+

Architectural Models for
Distributed Computing

CS237 Spring 2021
TuTh 5:00-6:20p.m.

Prof. Nalini Venkatasubramanian
nalini@uci.edu

Acknowledgements: Slides modified from Kurose/Ross book slides.
Sukumar Ghosh, U at IOWA,

Mark Jelasity, Tutorial at SASO'07
Keith Ross, Tutorial at INFOCOM
Anwitaman Datta, Tutorial, ICDCN

Distributed Computing
* Architectures

. Parallel Computing Architectures

. SISD, SIMD, MISD, MIMD

. Symmetric vs. Asymmetric Multiprocessing
. Client-Server Architectures

. Client-Proxy-Server Architectures

. Peer-to-Peer Systems
. Cluster based Systems
. Edge/Cloud Architectures

Flynn’s Taxonomy for Parallel
comPUting Instructions

Single (SI) Multiple (M)
SISD MISD
Single-threaded |Pipeline architecture
process
8
A SIMD MIMD

Vector Processing Multi-threaded
Programming

Multiple (MD) Single (SD)

Parallelism — A Practical Realization of Concurrency

SISD (Single Instruction
Single Data Stream)

Processor

Instructions

A sequential computer which exploits no parallelism in either the
instruction or data streams.

Examples of SISD architecture are the traditional uniprocessor machines
(currently manufactured PCs have multiple processors) or old mainframes.

http://en.wikipedia.org/wiki/Uniprocessor
http://en.wikipedia.org/wiki/Mainframe_computer

o [°1919]°.°
S ~ w N -

Instructions

A computer which exploits multiple data streams against a single instruction
stream to perform operations which may be naturally parallelized.
For example, an array processorFor example, an array processor or GPU.

http://en.wikipedia.org/wiki/Array_processor
http://en.wikipedia.org/wiki/GPU

MISD (Multiple Instruction
Single Data)

\/

Instructions

\/

Instructions

Multiple instructions operate on a single data stream.

Uncommon architecture which is generally used for fault tolerance.
Heterogeneous systems operate on the same data stream and
aim to agree on the resuilt.

Examples include the Space Shuttle flight control computer.

Intro to Distributed Systems
Middleware

http://en.wikipedia.org/wiki/Space_Shuttle

Processor
*MIMD
—D—/DH/D DHDHD—

f

Instructions

Processor

f

Instructions

Multiple autonomous processors simultaneously executing different instructions on

different data.
Distributed systems are generally recognized to be MIMD architectures;

either exploiting a single shared memory space or a distributed memory space.

http://en.wikipedia.org/wiki/Distributed_system

Classic Client/Server System

Every entity has its dedicated
different role (Client/Server)
e request-response paradigm

Uses well-known reliable
Key:
Process:O Computer: servers, DODU|a|'
| e Web Server
;@} | Back-end o FIP Server
O
) e Media Server
A e Database Server
ﬁ e Application Server

e Scalability — a concern
e |neffective Utilization of resources at client
e Servers — administered entities

s W1

Servers

Architectural Models

ultiple servers, proxy servers and caches, mobile code, ...

Service

r—— - = = T a) client request results in the downloading of applet code

Applet code kY

|
|
|
I
| @ | b)client interacts with the applet
| | Mobile code
Web
&
Comer) |
I

MUItlpIe L — — — — 1
servers

Architectural Models:

* No single node
server as a
server

* All nodes act as
client (and
server) at a time

P2P Systems

+

Jse -

]

'he vast resources of N

achl

nes at the edge of the

Internet to bulld a network

that a
\JNHhOL

OWS resource sharing
t any central authority./

2000s - P2P rising in popularity

3
S
01831 3OWALL] 0 BTG

93 01 g5 o .

W email W FIP
W r2p W Wed

Daily Internet Traffic (2006)

http://www.marketingvox.com/p4p-will-make-4-a-speedier-net-pr
ofs-say-040562/

Change of Yearly Internet Traffic

Traffic

00: 00 06: 00 12:00 18: 00 00: 00 06: 00 12: 00 18: 00
Internet Activities

W veb @ PlusNet FTP
@ FTP (non PlusNet) O 0ther

@ Gaming @ Usenet

@ Streaming O Peer-to-peer

B Broadband phonecalls M Email

http://www.marketingvox.com/p4p-will-make-4-a-speedier-net-profs-say-040562/
http://www.marketingvox.com/p4p-will-make-4-a-speedier-net-profs-say-040562/

Across the world

Normalized Aggregate Traffic Profile
(Peak Hours, Fixed Access)

Normalized Aggregate Traffic Profile
(Peak Hours, Fixed Access)

100% : Asia-Pacific
- North America
80% - m Outside Top 5 m Outside Top 5
70% ® Real-Time Communications ¥ Real-Time Communications
sa% Social Networking ——— W P2PFilesharing
50% ® Gaming = Storage and Back-Up Services
0% m Secure Tunneling ® Real-Time Entertainment
30% ® P2P Filesharing u Web Browsing
20% ® Real-Time Entertainment
10% ___ mWebBrowsing
0% 4 2009 2010
2009 2010
Normalized Aggregate Traffic Profile
(Peak Hours, Fixed Access) Normalized Aggregate Traffic Profile
100% (Peak Hours, Fixed Access)
100%
90%
20%
=T ® Outside Top 5 i |
70% ® Real-Time Communications TO% W Outside Top 5
60% 1 ® Storage and Back-Up Services 50% | Secial Networking
S0% ® Gami = Real-Time Communications
am 50% |
e M Storage and Back-Up Services
2 10%
o Hawsieaom M Real-Time Entertainment
S0 P2P Filesharing N = P2P Filesharing
405 u Web Browsing e m Web Browsing
10% - m Real-Time Entertainment 10%.7
‘ Latin America
o Europe e a

2009 2010

#2P applications today

—errws s o s wserwes - g

o Bitcoin and alternatives such as Ether, Nxt and Peercoin are peer-to-peer-based digital cryptocurrencies.

¢ Dalesa, a peer-to-peer web cache for LANs (based on IP multicasting).

o FAROO, a peer-to-peer web search engine

« Filecoin is an open source, public, cryptocurrency and digital payment system intended to be a blockchain-based cooperative digital storage and data retrieval method.

¢ |2P, an overlay network used to browse the Internet anonymously.

« Infinit is an unlimited and encrypted peer to peer file sharing application for digital artists written in C++.

e The InterPlanetary File System (IPFS) is a protocol and network designed to create a content-addressable, peer-to-peer method of storing and sharing hypermedia distribution ¢
o JXTA, a peer-to-peer protocol designed for the Java platform.

o Netsukuku, a Wireless community network designed to be independent from the Internet.

o Open Garden, connection sharing application that shares Internet access with other devices using Wi-Fi or Bluetooth.

» Research like the Chord project, the PAST storage utility, the P-Grid, and the CoopNet content distribution system.

o Tradepal and M-commerce applications that power real-time marketplaces.

o The U.S. Department of Defense is conducting research on P2P networks as part of its modern network warfare strategy.[5°] In May, 2003, Anthony Tether, then director of DAR|
o WebTorrent is a P2P streaming torrent client in JavaScript for use in web browsers, as well as in the WebTorrent Desktop stand alone version that bridges WebTorrent and BitTo
o Tor (anonymity network)

« Microsoft in Windows 10 uses a proprietary peer to peer technology called "Delivery Optimization" to deploy operating system updates using end-users PCs either on the local r
o Artisoft's LANtastic was built as a peer-to-peer operating system. Machines can be servers and workstations at the same time.

How P2P Networks Inspired Blockchain

January 17th 2020 | last updated | ' f in

Why is it called Blockchain?

Application and Presentation Layer

Smart Contracts Chaincode DApps yserinterface
B h—x

izi' Game Theory Network Layer
Each new block of transaction Peer-to-Peer (p2P)
get added to the blockchain by
consensus of network Data Layer

Data Structure

validators at even time Digital Signature Hash Merkel Tree Transaction

intervals. Validators are
rewarded with a native token Hardware / Infrastructure Layer
for validating transactions
BCCO'diﬂg to the rules thlough Virtual Machine Containers Services Messaging
fault tolerant and attack

resistant economic incentivisa-

. tion mechanism,
Genesis Block

50+ BLOCKCHAIN
REAL WORLD USES CASES

The network stores all the
information in cryptographically
secured data pieces called
blocks. The first block ina
blockchain is called the Genesis
Block. Each block has limited
storage size. Blocks store a
fingerprint (the hash) of the
previous block, thus they are
‘chained’ together with
cryptography.

{1} P2P Network

Each full node on the
C"Vl’togﬂphy network stores a copy
of the entire blockchain
(transaction history).

