

● template matching
● for matching against multiple attributes



Discovery Protocol in Jini

● Serendipitous discovery
● Jini allows serendipitous interactions between 

services and users of those services
● Service initiated discovery

● used when a service starts to find all lookup services in its vicinity
● Lookup service initiated discovery

● used when a lookup service starts and announces its presence to 
Jini services

● Hardwired (Direct discovery)
● hardwire a Jini service to a lookup service



Discovery Protocol
● Happens when a device first connects to the Jini System

● Device could find/join multiple groups

● Unicast Discovery
● For applications and services  that know about particular lookup services.

● Multicast Discovery 

● Multicast Request - Device looking for Lookup Service in a group

● Multicast Announce - Lookup Service Advertises its presence

● Uses IP multicast based on UDP/IP 
● each message has a scope (distance) associated with it
● promotes efficiency in routing
● can set IP TTL (how many hops) parameter



Join Protocol

● Registers a service with a Lookup Service in a Jini 
System
● Each Service has a list of properties, Service ID, 

Attributes, a list of groups to register with, etc.

● Uses Discovery to find Lookup Services
● Maintains a list of Lookup Services to register with
● Registers with all Lookup Service that responds
● Creates a lease during registration, which is renewed 

periodically



Lookup Protocol

● Client queries the Lookup Service
● Find a service by name, or attributes
● Receive a copy of the service interface onto 

the client

● Client interacts with service through this 
“proxy” object
● Client also gets a lease on the service



Lookup Join

Join and Lookup: An 
Example

Lookup Service
Service Object

Service Attributes

Service
Service Object

Service Attributes

Client
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● Join: Service object is registered.
● Copy sent to reside on Lookup Service through RMI

● Lookup: Service is copied to Client
● Service Object acts a proxy

Client uses Service 



Service Architecture

● The service object on the client 
communicates with Service by:
● RMI
● Local implementation
● Combination of the above (smart proxy)

● From client point of view:
● Services look the same across the network or 

in local address space
● All services are Java objects



Security

● Based on principals and access contol lists
● Services accessed on behalf of some entity- 

the principal
● Usually traces back to the user

● Access is determined through an ACL 
associated with an object



Programming Model

● The leasing interface
● defines a way of allocating and freeing resources using a renewable, 

duration-based model

● The event and notification interface
● an extension of the event model used by JavaBeans™ components to the 

distributed environment that enables event-based communication between 
Jini services

● Transaction interfaces
● enable entities to cooperate in such a way that either all of the changes 

made to the group occur atomically or none of them occur
● Jini provides an interface for two-phase commit transactions

● Does not provide implementation
● Does not define semantics of transactions
● Only provides protocol to coordinate



Leasing

● Set of interfaces that allow time-based 
resource allocation
● Guarantees access to a service while lease is 

in effect
● Can be renewed (depends in the service)
● Can be exclusive or non-exclusive
● Lease can be cancelled or it automatically 

expires at the end of the terms of the lease



Jini Events

● Allows an object in one JVM to register for 
events occurring on another
● Possibly across a network
● Can register for different kinds of events
● Can schedule notifications

● Provides interfaces that implement a 
protocol
● No guarantees made interfaces, only by 

implementations



Transactions in Jini

● Create a transaction
● Jini transactionFactory object to create a 

transaction object to hold grouped operations

● pass to it all the transactions to be 
grouped

● tell to try to execute all operations 
atomically, which will either succeed or fail
● commit() call



Component Overview



JINI summary

● Federate devices and software components into a 
single, dynamic distributed system

● Service: an entity that can be used by a person, a 
program, or another service

● Lookup Service: discovery, join, lookup
● RMI: Remote Method Invocation
● Security: principal, access control list
● Leasing: a grant of guaranteed access over a time 

period
● Transactions
● Events



Java-based Enterprise 
Platforms and Middleware

J2EE and EJB



J2EE Architecture



Enterprise JavaBeans

A Server side distributed transaction component 
architecture (for J2EE)

● Encapsulates business logic and data in a container
● integrates directory services, configuration, 

security, transactions etc.. 

● Standard component model for application 
servers

● EJB enables rapid and simplified development 
of distributed, transactional, secure and 
portable Java applications. 



