
Architectural Models for
Distributed Computing

CS237 Spring 2021
TuTh 5:00-6:20p.m.

Prof. Nalini Venkatasubramanian
nalini@uci.edu

Acknowledgements: Slides modified from Kurose/Ross book slides.
Sukumar Ghosh, U at IOWA,
Mark Jelasity, Tutorial at SASO’07
Keith Ross, Tutorial at INFOCOM
Anwitaman Datta, Tutorial, ICDCN

Distributed Computing
Architectures

■ Parallel Computing Architectures
■ SISD, SIMD, MISD, MIMD
■ Symmetric vs. Asymmetric Multiprocessing

■ Client-Server Architectures
■ Client-Proxy-Server Architectures

■ Peer-to-Peer Systems
■ Cluster based Systems
■ Edge/Cloud Architectures

Flynn’s Taxonomy for Parallel
Computing Instructions

Single (SI) Multiple (MI)

D
at

a

M
ul

tip
le

 (M
D

)
SISD

Single-threaded
process

MISD
Pipeline architecture

SIMD
Vector Processing

MIMD
Multi-threaded
Programming

S
in

gl
e

(S
D

)

Parallelism – A Practical Realization of Concurrency

SISD (Single Instruction
Single Data Stream)

D D D D D D D

Processor

Instructions

A sequential computer which exploits no parallelism in either the
instruction or data streams.
Examples of SISD architecture are the traditional uniprocessor machines
(currently manufactured PCs have multiple processors) or old mainframes.

http://en.wikipedia.org/wiki/Uniprocessor
http://en.wikipedia.org/wiki/Mainframe_computer

SIMD

D0

Processor

Instructions

D0D0 D0 D0 D0

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D0

A computer which exploits multiple data streams against a single instruction
stream to perform operations which may be naturally parallelized.
For example, an array processorFor example, an array processor or GPU.

http://en.wikipedia.org/wiki/Array_processor
http://en.wikipedia.org/wiki/GPU

MISD (Multiple Instruction
Single Data)

Intro to Distributed Systems
Middleware 6

Multiple instructions operate on a single data stream.
Uncommon architecture which is generally used for fault tolerance.
Heterogeneous systems operate on the same data stream and
aim to agree on the result.
Examples include the Space Shuttle flight control computer.

D

Instructions

D

Instructions

http://en.wikipedia.org/wiki/Space_Shuttle

MIMD
D D D D D D D

Processor

Instructions

D D D D D D D

Processor

Instructions

Multiple autonomous processors simultaneously executing different instructions on
different data.
Distributed systems are generally recognized to be MIMD architectures;
either exploiting a single shared memory space or a distributed memory space.

http://en.wikipedia.org/wiki/Distributed_system

Classic Client/Server System

Uses well-known reliable
servers, popular
● Web Server
● FTP Server
● Media Server
● Database Server
● Application Server

Every entity has its dedicated
different role (Client/Server)
● request-response paradigm

● Scalability - a concern
● Ineffective Utilization of resources at client
● Servers - administered entities

Architectural Models
● Multiple servers, proxy servers and caches, mobile code, …

Proxy

Multiple
servers

Mobile code

Architectural Models:
Peer-to-peer

• No single node
server as a
server

• All nodes act as
client (and
server) at a time

P2P Systems

Use the vast resources of
machines at the edge of the
Internet to build a network

that allows resource sharing
without any central authority.

Began as a system for sharing
pirated music/movies

2000s - P2P rising in popularity

http://www.marketingvox.com/p4p-will-make-4-a-speedier-net-pr
ofs-say-040562/

Change of Yearly Internet Traffic

Daily Internet Traffic (2006)

http://www.marketingvox.com/p4p-will-make-4-a-speedier-net-profs-say-040562/
http://www.marketingvox.com/p4p-will-make-4-a-speedier-net-profs-say-040562/

Across the world

Asia-Pacific

Latin America

North America

Europe

P2P applications today

A Blockchain Tutorial
https://folk.uio.no/romanvi/Papers/bc-tutorial-debs-master.pdf

https://folk.uio.no/romanvi/Papers/bc-tutorial-debs-master.pdf

 Introduction

Pure P2P architecture
❑ no always-on server
❑ arbitrary end systems

directly communicate
❑ peers are intermittently

connected and change IP
addresses

peer-peer

Application 2-16

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

Application 2-17

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F❑ server sequentially
sends N copies:
❖ NF/us time

❑ client i takes F/di time
to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
Time to distribute F

to N clients using
client/server approach

Application 2-18

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F❑ server must send one
copy: F/us time

❑ client i takes F/di time
to download

❑ NF bits must be
downloaded (aggregate)
▪ fastest possible upload rate: us + Σui

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }

Application 2-19

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application 2-20

P2P Applications

P2P Applications

❑ P2P Search, File Sharing and Content
dissemination
❖ Napster, Gnutella, Kazaa, eDonkey, BitTorrent
❖ Chord, CAN, Pastry/Tapestry, Kademlia,
❖ Bullet, SplitStream, CREW, FareCAST

❑ P2P Communications
❖ MSN, Skype, Social Networking Apps

❑ P2P Storage
❖ OceanStore/POND, CFS (Collaborative

FileSystems),TotalRecall, FreeNet, Wuala
❑ P2P Distributed Computing

❖ Seti@home

P2P File Sharing
Alice runs P2P client
application on her

notebook computer
Intermittently

connects to Internet

Asks for
“Hey
Jude”

Application displays
other peers that have
copy of Hey Jude.

Alice chooses one
of the peers, Bob.

File is copied from
Bob’s PC to Alice’s
notebook

While Alice downloads,
other users upload
from Alice.