From the Book “Token Economy” by Shermin Voshmgir, 2019 A BIOCkChain TUtO rial
Excerpts available on https://blockchainhub.net https://folk.uio.no/romanvi/Papers/bc-tutorial-debs-master.pdf

https://folk.uio.no/romanvi/Papers/bc-tutorial-debs-master.pdf

Pure P2P architecture

U

no always-on server

Q arbitrary end systems
directly communicate

0 peers are intermittently peer-peer
connected and change IP
addresses

P2P System

Imr‘Odu%rggﬁ‘cation 2-16

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

u_: server upload
S

bandwidth
Server @

u. peer i upload
n s\ \g u bandwidth
1 1 2
Ys % ° d: peer i download
File, size F g

bandwidth
dN
@ . Network (with °
Y abundant bandwidth)
N °
°
° °
°
¢ °

Application 2-17

File distribution time: server-client

Server @
server sequentiall .
QO ser quentially ﬂ N
sends N copies: 2y, W79,
® NF/uShme Network (with

d
Q client i takes F/d. time B " - sbundant bandwidth) °
to download Un)

Time to distribute F
to N clients using _

client/server approach = 9es = Max { NP/ u, F/ min(di)}

/

incr'ecées linearly in N
(for large N)

Application 2-18

File distribution time: P2P

Sﬁver'
Q server must send one i
copy: F/u_time u
Q client i takes F/d. time d\NeTwor'k (with
to download @—N' abundant bandwidth) *
2 NF bits must be U .
downloaded (aggregate) o

fastest possible upload rate: u_ + Zui

d,,, = max { F/u_, F/min(d) ,NF/(u, + Zui)}

Application 2-19

Server-client vs. P2P: example

Client upload rate =u, F/u=1hour, u ,=10u, d_ >u

Minimum Distribution Time

S

3.5

3_

2' 5 <4

2 e R R S e B S T T e e S et I B e R R S B S S S T T S

1.5 sssssssssssssr e e e g s s R g e R s e s s I S S e S R S e R S T S e S S R S R S S R R B S B B S e B

1 o4

= P2P
—— Client-Server

Application 2-20

P2P Applications

SETI RS HOME

Y ire

@ BitTorrent

napster.

P2P Applications

1 P2P Search, File Sharing and Content
dissemination
+» Napster, Gnutella, Kazaa, eDonkey, BitTorrent
% Chord, CAN, Pastry/Tapestry, Kademlig,
+ Bullet, SplitStream, CREW, FareCAST

2 P2P Communications
«» MSN, Skype, Social Networking Apps

1 P2P Storage

% OceanStore/POND, CFS (Collaborative
FileSystems),TotalRecall, FreeNet, Wuala

1 P2P Distributed Computing
+» Seti@home

P2P File Sharing

/Alice runs P2P client\

application on her

notebook computer
Intermittently

kconnects to Internet/

»

Alice chooses one
of the peers, Bob.

¥

-
File is copied from
Bob’s PC to Alice’

Knotebock

Gets new
|IP address
for each

connection
L

~

/

»

p
Asks for
“Hey

Jude”
N

~

\ 4

/Application displays

- other peers that have

_

copy of Hey Jude.

)

-
While Alice downloads,
other users upload

Q‘rom Alice.

1973

PUBLIC KEY CRYPTOGRAPHY
What would later spawn the RSA
encryption algorithm is first implemented

O

1979
MERKLE TREES
Ralph Merkle invents what would become
the basis of git - and other versioning systems

1981 1983
UNTRACEABLE Y
ELECTRONIC MAIL,
RETURN ADDRESSES,
AND DIGITAL
PSEUDONYMS
David Chaum proposes
“mix networks* for
anonymous
communication
A
E-CASH
David Chaum
Y.

4

1995

DIGICASH
David Chaum founds the first known
“sletronic money corporation”

1992 b 1997
PRICING VIA PROCESSING HASCASH
OR COMBATTING JUNK MAIL Adam Back repropases
Cynthia Dwork and Moni Naor present the Hashcash
3n “early iteration” of the Hashcash concept
1998
BITGOLD
Nick Szabo
B-MONEY
Wei Dai

whi

1969
ARPANET

The early internet was
a peer to peer network

Jurassic forums

A

A BRIEF HISTORY

OF P2P CONTENT

The Betamax case, and
jurisprudence in favour of P2P

DISTRIBUTION

2001
BITTORRENT
Bram Cohen designs BitTorrent,
ich soon becornes one of the most
popular ways of sharing large
files over the internet
v
FREENET
2000

Darknets
are born

v

NAMECOIN

20m
The first bitcain fork
v
2013-14
H

Decentralised
Storage Networks

O0—0
1997 1999 2009
HOTLINE | NAPSTER BITCOIN
a 1 Satoshi makes A
zo‘oo 2006 the first transaction 2014-15
GNUTELLA PIRATE BAY ?’:’AQM.
Flocding query. PTB is built as an SORORLID 5 P
gets used in easy gateway V':‘-’b 2 i Semriry
scale to torrents i el file sharing
i
MP3.COM Y 2012 =
it DIASPORA
2001 The first mainstream
KAZAA 1 “decentralised social i
1 2005 network™ IPES
2000 MEGAUPLOAD Juan Benet
mastly g ad: designs a trustless
LIMEWIRE roic el network upon 3
A A A One of the i odels generalized Merkle DAG
1993 1996 1998 [matpopdar| 2002 Y
RAR INDEPENDENCE! clients RAPIDSHARE 4
The popular compression A Declaration of the File sharing se: STORI
format is invented Independence of begin to spra\ AT
Cyberspace is published A A BTty
by John Perry Barlow Jdog SIA Dropbox =
MP3>SEX T
Mp3 becomes more papular
insearches than "sex’ | A
A A
2001 2008 MASTER MAID
NAPSTER PIRATEBAY COIN SAFE
SHUTDOWN 1ST RAID One of the Afile sharing
Napster is legally forced by Servers are seized in Sweden - earliest ICOs. project fundraised
the music industry ta shutdown the pressure wauld crly increase later turned and built on
and pay a hefty settlement sum into Omni Omni

P2P Communication

2 Instant Messaging
1 Skype is a VoIP P2P system

~

4 Alice runs IM client
application on her
notebook.computer

Inte{m{tteln’gtly t
connects to Interne

N J

»

" Alice initiates
direct TCP

kBob, then chat

connection with

Gets new A 4 A
Register
}graé’fgﬁss » herself with
connection system
- J Y
/Learns from A
- “system” that Bob
in her buddy list is
kactlve ,

P2P/Grid Distributed
Processing

01 seti@home
% Search for ET intelligence
+ Central site collects radio telescope data
+ Data is divided into work chunks of 300 Kbytes
« User obtains client, which runs in background

& Peer sets up TCP connection to central
computer, downloads chunk

¢ Peer does FFT on chunk, uploads results,
gets new chunk

2 Not P2P communication, but exploit Peer
computing power

1 Crowdsourcing - Human-oriented P2P

* Characteristics of P2P Systems

« EXploit edge resources.
= Storage, content, CPU, Human presence.

« Significant autonomy from any centralized
authority.
= Each node can act as a Client as well as a Server.

= Resources at edge have intermittent
connectivity, constantly being added &
removed.

= Infrastructure is untrusted and the components
are unreliable.

* (Promising) properties of P2P

« Self-organizing

= Massive scalability

« Autonomy : non single point of failure
= Resilience to Denial of Service

« Load distribution

= Resistance to censorship

“The ultimate form of

democracy on the Internet” The ultimate threat to copyright

protection on the Internet”

Overlay Network

overlay edge

A P2P network is an overlay network. Each link
between peers consists of one or more IP links.

Overlays : All in the application layer

T
= Tremendous design
flexibility e
. Topology, maintenance LUl N\ PS4
. Message types D N ""'
. Protocol ... =2
= Messaging over TCP or UDP SES

-
S

i i &
« Underlying physical it a
network is transparent to L ;-
e application
developer e Farcpor
- But some overlays exploit L & o |datalink
prOlelty physical 5 g ey

verlay Graph

= Virtual edge
= TCP connection
= or simply a pointer to an IP address

= Overlay maintenance

Periodically ping to make sure neighbor is still alive

Or verify aliveness while messaging

If neighbor goes down, may want to establish new edge
New incoming node needs to bootstrap

Could be a challenge under high rate of churn

- Churn : dynamic topology and intermittent access due
to node arrival and failure

* Overlay Graph

« Unstructured overlays

= €.g., new node randomly chooses existing nodes
as neighbors

« Structured overlays
= €.g., edges arranged in restrictive structure
« Hybrid Overlays

= Combines structured and unstructured overlays

- SuperPeer architectures where superpeer nodes are
more stable typically

. Get metadata information from structured node,
communicate in unstructured manner

* Key Issues

« Lookup

= How to find out the appropriate content/resource
that a user wants

« Management

= How to maintain the P2P system under high rate
of churn efficiently

= Application reliability is difficult to guarantee
= Throughput

= Content distribution/dissemination applications
- How to copy content fast, efficiently, reliably

* Lookup Issue

« Centralized vs. decentralized

« How do you locate data/files/objects in a
large P2P system built around a dynamic set
of nodes in a scalable manner without any
centralized server or hierarchy?