EJB Architecture



Remote Interface

● WebAddressAccount.java
● defines the business methods that a client may call. The 

business methods are implemented in the enterprise bean 
code

public interface WebAddressAccount extends EJBObject {
    

        public String getUrlName();
public String getUrlDescript();

    }



Home Interface

● WebAddressAccountHome.java
● defines the methods that allow a client to create, find, or 

remove an enterprise bean

● public interface WebAddressAccountHome extends EJBHome 
{

●     public WebAddressAccount create(String urlName, String 
urlDescript);   

●     public WebAddressAccount findByPrimaryKey(String 
urlName) ;

●    

● }



Enterprise Bean Class

● WebAddressAccountBean.java
● implements the business methods

public class WebAddressAccountBean implements EntityBean { 

    public String getUrlName() {  return urlName; } 
public String getUrlDescript() {  return urlDescript;    }
public String ejbCreate( String urlName, String urlDescript) {

insertRow( urlName, urlDescript);
}
public String ejbFindByPrimaryKey(String primaryKey) {

result = selectByPrimaryKey(primaryKey);
}



Thin Client Design Model

Later -- Message Driven Beans that talked to messaging platforms or backend databases;  
entity beans integrated into persistence architecture (JPA)



Session Beans

▪ Represents business rules or process
▪ Perform work for individual clients on the 
server
▪ Encapsulate complex business logic
▪ Can coordinate transactional work on 
multiple entity beans
▪ 2 types: Stateful and Stateless
● Stateful : session bean holds client state data



Entity Beans

● Represents business model data
⦿ Persisted in storage system ( usually 

Database)
⦿ Might contain Application logic intrinsic to 

entity
● Maps business data to java class



EJB Application Usecase

● Distributed Airline Travel Reservation System



EJB Use Case 
Banking System

Classes

ATM Customer transfers money from 
checking to savings account

EJB 
Representation



EJB Packaging
● Packed in a jar file
● Factory
● Proxy
● XML Deployment Descriptor

Bean Provider



Application Assembler



Deployer



Service/ Container Provider



Travel Reservation System:
Bean Provider



Application Assembler



Deployment in a target 
container



Features 

● Portable
● Contained and Managed at Runtime
● Simplifies the complexity of building n-tier 

application
● Scalable & distributable
● Easy to upgrade and maintain



J2EE Motivation

⦿ New multi-tier enterprise computing model in 
web environment

● A way to bring in different elements of 
enterprise application:

● Web interface design
● Transaction processing
● Meeting non-functional system requirements:

• Availability, reliability, extensibility, performance, 
scalability, reusability, interoperability

● Timely development and deployment



Java Based Enterprise 
Platforms 

● Platform introduced - 1999
● J2SE – Java 2 Standard Edition

● Java for the desktop / workstation
● http://java.sun.com/j2se

● J2ME – Java 2 Micro Edition
● Java for the consumer device
● http://java.sun.com/j2me

● J2EE - Java 2 Enterprise Edition
● Java for the server 
● http://java.sun.com/j2ee

http://java.sun.com/j2se
http://java.sun.com/j2me
http://java.sun.com/j2ee


What is J2EE?

● A Multi-tiered distributed application 
model

● A collection of Standards: JDBC, JNDI, 
JMX, JMS

● A Component Technology: EJB
● An Application Server



J2EE Architecture



J2EE Tiers

● Client Presentation
� HTML or Java applets deployed in Browser
� XML documentations transmitted through 

HTTP
� Java clients running in Client Java Virtual 

Machine (JVM)
● Presentation Logic
� Servlets or JavaServer Pages running in web 

server
● Application Logic
� Enterprise JavaBeans running in Server



J2EE Tiers



J2EE Components and 
Services

● Components
● Java Servlets
● JavaServer Pages (JSP)
● Enterprise JavaBeans (EJB)

● Standard services & supporting technologies
● Java database connectivity(JDBC) data access API
● Java Messaging Service (JMS)
    (Remote Method Invocations (RMI))
● Extensible Markup Languages(XML)
● JavaIDL (Interface Description Language)
● JavaMail
● Java Security
● CORBA technology
● Design Patterns



J2EE Clients

● Web Clients (thin clients): dynamic web 
pages and a web browser

● Applets: Client application in Java that 
runs on JVM on the web browser

● Application Clients: Runs on a client 
machine to provide a way for users to 
handle tasks that require a richer user 
interface



Enterprise Information 
System Tier

● Information Infrastructure for an 
enterprise

● Handles enterprise information system 
software and includes enterprise 
infrastructure systems such as enterprise 
resource planning (ERP)

● Necessary to ensure transactional access 
to EIS system from various applications



J2EE Containers

An interface between a component and a 
low-level platform specific functionality



J2EE APIs

● Enterprise JavaBeans Technology 2.0
● JDBC API 2.0
● Java Servlet Technology 2.3
● Java Server Pages Technology 1.2
● Java Message Service 1.0
● Java Naming and Directory Interface 1.2
● Java Transaction API 1.0
● Java Mail API 1.2
● Java API for XML Processing 1.1
● Java Authentication &Authorization Service 1.0



What is Java Servlet?

● Conforms to Java Servlet API in J2EE
● Container managed Web Component
● Generate dynamic response to requests 

from web based clients
● Synchronize multiple concurrent client 

request



What is Java Server 
Pages?

● Conforms to J2EE Web Application
● Web Component that sits on top of Java 

Servlet mode
● Dynamically generates Web pages based 

on HTML, XML
● Text based documents describe how to 

process a request and create a response
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