Gets new
IP address
for each
connection

P
2
P

P
2
P

P2P Communication

❑ Instant Messaging
❑ Skype is a VoIP P2P system
Alice runs IM client
application on her

notebook computer
Intermittently

connects to Internet

Gets new
IP address
for each
connection

Register
herself with
“system”

Learns from
“system” that Bob
in her buddy list is
active

Alice initiates
direct TCP
connection with
Bob, then chats

P
2
P

P2P/Grid Distributed
Processing
❑ seti@home

❖ Search for ET intelligence
❖ Central site collects radio telescope data
❖ Data is divided into work chunks of 300 Kbytes
❖ User obtains client, which runs in background
❖ Peer sets up TCP connection to central

computer, downloads chunk
❖ Peer does FFT on chunk, uploads results,

gets new chunk
❑ Not P2P communication, but exploit Peer

computing power
❑ Crowdsourcing – Human-oriented P2P

Characteristics of P2P Systems

■ Exploit edge resources.
■ Storage, content, CPU, Human presence.

■ Significant autonomy from any centralized
authority.

■ Each node can act as a Client as well as a Server.

■ Resources at edge have intermittent
connectivity, constantly being added &
removed.

■ Infrastructure is untrusted and the components
are unreliable.

(Promising) properties of P2P

■ Self-organizing
■ Massive scalability
■ Autonomy : non single point of failure
■ Resilience to Denial of Service
■ Load distribution
■ Resistance to censorship

“The ultimate form of
democracy on the Internet” “The ultimate threat to copyright

protection on the Internet”

Overlay Network

A P2P network is an overlay network. Each link
between peers consists of one or more IP links.

Overlays : All in the application layer

■ Tremendous design
flexibility

■ Topology, maintenance
■ Message types
■ Protocol
■ Messaging over TCP or UDP

■ Underlying physical
network is transparent to
developer

■ But some overlays exploit
proximity

Overlay Graph

■ Virtual edge
■ TCP connection
■ or simply a pointer to an IP address

■ Overlay maintenance
■ Periodically ping to make sure neighbor is still alive
■ Or verify aliveness while messaging
■ If neighbor goes down, may want to establish new edge
■ New incoming node needs to bootstrap
■ Could be a challenge under high rate of churn

■ Churn : dynamic topology and intermittent access due
to node arrival and failure

Overlay Graph

■ Unstructured overlays
■ e.g., new node randomly chooses existing nodes

as neighbors

■ Structured overlays
■ e.g., edges arranged in restrictive structure

■ Hybrid Overlays
■ Combines structured and unstructured overlays

■ SuperPeer architectures where superpeer nodes are
more stable typically

■ Get metadata information from structured node,
communicate in unstructured manner

Key Issues
■ Lookup

■ How to find out the appropriate content/resource
that a user wants

■ Management
■ How to maintain the P2P system under high rate

of churn efficiently
■ Application reliability is difficult to guarantee

■ Throughput
■ Content distribution/dissemination applications
■ How to copy content fast, efficiently, reliably

Lookup Issue

■ Centralized vs. decentralized
■ How do you locate data/files/objects in a

large P2P system built around a dynamic set
of nodes in a scalable manner without any
centralized server or hierarchy?

■ Efficient routing even if the structure of the
network is unpredictable.

■ Unstructured P2P : Napster, Gnutella, Kazaa
■ Structured P2P : Chord, CAN, Pastry/Tapestry,

Kademlia

Lookup Example : File Sharing
Scenario

Napster

■ First P2P file-sharing application (June
1999)

■ Only MP3 sharing possible
■ Based on central index server
■ Clients register and give list of files to

share
■ Searching based on keywords

■ Response : List of files with additional
information, e.g. peer’s bandwidth, file size

Napster Architecture

Centralized Lookup

■ Centralized directory services
■ Steps

■ Connect to Napster server.
■ Upload list of files to server.
■ Give server keywords to search the full

list with.
■ Select “best” of correct answers. (ping)

■ Performance Bottleneck
■ Lookup is centralized, but files are

copied in P2P manner

Pros and cons of Napster

■ Pros
■ Fast, efficient and overall search
■ Consistent view of the network

■ Cons
■ Central server is a single point of failure
■ Central server is a bottleneck; maybe expensive to

maintain (designed to share MP3 files - few MBs).
■ Susceptible to DOS attacks
■ Lawsuits (copyrights infringement?)

Gnutella

Originally developed at Nullsoft (AOL)
■ Fully distributed system

■ No index server – address Napster’s
weaknesses

■ All peers are fully equal
■ A peer needs to know another peer, that

is already in the network, to join
■ Ping/Pong Protocol

■ Flooding based search
■ Variation: Random walk based

search
■ Direct download

■ Open protocol specifications

TTL: how many hops a packet can
go before it dies
(default setting is 7 in Gnutella)

 Hops: a hop is a
pass through an
intermediate node

Servent: A Gnutella node.
Each servant is both a
server and a client. 1

Hop

2
Hops

client

Gnutella : Terms

Gnutella operation : Flooding
based lookup

Gnutella : Scenario
Step 0: Join the network
Step 1: Determining who is on the network

• "Ping" packet is used to announce your presence on the network.
• Other peers respond with a "Pong" packet.
• Also forwards your Ping to other connected peers
• A Pong packet also contains:

• an IP address
• port number
• amount of data that peer is sharing
• Pong packets come back via same route

Step 2: Searching
•Gnutella "Query" ask other peers (usually 7) if they have the file you desire
• A Query packet might ask, "Do you have any content that matches the string
‘Hey Jude"?