« Efficient routing even if the structure of the
network is unpredictable.
= Unstructured P2P : Napster, Gnutella, Kazaa

= Structured P2P : Chord, CAN, Pastry/Tapestry,
Kademlia

Lookup Example : File Sharing

* Scenario
1. Where is 0. Registers
Hey Jude”? files including
2. List of “Hey Jude”
peers having

‘ “ “Hey Jude” x‘ “
,

-

Alice 3. Gets “Hey Bob
Jude” from Bob

* Napster @napsten

« First P2P file-sharing application (June
1999)

= Only MP3 sharing possible
= Based on central index server

= Clients register and give list of files to
share
= Searching based on keywords

= Response : List of files with additional
information, e.g. peer’s bandwidth, file size

* Napster Architecture

. Index
Server

Napster \ Your PC
Client - Que

S -5
@ < i List :

|
File
Copy

Napster /
Napster

Client 8
Client

Napster
Client

* Centralized Lookup

= Centralized directory services

= Steps
. Connect to Napster server.
. Upload list of files to server.
. Give server keywords to search the full

Napster Central

| er

ie
Index ServerH
X

=

)
[P
(<]

list with. g =
. Select “best” of correct answers. (ping) ol g
= Performance Bottleneck 0
| LOOkup iS Centralized’ but files are You'rComputer R—

copied in P2P manner

* Pros and cons of Napster

= Pros

= Fast, efficient and overall search
= Consistent view of the network

« Cons

= Central server is a single point of failure

. Central server is a bottleneck; maybe expensive to
maintain (designed to share MP3 files - few MBs).

. Susceptible to DOS attacks
. Lawsuits (copyrights infringement?)

0—0O

*Gnutel E (@) enureua

Originally developed at Nullsoft (AOL)
= Fully distributed system

m No index server — address Napster’s
weaknesses

All peers are fully equal a &

A peer needs to know another peer, that a-g & .
is already in the network, to join g= | da @

m Ping/Pong Protocol
g«

© 2002 HowStutfWorks

] ‘:query: "Baby Go Home.mp3"

6-7 levels . _
depending on “time to live"

2
= Flooding based search Q
= Variation: Random walk based : g &

sea rCh "I've got it!"
m Direct download ‘wpr

m Open protocol specifications

* Gnutella : Terms

2

A Gnutella node. Hops ahopisa
Each servant is both a pass through an
server and a client. intermediate node

Hop
client

how many hops a packet can
go before it dies
(default setting is 7 in Gnutella)

O &m

Gnutella operation : Flooding
* based lookup

Get Duplicated

Query TTL: 2

—1—» Query : Hey Jude Gnutella
—> Response : Query Hit Overlay
<+— Direct File Transfer Edge

Gnutella : Scenario

Step 0: Join the network
Step 1: Determining who is on the network
* "Ping" packet is used to announce your presence on the network.
 Other peers respond with a "Pong" packet.
* Also forwards your Ping to other connected peers
» A Pong packet also contains:
 an IP address
* port number
« amount of data that peer is sharing
* Pong packets come back via same route
Step 2: Searching
*Gnutella " " ask other peers (usually) if they have the file you desire
* A Query packet might ask, "Do you have any content that matches the string
‘Hey Jude"?
 Peers check to see if they have matches & respond (if they have any matches) &
send packet to connected peers if not (usually)
 Continues for TTL (how many hops a packet can go before it dies, typically)
Step 3: Downloading
* Peers respond with a * " (contains contact info)
* File transfers use direct connection using HTTP protocol's GET method

Gnutella : Reachable Users by
*ﬂood based lookup

[Tt TTL, N : Neighbors for }
F=F P T3 PT=¢ T=5 T=6 f e
N=2 4 6 8 10 12 14
=3 9 21 45 93 189 381

b6 D2 160 484 1.456 4.372

25 105 425 1.705 6.825 27,305
36 186 936 4.686 23,436 117,186
49 301 1.813 10,885 65,317 391,909

64 456 3.200 22,408 156.864 1.098.056
(analytical estimate)

[
|
S
O -1 O o B Lo 1D

* Gnutella : Lookup Issue

« Simple, but lack of scalability

= Flooding based lookup is extremely
wasteful with bandwidth

= Enormous number of redundant messages
= All users do this in parallel: local load
grows linearly with size
« Sometimes, existing objects may not be
located due to limited TTL

Possible extensions to make
* Gnutella efficient

= Controlling topology to allow for better
search

- Random walk, Degree-biased Random
Walk

= Controlling placement of objects
= Replication (1 hop or 2 hop)

* Gnutella Topology

« The topology is dynamic, I.e. constantly
changing.

= How do we model a
2

= Usually, we begin with a static topology, and

=« A Random Graph?
« A Power Law Graph?

Random graph:
* Erd6s-Rényi model

= A random graph G(n, p) is constructed
by starting with a set of n vertices, and

adding edges between pairs of nodes at
random.

= Every possible edge occurs
independently with probability p.

* Gnutella : Power law graph

« Gnutella topology is actually a
power-law graph.
= Also called scale-free graph

= What is a power-law graph?
= The number of nodes with degree k = ck™
= EX) WWW, Social Network, etc

= Small world phenomena — low degree of
separation (approx. log of size)

of nodes

Facebook

power-law friends distribution

10000 ¢}
1000 ¢
100 }

10

100K graph .
50K graph x %

Power law exp 1.7 ' i
10 100

of degree

proportion or nodes

* Power-law Examples

Gnutella
power-law link distribution

—o—

G_

dat

power-law fit :

T

2.07

10"

number of neighbors

Frequent ‘ Number of ‘ Percentage
Word Occurrences of Total Dictiona ries
the 7,398,934 59.
of 3,893,790 3.1
to 3,364,653 2.7
and 3,320,687 2.6
in 2,311,785 1.8
is 1,559,147 12
for 1,313,561 1.0
The 1,144,860 0.9
that 1,066,503 0.8
said 1,027,713 0.8

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus

125,720,891 total word occur~- -

“routes rank” ¢
axp(4.39619) *x** (0487592) —
10F W 3
L On Power Law
- Relationships of
| the Internet
| Topology.” -3
brothers Faloutsos
1 i A i
1 10 100 1000 10000
I Raovut=G
1oxeg
176%9.9
Lesd |
e
100009
L0000
1~
! ll 10 1000 I:ANN Tesds

" wikipedia

Lest?

B s s T

[]
L/ .l.l ™ .ll|
[
| | | v
] 8 .
. z [] (] u
] " aif| MmN g L |
|
s (] [»
'} u |
a 1] " - M]
2 l. A l.l n =
u
. & R AO:-‘I’W' . .
R R i = =8 =
[] ll'.- e B]
L] " = "
=Ry SO e .
.- l. .“m.'.. o - "
[} L 3
b sia .-.l' L] " -
L} i L] } L
. | = l.ll = I _.' 2
[] L] LR}
e | l.. '.' L] -
|] | B &
" .".l " u .
|] |] E o a
' .' n® a o n
] " s . w u
n
u u u ' L T'] o Intemetindustry Partnerships
@
s " B ceotent
n 1 Commerce
L] 8 B iotasnctue

Copyrght © 2000, Vi Koves

http://www.orgnet.com/netindustry.html

Other examples of power-law

Internet
Industry
partnerships

TIMELINE: SCALE-FREE NETWORKS

Réka Albert, Hawoong Jeong, and Albert-Laszl6 Barabasi

discover the power-law nature of the WWW [1]
and introduce scale-free networks [2, 10].

eE¢

Michalis, Petros, and Christos Faloutsos
discover the scale-free nature of the internet [15].

PUBLICATION DATE @ mmm—

1965

CITATIONS
7]

Derek de Solla Price (1922 - 1983)

discovers that citations follow a power-law
distribution [7], a finding later attributed to the
scale-free nature of the citation network [2].

CITATIONS
8]

https://barabasi.com/f/623.pdf

2560

PROTEINS
[14,15]

FACEBOOK
COAUTHOR. (271
[16,17]
SEXUAL 1900
Sk Mosui r]:Aus
(18] 4 1760

LINGUISTICS

19
ELECT. CIRCUITS
[20]

METABOLIC
[n,12]

SOFTWARE
[21]
ENERGY LAND-
SCAPE
[23]

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

“we expect that the scale-invariant state observed in all
systems for which detailed data has been available to us
is a generic property of many complex networks, with
applicability reaching far beyond the quoted examples.”

Barabasi and Albert, 1999

1960

OF PAPERS ON "SCALE-FREE NETWORKS”

(Google Scholar)

Possible Explanation of
* Power-Law graph

= Continued growth
= Nodes join at different times.

= Preferential Attachment

= 1he more connections a node has, the
more likely it is to acquire new connections

. Popular webpages attract new pointers.
. Popular people attract new followers.

Power-Law Overlay Approach

Full Network 30% Random Removed Top 4% Removed

= Power-law graphs are

y = C x™?: log(y) =log(C) — alog(x)

= Resistant to random failures
= Highly susceptible to directed attacks (to “hubs”) O

=« Even if we can assume random
failures

= Hub nodes become bottlenecks for neighbor forwarding
= And situation worsens ...

number of nodes
>

10 10
degree

Scale Free Networks. Albert Laszlo Barabasi and Eric Bonabeau. Scientific American. May-2003.