• Peers check to see if they have matches & respond (if they have any matches) &
send packet to connected peers if not (usually 7)

• Continues for TTL (how many hops a packet can go before it dies, typically 7)
Step 3: Downloading

• Peers respond with a “QueryHit” (contains contact info)
• File transfers use direct connection using HTTP protocol’s GET method

Gnutella : Reachable Users by
flood based lookup

T : TTL, N : Neighbors for Query

(analytical estimate)

Gnutella : Lookup Issue

■ Simple, but lack of scalability
■ Flooding based lookup is extremely

wasteful with bandwidth
■ Enormous number of redundant messages
■ All users do this in parallel: local load

grows linearly with size

■ Sometimes, existing objects may not be
located due to limited TTL

Possible extensions to make
Gnutella efficient

■ Controlling topology to allow for better
search
■ Random walk, Degree-biased Random

Walk

■ Controlling placement of objects
■ Replication (1 hop or 2 hop)

Gnutella Topology
■ The topology is dynamic, I.e. constantly

changing.
■ How do we model a constantly changing

topology?
■ Usually, we begin with a static topology, and later

account for the effect of churn.

■ A Random Graph?
■ A Power Law Graph?

Random graph:
Erdös-Rényi model

■ A random graph G(n, p) is constructed
by starting with a set of n vertices, and
adding edges between pairs of nodes at
random.

■ Every possible edge occurs
independently with probability p.

■ Is Gnutella topology a random graph?
■ NO

Gnutella : Power law graph

■ Gnutella topology is actually a
power-law graph.
■ Also called scale-free graph

■ What is a power-law graph?
■ The number of nodes with degree k = ck-r

■ Ex) WWW, Social Network, etc
■ Small world phenomena – low degree of

separation (approx. log of size)

Power-law Examples

10
0

10
1

10
0

10
1

10
2

number of neighbors

pr
op

or
tio

n
of

 n
od

es

dat
apower-law fit
τ =

2.07

Gnutella
power-law link distribution

Facebook
power-law friends distribution

Other examples of power-law

“On Power Law
Relationships of
the Internet
Topology.” - 3
brothers Faloutsos

Dictionaries

http://www.orgnet.com/netindustry.html

Internet
Industry
partnerships

Wikipedia

https://barabasi.com/f/623.pdf

Possible Explanation of
Power-Law graph

■ Continued growth
■ Nodes join at different times.

■ Preferential Attachment
■ The more connections a node has, the

more likely it is to acquire new connections
(“Rich gets richer”).

■ Popular webpages attract new pointers.
■ Popular people attract new followers.

Power-Law Overlay Approach

■ Power-law graphs are
■ Resistant to random failures
■ Highly susceptible to directed attacks (to “hubs”)

■ Even if we can assume random
failures

■ Hub nodes become bottlenecks for neighbor forwarding
■ And situation worsens …

Full Network 30% Random Removed Top 4% Removed

Scale Free Networks. Albert Laszlo Barabasi and Eric Bonabeau. Scientific American. May-2003.

y = C x-a : log(y) = log(C) – alog(x)

Gnutella : Random
Walk-based Lookup

User

Data

Gnutella Network

Simple analysis of Random
Walk based Lookup

Let p = Population of the
object. i.e. the fraction of
nodes hosting the object (<1)

T = TTL (time to live)

Hop count
h

Probability of
success

Ex 1)
popular

Ex 2)
rare

1 p 0.3 0.0003

2 (1-p)p 0.21 0.00029

3 (1-p)2p 0.147 0.00029

T (1-p)T-1p …. ….

P = 3/10

Expected hop counts of the
Random Walk based lookup
■ Expected hop count E(h)

= 1p + 2(1-p)p + 3(1-p)2p + …+ T(1-p)T-1p
= (1-(1-p)T)/p - T(1-p)T

■ With a large TTL, E(h) = 1/p, which is
intuitive.

■ If p is very small (rare objects), what happens?
■ With a small TTL, there is a risk that search

will time out before an existing object is
located.

Extension of Random Walk
based Lookup

■ Multiple walkers
■ Replication
■ Biased Random Walk

Multiple Walkers
■ Assume they all k walkers start in unison.
■ Probability that none could find the object after one

hop = (1-p)k.
■ The probability that none succeeded after T hops

= (1-p)kT.
■ So the probability that at least one walker

succeeded is 1-(1-p)kT.
■ A typical assumption is that the search is abandoned as soon

as at least one walker succeeds

■ As k increases, the overhead increases, but the delay
decreases. There is a tradeoff.

Replication

■ One (Two or multiple) hop replication
■ Each node keeps track of the indices of

the files belonging to its immediate (or
multiple hop away) neighbors.

■ As a result, high capacity / high degree
nodes can provide useful clues to a large
number of search queries.

Biased Random Walk
P=5/10

P=3/10

P=2/10

■ Each node records the degree of the neighboring nodes.
■ Select highest degree node, that has not been visited
■ This first climbs to highest degree node, then climbs

down on the degree sequence
■ Lookup easily gravitates towards high degree

nodes that hold more clues.

GIA : Making Gnutella-like P2P
Systems Scalable

■ GIA is short name of “gianduia”
■ Unstructured, but take node capacity

into account
■ High-capacity nodes have room for more

queries: so, send most queries to them
■ Will work only if high-capacity nodes:

■ Have correspondingly more answers, and
■ Are easily reachable from other nodes

GIA Design

■ Make high-capacity nodes easily reachable
■ Dynamic topology adaptation converts them into

high-degree nodes

■ Make high-capacity nodes have more answers
■ One-hop replication

■ Search efficiently
■ Biased random walks

■ Prevent overloaded nodes
■ Active flow control Query

GIA : Active Flow Control
■ Accept queries based on capacity

■ Actively allocation “tokens” to neighbors
■ Send query to neighbor only if we have received

token from it
■ Incentives for advertising true capacity

■ High capacity neighbors get more tokens to send
outgoing queries

■ Allocate tokens with start-time fair queuing. Nodes
not using their tokens are marked inactive and this
capacity id redistributed among its neighbors.

KaZaA

■ Created in March 2001
■ Uses proprietary FastTrack technology

■ Combines strengths of Napster and Gnutella
■ Based on “Supernode Architecture”
■ Exploits heterogenity of peers

■ Two kinds of nodes
■ Super Node / Ordinary Node

■ Organize peers into a hierarchy
■ Two-tier hierarchy

KaZaA architecture

KaZaA : SuperNode

■ Nodes that have more connection
bandwidth and are more available are
designated as supernodes
■ Each supernode manages around 100-150

children
■ Each supernode connects to 30-50 other

supernodes

KaZaA : Overlay Maintenance

■ New node goes through list until it finds
operational supernode

■ Connects, obtains more up-to-date list, with 200
entries.

■ Gets Nodes in list are “close” to the new node.
■ The new node then pings 5 nodes on list and

connects with the one

■ If supernode goes down, a node obtains
updated list and chooses new supernode

KaZaA : Metadata
■ Each supernode acts as a mini-Napster hub,

tracking the content (files) and IP addresses
of its descendants

■ For each file: File name, File size, Content Hash,
File descriptors (used for keyword matches during
query)

■ Content Hash:
■ When peer A selects file at peer B, peer A sends

ContentHash in HTTP request
■ If download for a specific file fails (partially completes),

ContentHash is used to search for new copy of file.

KaZaA : Operation
■ Peer obtains address of an SN

■ e.g. via bootstrap server
■ Peer sends request to SN and uploads

metadata for files it is sharing
■ The SN starts tracking this peer

■ Other SNs are not aware of this new peer
■ Peer sends queries to its own SN
■ SN answers on behalf of all its peers,

forwards query to other SNs
■ Other SNs reply for all their peers

KaZaA : Parallel Downloading and
Recovery

■ If file is found in multiple nodes, user can
select parallel downloading

■ Identical copies identified by ContentHash
■ HTTP byte-range header used to request

different portions of the file from different
nodes

■ Automatic recovery when server peer stops
sending file

■ ContentHash

 Introduction

P2P Case study: Skype

❑ inherently P2P: pairs
of users communicate.

❑ proprietary
application-layer
protocol (inferred via
reverse engineering)

❑ hierarchical overlay
with SNs

❑ Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

Application 2-72

 Introduction

Peers as relays
❑ problem when both

Alice and Bob are
behind “NATs”.
❖ NAT prevents an outside

peer from initiating a call
to insider peer

❑ solution:
❖ using Alice’s and Bob’s

SNs, relay is chosen
❖ each peer initiates

session with relay.
❖ peers can now

communicate through
NATs via relay

Application 2-73

Unstructured vs Structured
■ Unstructured P2P networks allow resources to be

placed at any node. The network topology is
arbitrary, and the growth is spontaneous.

■ Structured P2P networks simplify resource
location and load balancing by defining a topology
and defining rules for resource placement.

■ Guarantee efficient search for rare objects

What are the rules???

Distributed Hash Table (DHT)

DHT overview:
Directed Lookup

■ Idea:
■ assign particular nodes to hold particular content

(or pointers to it, like an information booth)
■ when a node wants that content, go to the node

that is supposed to have or know about it
■ Challenges:

■ Distributed: want to distribute responsibilities
among existing nodes in the overlay

■ Adaptive: nodes join and leave the P2P overlay
■ distribute knowledge responsibility to joining nodes
■ redistribute responsibility knowledge from leaving nodes

DHT overview:
Hashing and mapping
■ Introduce a hash function to map the object being

searched for to a unique identifier:
■ e.g., h(“Hey Jude”) → 8045

■ Distribute the range of the hash function among all
nodes in the network

■ Each node must “know about” at least one copy of
each object that hashes within its range (when one
exists)

DHT overview:
Knowing about objects

■ Two alternatives
■ Node can cache each (existing) object that

hashes within its range
■ Pointer-based: level of indirection – node

caches pointer to location(s) of object

DHT overview:
Routing
■ For each object, node(s) whose range(s)

cover that object must be reachable via a
“short” path

■ by the querier node (assumed can be chosen
arbitrarily)

■ by nodes that have copies of the object (when
pointer-based approach is used)

■ The different approaches (CAN, Chord,
Pastry, Tapestry) differ fundamentally only in
the routing approach

■ any “good” random hash function will suffice

DHT overview:
Other Challenges
■ # neighbors for each node should scale with growth

in overlay participation (e.g., should not be O(N))
■ DHT mechanism should be fully distributed (no

centralized point that bottlenecks throughput or can
act as single point of failure)

■ DHT mechanism should gracefully handle nodes
joining/leaving the overlay

■ need to repartition the range space over existing nodes
■ need to reorganize neighbor set
■ need bootstrap mechanism to connect new nodes into the

existing DHT infrastructure

DHT overview:
DHT Layered Architecture

DHT overview:
DHT based Overlay

Each Data Item
(file or metadata)
has a key

Hash Tables
■ Store arbitrary keys and

satellite data (value)
■ put(key,value)
■ value = get(key)

■ Lookup must be fast
■ Calculate hash function

h() on key that returns a
storage cell

■ Chained hash table: Store
key (and optional value)
there

Distributed Hash Table
■ Hash table functionality in a P2P network : lookup of

data indexed by keys
■ Distributed P2P database
■ database has (key, value) pairs;

■ key: ss number; value: human name
■ key: content type; value: IP address

■ peers query DB with key
■ DB returns values that match the key

■ peers can also insert (key, value) peers
■ Key-hash 🡪 node mapping

■ Assign a unique live node to a key
■ Find this node in the overlay network quickly and cheaply

Distributed Hash Table

Old version of Distributed
Hash Table : CARP

■ 1997~
■ Each proxy has

unique name
(proxy_n)

■ Value=URL=u
■ Get h(proxy_n,u) for

all proxies as a key
■ Assign u to proxy with

highest h(proxy_n, u)

Problem of CARP

■ Not good for P2P:
■ Each node needs to know name of all other

up nodes
■ i.e., need to know O(N) neighbors

■ Hard to handle dynamic behavior of nodes
(join/leave)

■ But only O(1) hops in lookup

New concept of DHT:
Consistent Hashing
■ Node Identifier

■ assign integer identifier to each peer in range
[0,2n-1].