Gnutella : Random

* Walk-based Lookup

Gnutella Network

Simple analysis of Random
* Walk based Lookup

Let p = Population of the
object. i.e. the fraction of
nodes hosting the object (<1)

T=TTL (time to live)

Hop count | Probability of| Ex 1) Ex 2)
h success | popular | rare
1 p 0.3 | 0.0003
2 (1-p)p 0.21 | 0.00029
3 (1-p)*p 0.147 | 0.00029 P = 3/10
T (1-p)""'p

Expected hop counts of the
Random Walk based lookup

« EXxpected hop count E(h

= 1p + 2(1-p) +3(1p3 + ...+ T(1-p)™p
B R PA S LY R YR

« With a large TTL, E(h) = 1/p, which is
intuitive.
- If p is very small (rare objects), what happens?

« With a small TTL, there is a risk that search

will time out before an existing object is
located.

Extension of Random Walk
* based Lookup

« Multiple walkers
= Replication
= Biased Random Walk

* Multiple Walkers

« Assume they all k walkers start in unison.
= Probability that

= The probabili.ty that

« So the probab|l|ty that at least one walker
succeeded is 1-(1-p)~.

= A typical assumption is that the search is abandoned as soon
as at least one walker succeeds

« As k increases, the , but the delay
decreases. There is a tradeoff.

* Replication

= One (Two or multiple) hop replication

= Each node keeps track of the indices of
the files belonging to its immediate (or
multiple hop away) neighbors.

= As a result, high capacity / high degree
nodes can provide useful clues to a large
number of search queries.

* Biased Random Walk

P=5/10
P=2/10 N

« Each node records the degree of the neighboring nodes.
= Select highest degree node, that has not been visited

= This first climbs to highest degree node, then climbs
down on the degree sequence

« Lookup easily gravitates towards high degree
nodes that hold more clues.

GIA : Making Gnutella-like P2P
* Systems Scalable

= GIA is short name of “gianduia”
« Unstructured, but take node capacity
iInto account

= High-capacity nodes have room for more
queries: so, send most queries to them

= Will work only if high-capacity nodes:
= Have correspondingly more answers, and
= Are easily reachable from other nodes

* GIA Design

Make high-capacity nodes easily reachable

= Dynamic topology adaptation converts them into
high-degree nodes

Make high-capacity nodes have more answers

= One-hop replication
Search efficiently
= Biased random walks

Prevent overloaded nodes

= Active flow control

Query

* GIA : Active Flow Control

= Accept queries based on capacity
= Actively allocation “tokens” to neighbors

= Send query to neighbor only if we have received
token from it

= Incentives for advertising true capacity
= High capacity neighbors get more tokens to send
outgoing queries

= Allocate tokens with start-time fair queuing. Nodes
not using their tokens are marked inactive and this
capacity id redistributed among its neighbors.

\

ﬁ

* KaZaA regrs

= Created in March 2001
= Uses proprietary FastTrack technology

« Combines strengths of Napster and Gnutella
« Based on “Supernode Architecture”

= EXploits heterogenity of peers
= Two kinds of nodes
= Super Node / Ordinary Node

= Organize peers into a hierarchy
= Two-tier hierarchy

* KaZaA architecture

—— Query : Hey Jude
— Response : Query Hit
<+— Direct File Transfer

* KaZaA : SuperNode

=« Nodes that have more connection
bandwidth and are more available are
designated as supernodes

= Each supernode manages around 100-150
children

= Each supernode connects to 30-50 other
supernodes

* KaZaA : Overlay Maintenance

= New node goes through list until it finds
operational supernode

= Connects, obtains more up-to-date list, with 200
entries.

= Gets Nodes in list are “close” to the new node.
= The new node then pings 5 nodes on list and
connects with the one
« If supernode goes down, a node obtains
updated list and chooses new supernode

KaZaA : Metadata

= Each supernode acts as a mini-Napster hub,
tracking the content (files) and IP addresses

of its descendants

= For each file: File name, File size, Content Hash,
File descriptors (used for keyword matches during

query)
= Content Hash:

- When peer A selects file at peer B, peer A sends
ContentHash in HTTP request

. If download for a specific file fails (partially completes),
ContentHash is used to search for new copy of file.

* KaZaA : Operation

Peer obtains address of an SN
= €.g. via bootstrap server

= Peer sends request to SN and uploads
metadata for files it is sharing

= The SN starts tracking this peer
= Other SNs are not aware of this new peer

« Peer sends queries to its own SN

= SN answers on behalf of all its peers,
forwards query to other SNs

= Other SNs reply for all their peers

KaZaA : Parallel Downloading and

* Recovery

« If file is found in multiple nodes, user can
select parallel downloading
- Identical copies identified by ContentHash

. used to request
different portions of the file from different
nodes

« Automatic recovery when server peer stops
sending file
= ContentHash

P2P Case study: Skype

4

inherently P2P: pairs
of users communicate.
proprietary
application-layer
protocol (inferred via
reverse engineering)

hierarchical overlay
with SNs

Index maps usernames
to IP addresses;
distributed over SNs

Skype

Skype clients (SC)

login server —

InTrOdu%rgglri\cation 2-72

Peers as relays

1 problem when both
Alice and Bob are
behind "NATSs".

« NAT prevents an outside
peer from initiating a call
to insider peer

2 solution:

% using Alice's and Bob's
SNs, relay is chosen

« each peer initiates
session with relay.

% peers can now
communicate through
NATSs via relay

Introduction
Application 2-73

iu:structured vs Structured

nstructured P2P networks allow resources to be
placed at any node. The network topology is
arbitrary, and the growth is spontaneous.

« Structured P2P networks simplify resource
location and load balancing by defining a topology
and defining rules for resource placement.

= Guarantee

[What are the rules??? }

.
Distributed Hash Table (DHT)

DHT overview:
* Directed Lookup

« ldea:

= assign particular nodes to hold particular content
(or pointers to it, like an information booth)

= when a node wants that content, go to the node
that is supposed to have or know about it
= Challenges:

= Distributed: want to distribute responsibilities
among existing nodes in the overlay
= Adaptive: nodes join and leave the P2P overlay

. distribute knowledge responsibility to joining nodes
. redistribute responsibility knowledge from leaving nodes

DHT overview:
Hashing and mapping

« Introduce a hash function to map the object being
searched for to a unique identifier:
= e.g., h("Hey Jude”) — 8045

= Distribute the range of the hash function among all
nodes in the network

« Each node must “know about” at least one copy of
each ())b]ect that hashes within its range (when one
exists

15600-4999

1000-1999 00-6999
d\ _ — __------ 804b

9000 5500 -
Q 8000-8999 7000 8500

0-999
9500 ey

DHT overview:
* Knowing about objects

=« 1WO alternatives

= Node can cache each (existing) object that
hashes within its range

= Pointer-based: level of indirection — node
caches pointer to location(s) of object

15600-4999

100{:&9 "Q" iioo-eggg
Il". .. *:k;_‘—-.;-'__ e _II?{' i :,,:\h :~ . \\\
.' \A\O_---____ \ o \;:1 \
O 9000-9500 -
8000-8999 008500
0-999 -

9600-9999

DHT overview:
Routing

=« For each object, node(s) whose range(s)
cover that object must be reachable via a
“short” path

= by the C\uerler node (assumed can be chosen
arbltrar

= by nodes that have copies of the object (when
pomter based approach is used)

= [he different approaches (CAN, Chord,
Pastry, Tapestrys) differ fundamentally onIy in
the routing approach
= any “good” random hash function will suffice

DHT overview:
* Other Challenges

= # neighbors for each node should scale with growth
in overlay participation (e.g., should not be O(N))

« DHT mechanism should be fully distributed (no
centralized point that bottlenecks throughput or can
act as single point of failure)

= DHT mechanism should gracefully handle nodes
joining/leaving the overlay
= nheed to repartition the range space over existing nodes

= heed to reorganize neighbor set

= Nheed bootstrap mechanism to connect new nodes into the
existing DHT infrastructure

DHT overview:
* DHT Layered Architecture

Event Network 2 o
notification storage ' P2P application layer
\\AL/ P2P substrate
DHT (seltf-organizing
____________ ¢_________________QYP_rJ@_Y_@?tWOrk)

TCP/IP Internet

DHT overview:

Each Data Item
(file or metadata)
has a key

Aq

application
DHT substrate
/

|

keJ

.
£

* DHT based Overlay

application

DHT substrate

\

node

[responsible

0

/ overlay

nefwoy

/’
aensqns LHA

5
uonedijdde

application

DHT substrate

&d\f

AP%

* Hash Tables

« Store arbitrary keys and indexed by hash
satellite data (value) values

Stored entries

= put(key,value)

1=h(k)=h(k,) b K
. value = get(key) ald s

= Lookup must be fast .
= Calculate hash function 3zh(k,)=h(k,) k| k, | v, || K,
h() on key that returns a
storage cell 4

= Chained hash table: Store
key (and optional value)
there

5zh(k) | k

Distributed Hash Table

« Hash table functionality in a P2P network : lookup of
data indexed by keys
= Distributed P2P database