■ Each identifier can be represented by n bits.
■ Key : Data Identifier

■ require each key to be an integer in same range.
■ to get integer keys, hash original value.

■ e.g., key = h(“Hey Jude.mp3”),

■ Both node and data are placed in a same ID
space ranged in [0,2n-1].

Consistent Hashing :
How to assign key to node?
■ central issue:

■ assigning (key, value) pairs to peers.
■ rule: assign key to the peer that has the

closest ID.
■ E.g. Chord: closest is the immediate successor of

the key.
■ E.g. CAN : closest is the node whose responsible

dimension includes the key.
■ e.g.,: n=4; peers: 1,3,4,5,8,10,12,14;

■ key = 13, then successor peer = 14
■ key = 15, then successor peer = 1

 Introduction

1

3

4

5

8
10

12

15

Circular DHT (1)

❑ each peer only aware of immediate successor
and predecessor.

❑ Circular “overlay network”
Application 2-89

 Introduction

Circular DHT : simple routing

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible
for key 1110 ?

I am

O(N) messages
on avg to
resolve
query, when
there
are N peers 1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-90

 Introduction

Circular DHT with Shortcuts

❑ each peer keeps track of IP addresses of predecessor,
successor, short cuts.

❑ reduced from 6 to 2 messages.
❑ possible to design shortcuts so O(log N) neighbors, O(log

N) messages in query

1

3

4

5

810

12

15

Who’s resp
for key 1110?

Application 2-91

 Introduction

Peer Churn

❑ peer 5 abruptly leaves
❑ Peer 4 detects; makes 8 its immediate successor;

asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

❑ What if 5 and 8 leaves simultaneously?

1

3

4

5

8
10

12

15

❖ To handle peer churn, require
each peer to know the IP
address of its two successors.

❖ Each peer periodically pings its
two successors to see if they
are still alive.

Application 2-92

Structured P2P Systems
■ Chord

■ Consistent hashing based ring structure
■ Pastry

■ Uses ID space concept similar to Chord
■ Exploits concept of a nested group

■ CAN
■ Nodes/objects are mapped into a d-dimensional

Cartesian space
■ Kademlia

■ Similar structure to Pastry, but the method to check the
closeness is XOR function

Chord
■ Consistent hashing

based on an ordered
ring overlay

■ Both keys and nodes
are hashed to 160 bit
IDs (SHA-1)

■ Then keys are assigned
to nodes using
consistent hashing

■ Successor in ID space

N1 : Node with Node ID 1
K10 : Key 10

Chord : hashing properties

■ Uniformly Randomized
■ All nodes receive roughly equal share of

load
■ As the number of nodes increases, the

share of each node becomes more fair.
■ Local

■ Adding or removing a node involves an
O(1/N) fraction of the keys getting new
locations

Chord : Lookup operation

■ Searches the node that stores the key
({key, value} pair)

■ Two protocols
■ Simple key lookup

■ Guaranteed way

■ Scalable key lookup
■ Efficient way

Chord : Simple Lookup
■ Lookup query is

forwarded to
successor.

■ one way
■ Forward the query

around the circle
■ In the worst case,

O(N) forwarding is
required

■ In two ways, O(N/2)

Chord : Scalable Lookup
■ Each node n maintains a routing table with

up to m entries (called the finger table)
■ The ith entry in the table is the location of the

successor (n +2i-1)
■ Query for a given identifier (key) is

forwarded to the nearest node among m
entries at each node. (node that most
immediately precedes key)

■ Search cost = O (log N) (m=O(log N))

Chord : Scalable Lookup

i
th
 entry of a finger table

points the successor of the
key (nodeID + 2i-1)

A finger table has O(log N)
entries and the scalable

lookup is bounded to O(log N)

Chord : Node Join
■ New node N identifies its successor

■ Performs lookup (N)
■ Takes over all successor’s keys that the new node is

responsible for
■ Sets its predecessor to its successor’s former

predecessor
■ Sets its successor’s predecessor to itself
■ Newly joining node builds a finger table

■ Performs lookup (N + 2i-1) (for i=0, 1, 2, …I)
■ I= number of finger print entries

■ Update other nodes’ finger tables

Chord : Node join example

When a node joins/leaves the overlay, O(K/N)
objects moves between nodes.

Chord : Node Leave
■ Similar to Node Join
■ Moves all keys that the node is responsible

for to its successor
■ Sets its successor’s predecessor to its

predecessor
■ Sets its predecessor’s successor to its

successor
■ C.f. management of a linked list

■ Finger Table??
■ There is no explicit way to update others’ finger

tables which point the leaving node

Chord : Stabilization
■ If the ring is correct, then routing is correct,

fingers are needed for the speed only
■ Stabilization

■ Each node periodically runs the stabilization
routine

■ Each node refreshes all fingers by periodically
calling find_successor(n+2i-1) for a random i

■ Periodic cost is O(logN) per node due to finger
refresh

Chord : Failure handling
■ Failed nodes are handled by

■ Replication: instead of one successor, we keep r
successors

■ More robust to node failure (we can find our new
successor if the old one failed)

■ Alternate paths while routing
■ If a finger does not respond, take the previous finger, or

the replicas, if close enough

■ At the DHT level, we can replicate keys on
the r successor nodes

■ The stored data becomes equally more robust

Pastry : Identifiers

■ Applies a sorted ring in ID space like Chord
■ Nodes and objects are assigned a 128-bit identifier

■ NodeID (and key) is interpreted as sequences
of digit with base 2b

■ In practice, the identifier is viewed in base 16
(b=4).

■ The node that is responsible for a key is
numerically closest (not the successor)

■ Bidirectional and using numerical distance

Pastry : ID space
■ Simple example: nodes & keys have n-digit

base-3 ids, eg, 02112100101022
■ There are 3 nested groups for each group

■ Each key is stored in a node with closest node
ID

■ Node addressing defines nested groups

Pastry : Nested Group
■ Nodes in same inner group know each other’s

IP address
■ Each node knows IP address of one delegate

node in some of the other groups
■ Which?
■ Node in 222…: 0…, 1…, 20…, 21…, 220…, 221…
■ 6 delegate nodes rather than 27

Pastry : Ring View

0..

1..

20..

21..

222..

220..

221..

O(log N) delegates
rather than O(N)

Pastry : Lookup in nested
group
■ Divide and conquer
■ Suppose node in group 222… wants to lookup

key k= 02112100210.
■ Forward query to node node in 0…, then to

node in 02…, then to node in 021…
■ Node in 021… forwards to closest to key in 1

hop

Pastry : Routing table

■ Routing table
■ Provides delegate

nodes in nested
groups

■ Self-delegate for the
nested group where
the node is belong to

■ O(logb N) rows
 🡪 O(logb N) lookup

Base-4 routing table

Pastry : Leaf set

■ Leaf set
■ Set of nodes which is

numerically closest to
the node

■ L/2 smaller & L/2 higher
■ Periodically update
■ Support reliability and

consistency
■ Cf) Successors in Chord

■ Replication boundary
■ Stop condition for lookup

Base-4 routing table

Pastry : Lookup Process

■ if (destination is within range of our leaf set)
■ forward to numerically closest member

■ else
■ if (there’s a longer prefix match in table)

■ forward to node with longest match

■ else
■ forward to node in table
■ (a) shares at least as long a prefix
■ (b) is numerically closer than this node

Pastry : Proximity routing

■ Assumption: scalar proximity metric
■ e.g. ping delay, # IP hops
■ a node can probe distance to any other

node
■ Proximity invariant:

■ Each routing table entry refers to a
node close to the local node (in the
proximity space), among all nodes
with the appropriate nodeId prefix.

Pastry : Routing in Proximity
Space

Pastry : Join and Failure
■ Join

■ Finds numerically closest node already in network
■ Ask state from all nodes on the route and initialize

own state
■ LeafSet and Routing Table

■ Failure Handling
■ Failed leaf node: contact a leaf node on the side of

the failed node and add appropriate new neighbor
■ Failed table entry: contact a live entry with same

prefix as failed entry until new live entry found, if
none found, keep trying with longer prefix table
entries

Summary : Structured DHT
based P2P

■ Design issues
■ ID (node, key) mapping
■ Routing (Lookup) method
■ Maintenance (Join/Leave) method
■ All functionality should be fully

distributed

Summary : Unstructured vs
Structured

Query
Lookup

Overlay
Network
Management

Unstructured Flood-based
(heavy
overhead)

Simple

Structured Bounded and
effective,
O(log N)

Complex
(heavy
overhead)

Summary of Consistent Hashing

● Consistent hashing
○ Elegant way to divide a workload

across machines
○ Very useful in clusters:

● Replication for high availability, efficient
recovery after node failure

● Incremental scalability: “add nodes, capacity
increases”

● Self-management: minimal configuration

● Unique trait: no single server to shut
down/monitor

Couchbase automated data partitioning [5]

OpenStack's Object Storage Service - Swift[6]

Partitioning in Amazon's storage system Dynamo[7]

Data partitioning in Apache Cassandra[8]

Data partitioning in Voldemort[9]

Akka's consistent hashing router[10]

Riak, a distributed key-value database[11]

Gluster, a network-attached storage file system[12]

Akamai content delivery network[13]

Discord chat application[14]

Maglev network load balancer[15]

Data partitioning in Azure Cosmos DB

Actively
used today
in many
key-value
stores

https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-5
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-6
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-Amazon2007-7
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-Lakshman2010b-8
https://en.wikipedia.org/wiki/Voldemort_(distributed_data_store)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-9
https://en.wikipedia.org/wiki/Akka_(toolkit)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-akka-routing-10
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-riak-consistent-hashing-11
https://en.wikipedia.org/wiki/Gluster
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-GlusterFS_Algorithms:_Distribution-12
https://en.wikipedia.org/wiki/Akamai_Technologies
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-13
https://en.wikipedia.org/wiki/Discord_(software)
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-how_discord_scaled_elixir_to_5,000,000_concurrent_users-14
https://en.wikipedia.org/wiki/Consistent_hashing#cite_note-maglev-15
https://en.wikipedia.org/wiki/Azure_Cosmos_DB

P2P Content Dissemination

Content dissemination

■ Content dissemination is about allowing
clients to actually get a file or other
data after it has been located

■ Important parameters
■ Throughput
■ Latency
■ Reliability

File Distribution: Server-Client vs P2P

Question : How much time to distribute a file
from one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

Application 2-121

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
■ server sequentially

sends N copies:

■ NF/us time
■ client i takes F/di time

to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) } i

Time to distribute F
to N clients using

client/server approach

Application 2-122

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F■ server must send one
copy: F/us time

■ client i takes F/di time to
download

■ NF bits must be
downloaded (aggregate)
▪ fastest possible upload rate: us + Σui

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }i

Application 2-123

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application 2-124

P2P
Dissemination

Problem Formulation
■ Least time to disseminate:

■ Fixed data D from one seeder to N
nodes

■ Insights / Axioms
■ Involving end-nodes speeds up the

process (Peer-to-Peer)
■ Chunking the data also speeds up

the process

■ Raises many questions
■ How do nodes find other nodes for

exchange of chunks?
■ Which chunks should be transferred?
■ Is there an optimal way to do this?