- database has (key, value) pairs;
- key: ss number; value: human name
- key: content type; value: IP address

= peers query DB with key
- DB returns values that match the key

= peers can also insert (key, value) peers
= Key-hash [node mapping
= Assign a unique live node to a key
= Find this node in the overlay network quickly and cheaply

Distributed Hash Table

Abstract “allocated array” Actual nodes in the
called ID space, indexed by network (dynamic) Stored entries
hash values
-
1=h(k,)=h(k,)
P — 2 ol K, |V, ¥ K
2
3
3=h(k,)
4=h(k,) i | e B
5=h(k) | |
— [T
6 >
7 y .
N V-

consistent hashing of keys to nodes
typically two step, as shown above

Old version of Distributed
* Hash Table : CARP

Internet

1997~
- Each proxy has
uniqgue name ===
(proxy_n) @\
« Value=URL=u proxies |—
« Get h(proxy_n,u) for “
all proxies as a key .
= Assign u to proxy with | @, @ @

highest h(proxy_n, u)

institutional
network

* Problem of CARP

= Not good for P2P:

= Each node needs to know name of all other
up nodes
. i.e., need to know O(N) neighbors

- Hard to handle dynamic behavior of nodes
(join/leave)

« But only O(1) hops in lookup

New concept of DHT:
Consistent Hashing

=« Node Identifier

= assign integer identifier to each peer in range
[0,2"-1].
. Each identifier can be represented by n bits.
= Key : Data Identifier
= require each key to be an integer in same range.

= to get integer keys, hash original value.
. e.g., key = h("Hey Jude.mp3”),

= Both node and data are placed in a same ID
space ranged in [0,2"-1].

Consistent Hashing :
* How to assign key to node?

« central issue:
= assigning (key, value) pairs to peers.

= rule: assign key to the peer that has the
closest ID.

= E.g. Chord: closest is the immediate successor of
the key.

= E.g. CAN : closest is the node whose responsible
dimension includes the key.

« e.g.,: n=4; peers: 1,3,4,5,8,10,12,14;
= key = 13, then successor peer = 14
= key = 15, then successor peer = 1

Circular DHT (1)

1

15 3
4
12 -
10 -

1 each peer only aware of immediate successor
and predecessor.

1 Circular “overlay network"

InTrOdu%rgglri]cation 2-89

Circular DHT : simple routing

O(N) messages 0001 Who's responsible
on avg 1o for key 1110 ?
resolve

query, when
there 111

are N peers

Define closest
as closest
successor

Immdu%rggﬁ]cation 2-90

Circular DHT with Shortcuts

1 Who's resp
for key 1110?

15

12

10 3

1 each peer keeps track of IP addresses of predecessor,
successor, short cuts.

1 reduced from 6 to 2 messages.

1 possible to desigh shortcuts so O(log N) neighbors, O(log
) messages in query

Imr‘Odu%rgglri]cation 2-91

Peer Churn
1

< To handle peer churn, require
3 each peer to know the IP
15 address of its two successors.

« Each peer periodically pings its
4 two successors to see if they
12 are still alive.

10
8

0 peer 5 abruptly leaves

1 Peer 4 detects: makes 8 its immediate successor:;
asks 8 who its immediate successor is; makes 8's
immediate successor its second successor.

1 What if 5 and 8 leaves simultaneously?

InTrOdu%rggﬁ]cation 2-92

Structured P2P Systems

« Chord

= Consistent hashing based ring structure

Pastry
= Uses ID space concept similar to Chord
= Exploits concept of a nested group

= CAN

= Nodes/objects are mapped into a d-dimensional
Cartesian space

« Kademlia

= Similar structure to Pastry, but the method to check the
closeness is XOR function

* Chord

Consistent hashing
based on an ordered
ring overlay

Both keys and nodes
are hashed to 160 bit
IDs (SHA-1)

Then keys are assigned
to nodes using
consistent hashing

= Successor in ID space

K54 |~

N51

N48

N1 : Node with Node ID 1

K10 : Key 10
N1

K10

N14

N21

K30

* Chord : hashing properties

« Uniformly Randomized

= All nodes receive roughly equal share of
load

= As the number of nodes increases, the
share of each node becomes more fair.
« Local

= Adding or removing a node involves an
O(1/N) fraction of the keys getting new
locations

* Chord : Lookup operation

« Searches the node that stores the key
({key, value} pair)

= [WO protocols
= Simple key lookup
. Guaranteed way

= Scalable key lookup
. Efficient way

* Chord : Simple Lookup

= Lookup query is 3k

lookup(K54)

forwarded to 0

SUCCESSOfr. K54
. one way

Forward the query
around the circle N48

In the worst case, |
O(N) forwarding is | P
required "

= In two ways, O(N/2)

* Chord : Scalable Lookup

« Each node n maintains a routing table with
up to m entries (called the finger table)

« The i*™" entry in the table is the location of the
successor (n +2'1)

= Query for a given identifier (key) is
forwarded to the nearest node among m
entries at each node. (node that most
immediately precedes key)

= Search cost = O (log N) (m=0(log N))

Ll Chord : Scalable Lookup

__ Finger table

lookup(54)

NG +1 [N14
N +2 [N14 K24 [N
NG +4 [N14
NG +8 N21 —
NG +16 [N32 :
NG +32 |N42

N14

N21

N32 N32

i,, entry of a finger table e A finger table has O(log N) A
points the successor of the entries and the scalable
_ key (nodelD + 21)) lookup is bounded to O(log N) y

* Chord : Node Join

New node N identifies its successor
= Performs lookup (N)

Takes over all successor’s keys that the new node is
responsible for

Sets its predecessor to its successor’s former
predecessor

Sets its successor’s predecessor to itself

Newly joining node builds a finger table
. Performs lookup (N + 2'1) (for i=0, 1, 2, ...I)
= I= number of finger print entries

Update other nodes’ finger tables

;. N21

successor(NZy'

e

e
N32

K24
K30

/

/

o :O'Nzﬁ
N32
K24
K30

O N21

b

- .//’ N26

K24

N32
K24

K30

ghord : Node join example

N32

K30

When a node joins/leaves the overlay, O(K/N)
objects moves between nodes.

'
§
'

.{ N21

5

O N6

* Chord : Node Leave

= Similar to Node Join

« Moves all keys that the node is responsible
for to its successor

= Sets its successor’s predecessor to its
predecessor

= Sets its predecessor’s successor to its
successor
= C.f. management of a linked list

= Finger Table??

= There is no explicit way to update others’ finger
tables which point the leaving node

* Chord : Stabilization

= If the ring is correct, then routing is correct,
fingers are needed for the speed only

« Stabilization

= Each node periodically runs the stabilization
routine

- Each node refreshes all fingers by periodically
calling find_successor(n+2'-1) for a random i

= Periodic cost is O(logN) per node due to finger
refresh

Chord : Failure handling

« Failed nodes are handled by

= Replication: instead of one successor, we keep r
SuUCCessors

- More robust to node failure (we can find our new
successor if the old one failed)

- Alternate paths while routing

. If a finger does not respond, take the previous finger, or
the replicas, if close enough

« At the DHT level, we can replicate keys on
the r successor nodes
= The stored data becomes equally more robust

* Pastry : Identifiers

= Applies a sorted ring in ID space like Chord
= Nodes and objects are assigned a 128-bit identifier

= NodelD (and key) is interpreted as sequences
of digit with base 2°
- In practice, the identifier is viewed in base 16
(b=4).
= The node that is responsible for a key is
numerically closest (not the successor)
= Bidirectional and using numerical distance

Pastry : ID space

= Simple example: nodes & keys have n-digit
base-3 ids, eg, 02112100101022

= There are 3 nested groups for each group

= Each key is stored in a node with closest node
ID

= Node addressing defines nested groups

=

222..

Pastry : Nested Group

= Nodes in same inner group know each other’s
IP address

« Each node knows IP address of one delegate
node in some of the other groups
= Which?
- Node in 222...: 0..., 1..., 20..., 21..., 220..., 221...
= 6 delegate nodes rather than 27

Q.. 1.

* Pastry : Ring View

222..

221..

rather than O(N)

\/{ O(log N) delegates }

Pastry : Lookup in nested

* group

« Divide and conquer

= Suppose node in group 222... wants to lookup
key k= 02112100210.

« Forward query to node node in 0..., then to
node in 02..., then to node in 021...