Optimal Solution in
Homogeneous Network

N-1
Peers

M
Chunks
Of Data

Seeder
■ Least time to disseminate:

■ All M chunks to N-1 peers
■ Constraining the problem

■ Homogeneous network
■ All Links have same throughput & delay
■ Underlying network fully connected (Internet)

■ Optimal Solution (DIM): Log2N + 2(M-1)
■ Ramp-Up: Until each node has at least 1 chunk
■ Sustained-Throughput: Until all nodes have all chunks

■ There is also an optimal chunk size

FARLEY, A. M. Broadcast time in communication networks. In SIAM Journal Applied
Mathematics (1980)

Ganesan, P. On Cooperative Content Distribution and the Price of Barter. ICDCS 2005

Example Working of Optimal
Solution

Practical Content
dissemination systems
■ Centralized

■ Server farms behind single domain name, load balancing
■ Dedicated CDN

■ CDN is independent system for typically many providers, that
clients only download from (use it as a service), typically
http

■ Akamai, FastReplica
■ End-to-End (P2P)

■ Special client is needed and clients self-organize to form the
system themselves

■ BitTorrent(Mesh-swarm), SplitStream(forest),
Bullet(tree+mesh), CREW(mesh)

Akamai

■ Provider (eg CNN, BBC, etc) allows Akamai to
handle a subset of its domains (authoritive DNS)

■ Http requests for these domains are redirected to
nearby proxies using DNS

■ Akamai DNS servers use extensive monitoring info to
specify best proxy: adaptive to actual load, outages, etc

■ 20,000+ servers worldwide, claimed 10-20% of
overall Internet traffic is Akamai

■ Wide area of services based on this architecture
■ availability, load balancing, web based applications, etc

Distributed CDN : Fast Replica
■ Disseminate large file to large set of edge

servers or distributed CDN servers
■ Minimization of the overall replication time for

replicating a file F across n nodes N1, … , Nn.
■ File F is divides in n equal subsequent files:
F1, … , Fn, where Size(Fi) = Size(F) / n bytes

for each i = 1, … , n.
■ Two steps of dissemination

■ Distribution and Collection

FastReplica : Distribution

■ Origin node N0 opens n concurrent connections to
nodes N1, … , Nn and sends to each node the
following items:

■ a distribution list of nodes R = {N1, … , Nn} to which subfile
Fi has to be sent on the next step;

■ subfile Fi .

N3

File
F

F1 F2 F3 F n-1 F n

F1

F n-1

F n

F3F2

N0

N1

N2 N n-1

N n

FastReplica : Collection

■ After receiving Fi , node Ni opens (n-1) concurrent
network connections to remaining nodes in the
group and sends subfile Fi to them

F n-1

F n
File F

F1

F1

F2 F3 F n-1 F n

N0

N1

N2

N3

N n-1

N n

F1

F1

F3F2

F1

F1

FastReplica : Collection
(overall)

■ Each node N i has:
■ (n - 1) outgoing connections for sending subfile F i ,
■ (n - 1) incoming connections from the remaining

nodes in the group for sending complementary
subfiles F 1, … , F i-1 ,F i+1 , … , F n.

File
F

F1

F1

F2 F3 F n-1 F n

F n-1

F n

F3F2

N0

N1

N2

N3
N n-1

N

n

F2
F3

F n-1

F n

FastReplica : Benefits
■ Instead of typical replication of the entire file F to n

nodes using n Internet paths FastReplica exploits (n x
n) different Internet paths within the replication
group, where each path is used for transferring
1/n-th of file F.

■ Benefits:
■ The impact of congestion along the involved paths

is limited for a transfer of 1/n-th of the file,
■ FastReplica takes advantage of the upload and

download bandwidth of recipient nodes.

Decentralized Dissemination
Tree:
 - Intuitive way to implement a
 decentralized solution
 - Logic is built into the
 structure of the overlay

However:
-Sophisticated mechanisms for
heterogeneous networks
(SplitStream)
- Fault-tolerance Issues

Mesh-Based (Bittorrent, Bullet):
 - Multiple overlay links
 - High-BW peers: more connections
 - Neighbors exchange chunks
Robust to failures
 - Find new neighbors when links are

broken
 - Chunks can be received via multiple

paths
Simpler to implement

BitTorrent

● 20-50% of p2p internet traffic
was BitTorrent (a decade ago)

● Special client software is needed
○ BitTorrent, BitTyrant, μTorrent,

LimeWire …
● Basic idea

○ Clients that download a file at the
same time help each other (ie, also
upload chunks to each other)

○ BitTorrent clients form a swarm : a
random overlay network

BitTorrent : Publish/download
■ Publishing a file

■ Put a “.torrent” file on the web: it contains the
address of the tracker, and information about the
published file

■ Start a tracker, a server that
■ Gives joining downloaders random peers to download from

and to
■ Collects statistics about the swarm

■ There are “trackerless” implementations by using
Kademlia DHT (e.g. Azureus)