. Node in 021 forwards to closest to key in 1
op

Pastry : Routing table

« Routing table

= Provides delegate
nodes in nested
groups

= Self-delegate for the
nested group where
the node is belong to

= O(log, N) rows

O(log, N) lookup

[Base—4 routing table }

Nodeld 10233102

Leaf set [SWALLER | LARGER |
10233033 | 10233021 | 10233120 | 10233122
10233001 | 10233000 | 10233230 | 10233232 |
Routing table
0-2212102 [-2-2301203 | -3-1203203
B 1-1-301233 | 1-2-230203 | 1-3-021022
10-0-31203 | 10-1-32102 || 10-3-23302
102-0-0230 | 102-1-1302 | 102-2-2302 [
1023-0-322 | 1023-1-000 | 1023-2-121 |G

10233001 | 10233-2-32 |
B

102331-20 |

|

Pastry : Leaf set

« Leaf set

Set of nodes which is
numerically closest to
the node

- L/2 smaller & L/2 higher

Periodically update

Support reliability and
consistency
. Cf) Successors in Chord

Replication boundary
Stop condition for lookup

[Base—4 routing table }

Nodeld 10233102

Leaf set [SVALLER | LARGER |
10233033 | 10233021 | 10233120 | 10233122
10233001 | 10233000 | 10233230 | 10233232
Routing table
0-2212102 [-2-2301203 | -3-1203203
B 1-1-301233 | 1-2-230203 | 1-3-021022
10-0-31203 | 10-1-32102 |[NE 10-3-23302
102-0-0230 | 102-1-1302 | 102-2-2302 [
1023-0-322 | 1023-1-000 | 1023-2-121 |G

10233001 | 10233-2-32 |
B

102331-20 |

|

Pastry : Lookup Process

« If (destination is within range of our leaf set)
= forward to numerically closest member

« else

- If (there’s a longer prefix match in table)
. forward to node with longest match

- else
. forward to node in table
- (a) shares at least as long a prefix
- (b) is numerically closer than this node

* Pastry : Proximity routing

= Assumption: scalar proximity metric
= €.g. ping delay, # IP hops
= a nhode can probe distance to any other
node
« Proximity invariant:

- Each routing table entry refers to a
node close to the local node (in the
proximity space), among all nodes
with the appropriate nodeld prefix.

Pastry : Routing in Proximity

* Space

Nodeld space d46 1 d

* Pastry : Join and Failure

= Join

= Finds numerically closest node already in network

= Ask state from all nodes on the route and initialize
own state

. LeafSet and Routing Table
= Failure Handling

- Failed leaf node: contact a leaf node on the side of
the failed node and add appropriate new neighbor

= Failed table entry: contact a live entry with same
prefix as failed entry until new live entry found, if
none found, keep trying with longer prefix table
entries

Summary : Structured DHT

* based P2P

« Design issues
= ID (node, key) mapping
= Routing (Lookup) method
= Maintenance (Join/Leave) method

= All functionality should be fully
distributed

Summary : Unstructured vs

Query Overlay
Lookup Network
Management
Unstructured | Flood-based |Simple
(heavy
overhead)
Structured |Bounded and |Complex
effective, (heavy
O(log N) overhead)

Summary of Consistent Hashing

Consistent hashing
o Elegant way to divide a workload
across machines
o Very useful in clusters:
Replication for high availability, efficient
recovery after node failure

Incremental scalability: “add nodes, capacity
increases”

Self-management: minimal configuration

Unique trait: no single server to shut
down/monitor

Couchbase automated data partitioning [5]
OpenStack's Object Storage Service - Swift[6]
Partitioning in Amazon's storage system Dynamo|[7]

Data partitioning in Apache Cassandral[8]

Actively
Data partitioning in Voldemort[9] _Used today

in many
Akka's consistent hashing router[10] key-value

stores

Riak, a distributed key-value database[11]

Gluster, a network-attached storage file system([12]
Akamai content delivery network|[13]

Discord chat application[14]

Maglev network load balancer[15]

Data partitioning in Azure Cosmos DB

https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-5
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-6
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-Amazon2007-7
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-Lakshman2010b-8
https://en.wikipedia.org/wiki/Voldemort_(distributed_data_store)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-9
https://en.wikipedia.org/wiki/Akka_(toolkit)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-akka-routing-10
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-riak-consistent-hashing-11
https://en.wikipedia.org/wiki/Gluster
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-GlusterFS_Algorithms:_Distribution-12
https://en.wikipedia.org/wiki/Akamai_Technologies
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-13
https://en.wikipedia.org/wiki/Discord_(software)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-how_discord_scaled_elixir_to_5,000,000_concurrent_users-14
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-maglev-15
https://en.wikipedia.org/wiki/Azure_Cosmos_DB

! P2P Content Dissemination

* Content dissemination

= Content dissemination is about allowing
clients to actually get a file or other
data after it has been located

« Important parameters
= Throughput

- Latency
= Reliability

File Distribution: Server-Client vs P2P

uestion : How much time to distribute a file
from one server to N peers?

u_ server upload
oerver @ bandwidth
u.: peer i upload
i y us\ e, U2/ /12 bandwidth
. . S .
File,size F ™4 d: peer i download
J bandwidth
@ AN Network (with
iy abundant bandwidth) o
N
°
°
° °
°
¢ °

Application 2-121

Fil|e distribution time: server-client

Server @

= server sequentially] . ﬁdv “% /d2 .

sends N copies: ™~

- d Network (with

- NF/USUme @—N' abundant bandwidth) *
= client i takes F/d. time U .

to download . . .

o o

Time to distribute F
to N clients using _

client/server approach = 9es = MAX { NF/ u, F/ mi”(df)}

/]

increases linearly in N
(for large N)

Application 2-122

File distribution time: P2P

+

Server
. 'server must send one N
. - F D u, d1 u,
copy: F/u_time u 9%
« Client i takes F/d.time to : .
d Network (with
download @—N' abundant bandwidth)
= NF bits must be v .
downloaded (aggregate) . . .
- fastest possible upload rate: u_ + Zui ’ ¢

d,,p = Max { F/u, F/min(d) , NF/(u, + Zui)}
[

Application 2-123

Server-client vs. P2P: example

t upload rate = u, F/u=1hour, u,=10u, d . >u

S

Minimum Distribution Time

3.5

3_

2' 5 <4

2 e R R S e B S T T e e S et I B e R R S B S S S T T S

= P2P

Application 2-124

Centralized

P2P
Dissemination

T ey

Homogenous

|

Heterogenous

DIM: Optimal Soln
LogN + 2M-1

FNF Heurisic

DIM
Heuristics

Decentralized & Catastrophe
>
Heterogenous Tolerant
Small/Medium
Large Data Data

i Ty

Tree-Based | Mesh-Based
E.g. E.g. CREW
Narada BitTorrent

SplitStream Bullet

i Problem Formulation

« Least time to disseminate:

= Fixed data D from one seeder to N
nodes

= Insights / Axioms

= Involving end-nodes speeds up the
process (Peer-to-Peer)

= Chunking the data also speeds up
the process

= Raises many questions
= How do nodes find other nodes for

exchange of chunks?
= Which chunks should be transferred?
= Is there an optimal way to do this?

Optimal Solution in

* Homogeneous Network

Chz/lnks Seeder
Least time to disseminate: Of Data
= All M chunks to N-1 peers
« Constraining the problem
= Homogeneous network N-1
= All Links have same throughput & delay Peers
= Underlying network fully connected (Internet)

= Optimal Solution (DIM): Log,N + 2(M-1)

= Ramp-Up: Until each node has at least 1 chunk

= Sustained-Throughput: Until all nodes have all chunks
= There is also an optimal chunk size

FARLEY, A. M. Broadcast time in communication networks. In SIAM Journal Applied
Mathematics (1980)

Ganesan, P. On Cooperative Content Distribution and the Price of Barter. ICDCS 2005

Example Working of Optimal

S S S

a b C _ a. 1121415
ks s sy sl ey s gy
Nl _ g1 _ 1. 'Z b 3|6
4llsl-lel-d7d-- | c !

1 2 B 5} 1 2 A4 9 0
a a a a ac | ab |[ab |[ac ac || ab || ab || ac abc | | ab [[ab |[abc
a
TC T Tb Tc Yy .y . ¥
s (1S |22 SN[367 oo N
b |[[b |l c S |Lb JLb |lec S 1lab |l ab || ac ab || ab || abc

Practical Content
dissemination systems

= Centralized
- Server farms behind single domain name, load balancing

=« Dedicated CDN

= CDN is independent system for typically many providers, that
clients only download from (use it as a service), typically
http

= Akamai, FastReplica

« End-to-End (P2P)

= Special client is needed and clients self-organize to form the
system themselves

= BitTorrent(Mesh-swarm), SplitStream(forest),
Bullet(tree+mesh), CREW(mesh)

ﬁ Akamai

Provider (eg CNN, BBC, etc) allows Akamai to
nandle a subset of its domains (authoritive DNS)
« Http requests for these domains are redirected to

nearby proxies using DNS

- Akamai DNS servers use extensive monitoring info to
specify best proxy: adaptive to actual load, outages, etc

= 20,000+ servers worldwide, claimed 10-20% of
overall Internet traffic is Akamai

« Wide area of services based on this architecture
- availability, load balancing, web based applications, etc

* Distributed CDN : Fast Replica

« Disseminate large file to large set of edge
servers or distributed CDN servers

= Minimization of the overall replication time for
replicating a file Facross nnodes N,, ... , N

n.
« File Fis divides in n equal subsequent files:
Fi, ..., Fn, where Size(F) = Size(F)/ n bytes
foreachi=1, ..., n.
= Two steps of dissemination
= Distribution and Collection

* FastReplica : Distribution
1

F F F
= Origin node NO opens n concurrent connechons to
nodes N1, ..., Nn and sends to each node the

following items:

= a distribution list of nodes R = {N1, ..., Nn} to which subfile
Fi has to be sent on the next step;

= Subfile A .

* FastReplica : Collection

File F
| |

No I Jeee[[_]
o F1 F2 F3 Fn-an

= After receiving A, node M opens (n-1) concurrent
network connections to remaining nodes in the

group and sends subfile A to them

FastReplica : Collection

0
= Each node Ni has: F, F, Fy Foaka
= (n - 1) outgoing connections for sending subfile Fi,

= (n-1)incoming connections from the remaining
nodes in the group for sending complementary
subfiles F1, ..., Fi-1 ,Fi+1, ..., Fn.

* FastReplica : Benefits

= Instead of typical replication of the entire file Fto n
nodes using n Internet paths FastReplica exploits (n x
n) different Internet paths within the replication

group, where each path is used for transferring
1/n-th of file F.

« Benefits:

= The impact of congestion along the involved paths
is limited for a transfer of 1/n-th of the file,

= FastReplica takes advantage of the upload and
download bandwidth of recipient nodes.

Decentralized Dissemination

Tree:

- Intuitive way to implement a
decentralized solution

- Logic is built into the
structure of the overlay

Mesh-Based (Bittorrent, Bullet):
- Multiple overlay links

- High-BW peers: more connections
- Neighbors exchange chunks

Robust to failures

- Find new neighbors when links are
broken

- Chunks can be received via multiple
paths

Simpler to implement

However:

-Sophisticated mechanisms for
heterogeneous networks
(SplitStream)

- Fault-tolerance Issues

* BitTorrent

20-50% of p2p internet traffic
was BitTorrent (a decade ago)

Special client software is needed

O BitTorrent, BitTyrant, pyTorrent,

O

LimeWire ...

Basic idea

Clients that download a file at the
same time help each other (ie, also
upload chunks to each other)
BitTorrent clients form a swarm : a
random overlay network

By Pavan Ramchandani - October 2, 2018 - 7:00 am

BitTorrent Traffic Is Suddenly Increasing — Possibly Due to
‘Streaming Fragmentation’
Ashley King © 04

BitTorrent's traffic surges as the
number of streaming services

BitTorrent : Publish/download

= Publishing a file

= Put a “.torrent” file on the web: it contains the
address of the tracker, and information about the
published file

= Start a tracker, a server that

. Gi\éles joining downloaders random peers to download from
and to

= Collects statistics about the swarm

= There are “trackerless” implementations by using
Kademlia DHT (e.g. Azureus)

=« Download a file
= Install a bittorrent client and click on a “.torrent” file

File distribution: BitTorrent

P2P file distribution

tracker: tracks peers
participating in forrent

AN

obtain list
of peers

torrent: group of

trading
chunks

peers exchanging
chunks of a file

InTrOdu&Jrgﬁgation 2-140

BitTorrent : Overview

E

Seeder — peer having entire file
Leecher — peer downloading file

J

tracker

File.torrent :
—URL of tracker
—File name

—File length
—Chunk length
—Checksum for each

Lchunk (SHA1 hash)

BitTorrent : Client

= Client first asks 50 random peers from tracker
= Also learns about what chunks (256K) they have

= Pick a chunk and tries to download its pieces
(16K) from the neighbors that have them

= Download does not work if neighbor is disconnected or
denies download (choking)

= Only a complete chunk can be uploaded to others

= Allow only 4 neighbors to download (unchoking)

= Periodically (30s) optimistic unchoking : allows
download to random peer
. important for bootstrapping and optimization

= Otherwise unchokes peer that allows the most
download (each 10s)

* BitTorrent : Tit-for-Tat

« [it-for-tat

= Cooperate first, then do what the opponent
did in the previous game

« BitTorrent enables tit-for-tat

= A client unchokes other peers (allow them
to download) that allowed it to download
from them

= Optimistic unchocking is the initial
cooperation step to bootstrapping

BitTorrent: Tit-for-tat

(1) Alice "optimistically unchokes” Bob
(2) Alice becomes one of Bob's top-four providers; Bob reciprocates

(3) Bob becomes one of Alice's top-four providers

2

With higher upload rate,
can find better trading

partners & get file faster!
In‘rr‘odu&ptg

ﬁg‘ation 2-144

BitTorrent (1)

.*‘W ed into chunks.

= peer joining torrent:

= has no chunks, but will accumulate them
over time

. registers with tracker to get list of peers,
connects to subset of peers ("neighbors”)

= While downloading, peer uploads chunks to other
peers.

= peers may come and go

= once peer has entire file, it may (selfishly) leave or
(altruistically) remain

Application 2-145

BitTorrent : Chunk selection

= What chunk to select to download?

« Clients select the chunk that is rarest among
the neighbors (Local decision)

= Increases diversity in the pieces downloaded;
Increase throughput

« Increases likelihood all fpieces still available even if
original seed leaves before any one node has
downloaded entire file

« Except the first chunk

= Select a random one (to make it fast: many
neighbors must have it)

itTorrent (2)

Pulling Chunks

at any given time, different
peers have different
subsets of file chunks
periodically, a peer (Alice)
asks each neighbor for list
of chunks that they have.

Alice sends requests for
her missing chunks
rarest first

Sending Chunks: tit-for-tat
« Alice sends chunks fo four
neighbors currently sending her
chunks at the highest rate
= re-evaluate top 4 every 10
secs
+ every 30 secs: randomly select
another peer, starts sending
chunks
= newly chosen peer may join
top 4
= “optimistically unchoke”

* BitTorrent : Pros/Cons

= Pros
= Proficient in utilizing partially downloaded files

= Encourages diversity through “rarest-first”
. Extends lifetime of swarm

= Works well for “hot content”

=« Cons

= Assumes all interested peers active at same time;
performance deteriorates if swarm “cools off”

= Even worse: no trackers for obscure content

More P2P Content

* Dissemination

Overcome tree structure —
* SplitStream, Bullet

« lree
= Simple, Efficient, Scalable

= But, vulnerable to failures, load-unbalanced, no
bandwidth constraint

= SplitStream
= Forest (Multiple Trees)

= Bullet

= Tree(Metadata)
+ Mesh(Data)

« CREW
= Mesh(Data,Metadata)

* SplitStream

= Forest based dissemination

= Basic idea
= Split the stream into K stripes (with MDC coding)

= For each stripe create a multicast tree such that
the forest
. Contains interior-node-disjoint trees
. Respects nodes’ individual bandwidth constraints

* SplitStream : MDC coding

« Multiple Description coding

= Fragments a single media stream
into M substreams (M = 2)

= K packets are enough for decoding (K < M)
= Less than K packets can be used to

approximate content

. Useful for multimedia (video, audio) but not for
other data

. Cf) erasure coding for large data file

SplitStream :
* Interior-node-disjoint tree

« Each node in a set of trees is interior
node in at most one tree and leaf node
in the other trees.

= Each substream is disseminated over

subtrees
LS

ID =0x... ID =1X... @ @ 1D =2x...
(e () (h @

SplitStream : Constructing the

* forest

« Each stream has its groupID
= Each groupID starts with a different digit

= A subtree is formed by the routes from all
members to the groupld

= The nodelds of all interior nodes share some
number of starting digits with the subtree’s

groupld.
« All nodes have incoming capacity

requirements (number of stripes they need)
and outgoing capacity limits

ﬁ Bullet

= Layers a mesh on top of an overlay tree
to increase overall bandwidth

« Basic Idea
= Use a tree as a basis

= In addition, each node continuously looks
for peers to download from

= In effect, the overlay is a tree combined
with a random network (mesh)

ﬁ Bullet : RanSub

= TWO phases

. Collect phase : using the tree, REE R
membership info is propagated

upward (random sample and
subtree size)

- Distribution phase : moving
down the tree, all nodes are
provided with a random sample
from the entire tree, or from Q
the non-descendant part of the
tree

Bullet : Informed content

* delivery

= When selecting a peer, first a similarity
measure is calculated

= Based on summary-sketches

= Before exchange missing packets need to be
identified
- Bloom filter of available packets is exchanged
= Old packets are removed from the filter
. To keep the size of the set constant
« Periodically re-evaluate senders

= If needed, senders are dropped and new ones are
requested

St

-~

* Gossip-based Broadca

5\;

A C|E

Probabilistic Approach with Good Fault Tolerant Properties
= Choose a destination node, uniformly at random, and send it the message

= After Log(N) rounds, all nodes will have the message w.h.p.
= Requires N*Log(N) messages in total
= Needs a ‘random sampling’ service

Usually implemented as
= Rebroadcast ‘fanout’ times
= Using UDP: Fire and Forget

BiModal Multicast (99), Lpbcast (DSN 01), Rodrigues’04 (DSN), Brahami ‘04, Verma'06 (ICDCS),
Eugster’04 (Computer), Koldehofe’04, Periera’03

Gossip-based Broadcast:

Problems
= More faults, higher fanout needed (not dynamically adjustable)

= Higher redundancy [lower system throughput [slower dissemination
= Scalable view & buffer management

= Adapting to nodes’ heterogeneity

= Adapting to congestion in underlying network

* CREW: Preliminaries

MetaData
File Attributes
Name, MimeType, Size, etc.
Chunk-1 Checksum Seeder
Chunk-2 Checksum
Chunk-i Checksum
Chunk-M Checksum

Deshpande, M., et al. CREW: A Gossip-based Flash-Dissemination System IEEE International
Conference on Distributed Computing Systems (ICDCS). 2006.

CREW (Concurrent Random
Expanding Walkers) Protocol

= Basic Idea: Servers
‘serve’ data to only a
3 1 few clients
= Who In turn become
\ servers and ‘recruit’
2 3 more servers
= Split data into chunks

= Chunks are
concurrently

5 disseminated through

random-walks

= Self-scaling and

6 self-tuning to
Q heterogeneity

i What is new about CREW

= No need to pre-decide fanout or complex protocol to adjust it
= Deterministic termination
= Autonomic adaptation to fault level (More faults C1more pulls)

= Scalable, real-time and low-overhead view management
= Number of neighbors as low as Log(N) (expander overlay)

= Neighbors detect and remove dead node [disappears from all nodes’ views
instantly

= List of node addresses not transmitted in each gossip message

« Use of metadata plus handshake to reduce data overhead
= No transmission of redundant chunks

= Handshake overloading « Use of TCP as underlying transport
= For ‘random sampling’ of = Automatic flow and congestion control at
the overlay network level
. Quick feedback about = Less complexity in application layer

system-wide properties

. Quick adaptation = Implemented using RPC middleware

CREW Protocol: Latency,

* Reliability

RaplD

Information Reintegration Module

Chunk Forwarding Module | Neighbor Maintenance Module

CORBA-based Middleware (ICE)

Network / OS
160/ = CREW - | ,/,J\\/, 40— T
—— TCPGossip 47 : ;
|l .) i i | 3501 —¢— TCPGoss|p T S
140 i Eﬁ-ligt"em 2 —o— BitTorrent
1204 . , T P —] —3001 —— Bullet : oo i e
0 _-- splitStream | = --- SplitStream | BT
QOO i v S0 TR W E£250F e s T -

Completion Time (s)
3 3

10 20 30 40 50 60 1 3 5 7 10 20
Number of Nodes Loss Rate (%)

BitTorrent (BTT)
I.Potentlal77

http://www.youtube.com/watch?v=hlzybxTLZ50

+

EXTRA SLIDES

+

More on P2P Search/Lookup

CAN : Content Addressable
Network

Hash value is viewed as a point in a D-dimensional Cartesian
space

= Hash value points <n1, n2, ..., nD> as a key.

= D-dimensional requires D distinct hash functions.

« Each node responsible for a D-dimensional “cube” in the space

(0.?-0.75,0.5-1.0)

Key (0.2, 0.7) = = == o o o :

(0050510, D ~ E —

- (0.75-1.0,0.5-1.0)

— o — — o — — — o — — —

0-0.5,0-05) ~ (0.5-1.0,0.0-0.5)

0.0 ; ‘
0.0 1.0

node B’s virtual coordinate zone

* CAN : Neighbors

« Nodes are neighbors if their cubes “touch” at
more than just a point

= Neighbor information : Responsible space and
node IP Address

T 1] coomeee
* 1’s neighbors: 2,3,4,6

I.!n * 6's neighbors: 1,2,4, 5

n e Squares “ , e.9.,
... / and 8 are neighbors
E « Expected # neighbors: O(D)
>
il

i CAN : Routing

« logetto <ni, n2, ..., nD> from <m1, m2, ..., mD>

= choose a neighbor with smallest Cartesian distance from <nl,
n2, ..., nD> (e.qg.,)

* e.g., region 1 needs to send to
node covering X

 Checks all neighbors, node 2 is
closest

 Forwards message to node 2

. Expected # overlay hops:

(DN/P)/4

ﬁ CAN : Join

= 10 join the CAN overlay:

find some node in the CAN (via
bootstrap process)

choose a point in the space
uniformly at random

using CAN, inform the node
that currently covers the space
that node splits its space in half

- 1st split anng 1st dimension

. if last split along dimension i <
D, next split along i+1st
dimension

. e.g., for 2-d case, split on
x-axis, then y- axis
keeps half the space and gives
other half to joining node

-

C

\

rectangle being selected

size, I.e., big rectangles

The likelihood of a A

IS proportional to it's

hosen more frequently

/

* CAN Failure recovery

-

2

4

b

12

8

9

10

11

13

14

®

1) @ A

® & o
DE ® OO C

= View partitioning as a binary tree

Leaves represent regions covered by overlay nodes

- Intermediate nodes represents “split” regions that could
be “reformed”

= Siblings are regions that can be merged together
(forming the region that is covered by their parent)

* CAN Failure Recovery

« Failure recovery when leaf S is
removed
= Find a leaf node T that is either
e ot 14
- S’s sibling
. Descendant of S’s sibling where (1)
T’s sibling is also a leaf node
. T takes over S’s region (move to 12
S’s position on the tree)

= 1's sibling takes over T's previous
region

(XS
e
.0
® ©G @

* CAN : speed up routing

= Basic CAN routing is slower than Chord
or Pastry

« Manage long ranged links

= Probabilistically maintain multi-hop away
links (2 hop away, 3 hop away ..)

= EXxploit the nested group routing

* Kademlia : BitTorrent DHT

= Developed in 2002

« For Distributed Tracker

= trackerless torrent
= Torrent files are maintained by all users using
BitTorrent.
= For each nodes, files, keywords, deploy
SHA-1 hash into a 160 bits space.

= Every node maintains information about files,
keywords “close to itself”.

Kademlia : XOR based

* closeness

= Ihe closeness between two objects measure
as their bitwise XOR interpreted as an

integer.
= D(@,b) =aXORDb
= d(x,x)=0

= d(Xy)>0ifx#y

= G (XIY) = d (YIX)

= G (XIY) + d (YIZ) 2 d (Xl Z)

= For each x and t, there is exactly one node y for
which d (x,y) =t

Kademlia :
* Binary Tree of ID Space

« Ireat node as leaves in a binary tree.

« For any given node, dividing the binary
tree into a series of successively lower
subtree that don't contain the node.

« For any given node, it keeps touch at
least one node (up to k) of its subtrees.
(if there is a node in that tree.) Each
subtree possesses a k-bucket.

Kademlia :
. Binarv Tree of ID Space

1111 Space of 160—bit numbers 0000
=O=r—0 O

O
O
Q
O
Q
O
O
O
C

buckets (delegate
nodes), K =20 in
general

Subtrees for node 0011....
c.f. nested group

} Each subtree has k

Kademlia : Lookup

ﬁ When node 0011...... wants search 1110......

111 m Space of 160—bit numbers

00...00
== @, @, @, @, O @, @, 000 @, @, O
1 0
1 0 1 0
1 0 1 0 1 0 1 0
0O 1/\0 ‘\ 1/\0 1/\0 0O 1/\0 O
O O O O O O O O
A 1/\o1/\0 1/\o
..\ O O O O O O

* Kademlia : K-bucket

= K-bucket for each subtree
= A list of nodes of a subtree

= The list is sorted by time
last seen.

= The value of K is chosen so

Least recenly
%een }
that any give set of K Most recenly
een
within an hour.

nodes is unlikely to fail
- So, K : Reliability parameter [iclla showed that the
= The list is updated longer a node Is up, the more

whenever a node receives |likely it is to remain up for one
a message. more hour

Kademlia : K-bucket

= By relying on the oldest nodes, k-buckets
prcl)mlse the probability that they will remain
online

= Dos attack is prevented since the new nodes
find it difficult to get into the k-bucket

« If malicious users live long and dominate all
the K-bucket, what happens?
- Eclipse attack
= Sybil attack

* Kademlia : RPC

PING: to test whether a node is online
. STORE. instruct a node to store a key

=« FIND_NODE: takes an ID as an argument, a
recipient returns (IP address, UDP port, node
id) of k nodes it knows from closest to ID
(node lookup)

« FIND_VALUE: behaves like FIND_NODE,
unless the recipient received a STORE for that
key, it just returns the stored value.

Kademlia : Lookup

= The most important task is to locate the k
closest nodes to some given node ID.

Kademlia employs a recursive algorithm for node

lookups. The lookup initiator starts by

nodes from its closest non-em

FIND_ NODE to the a nodes it

picking a

pty k-bucket.
= The initiator then sends parallel, asynchronous

N1asS C

osen.

a is a system-wide concurrency parameter, such

as 3.

= Flexibility of choosing online nodes from k-buckets

= Reducing latency

* Kademlia : Lookup

= The initiator resends the FIND_NODE to
nodes it has learned about from previous
RPCs.

« If a round of FIND_NODES fails to return a
node any closer than the closest already
seen, the initiator resends the FIND_NODE to
all of the k closest nodes it has not already
queried.

« The lookup terminates when the initiator has
queried and gotten responses from the k
closest nodes it has seen.