■ Download a file
■ Install a bittorrent client and click on a “.torrent” file

 Introduction

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

Application 2-140

BitTorrent : Overview

File.torrent :
-URL of tracker
-File name
-File length
-Chunk length
-Checksum for each
chunk (SHA1 hash)

Seeder – peer having entire file
Leecher – peer downloading file

BitTorrent : Client
■ Client first asks 50 random peers from tracker

■ Also learns about what chunks (256K) they have
■ Pick a chunk and tries to download its pieces

(16K) from the neighbors that have them
■ Download does not work if neighbor is disconnected or

denies download (choking)
■ Only a complete chunk can be uploaded to others

■ Allow only 4 neighbors to download (unchoking)
■ Periodically (30s) optimistic unchoking : allows

download to random peer
■ important for bootstrapping and optimization

■ Otherwise unchokes peer that allows the most
download (each 10s)

BitTorrent : Tit-for-Tat

■ Tit-for-tat
■ Cooperate first, then do what the opponent

did in the previous game
■ BitTorrent enables tit-for-tat

■ A client unchokes other peers (allow them
to download) that allowed it to download
from them

■ Optimistic unchocking is the initial
cooperation step to bootstrapping

 Introduction

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Application 2-144

BitTorrent (1)

■ file divided into 256KB chunks.
■ peer joining torrent:

■ has no chunks, but will accumulate them
over time

■ registers with tracker to get list of peers,
connects to subset of peers (“neighbors”)

■ while downloading, peer uploads chunks to other
peers.

■ peers may come and go
■ once peer has entire file, it may (selfishly) leave or

(altruistically) remain
Application 2-145

BitTorrent : Chunk selection
■ What chunk to select to download?
■ Clients select the chunk that is rarest among

the neighbors (Local decision)
■ Increases diversity in the pieces downloaded;

Increase throughput
■ Increases likelihood all pieces still available even if

original seed leaves before any one node has
downloaded entire file

■ Except the first chunk
■ Select a random one (to make it fast: many

neighbors must have it)

BitTorrent (2)

Pulling Chunks
■ at any given time, different

peers have different
subsets of file chunks

■ periodically, a peer (Alice)
asks each neighbor for list
of chunks that they have.

■ Alice sends requests for
her missing chunks

■ rarest first

Sending Chunks: tit-for-tat
❖ Alice sends chunks to four

neighbors currently sending her
chunks at the highest rate
▪ re-evaluate top 4 every 10

secs
❖ every 30 secs: randomly select

another peer, starts sending
chunks
▪ newly chosen peer may join

top 4
▪ “optimistically unchoke”

BitTorrent : Pros/Cons

■ Pros
■ Proficient in utilizing partially downloaded files
■ Encourages diversity through “rarest-first”

■ Extends lifetime of swarm

■ Works well for “hot content”
■ Cons

■ Assumes all interested peers active at same time;
performance deteriorates if swarm “cools off”

■ Even worse: no trackers for obscure content

More P2P Content
Dissemination

Overcome tree structure –
SplitStream, Bullet
■ Tree

■ Simple, Efficient, Scalable
■ But, vulnerable to failures, load-unbalanced, no

bandwidth constraint
■ SplitStream

■ Forest (Multiple Trees)
■ Bullet

■ Tree(Metadata)
+ Mesh(Data)

■ CREW
■ Mesh(Data,Metadata)

SplitStream

■ Forest based dissemination
■ Basic idea

■ Split the stream into K stripes (with MDC coding)
■ For each stripe create a multicast tree such that

the forest
■ Contains interior-node-disjoint trees
■ Respects nodes’ individual bandwidth constraints

SplitStream : MDC coding

■ Multiple Description coding
■ Fragments a single media stream

into M substreams (M ≥ 2)
■ K packets are enough for decoding (K < M)
■ Less than K packets can be used to

approximate content
■ Useful for multimedia (video, audio) but not for

other data
■ Cf) erasure coding for large data file

SplitStream :
Interior-node-disjoint tree

■ Each node in a set of trees is interior
node in at most one tree and leaf node
in the other trees.

■ Each substream is disseminated over
subtrees

S

a

b c

d

e f h

g

i

a

b c h

g

i

d

e f

d

e f

a

b c h

g

i

ID =0x… ID =1x… ID =2x…

SplitStream : Constructing the
forest
■ Each stream has its groupID

■ Each groupID starts with a different digit
■ A subtree is formed by the routes from all

members to the groupId
■ The nodeIds of all interior nodes share some

number of starting digits with the subtree’s
groupId.

■ All nodes have incoming capacity
requirements (number of stripes they need)
and outgoing capacity limits

Bullet

■ Layers a mesh on top of an overlay tree
to increase overall bandwidth

■ Basic Idea
■ Use a tree as a basis
■ In addition, each node continuously looks

for peers to download from
■ In effect, the overlay is a tree combined

with a random network (mesh)

Bullet : RanSub

■ Two phases
■ Collect phase : using the tree,

membership info is propagated
upward (random sample and
subtree size)

■ Distribution phase : moving
down the tree, all nodes are
provided with a random sample
from the entire tree, or from
the non-descendant part of the
tree

S

A

ED

CB

1 2 3 4 5 76

1 2 3 5 1 3 4 6 2 4 5 6

1 2 5 1 3 4

Bullet : Informed content
delivery
■ When selecting a peer, first a similarity

measure is calculated
■ Based on summary-sketches

■ Before exchange missing packets need to be
identified

■ Bloom filter of available packets is exchanged
■ Old packets are removed from the filter

■ To keep the size of the set constant
■ Periodically re-evaluate senders

■ If needed, senders are dropped and new ones are
requested

Gossip-based Broadcast

Probabilistic Approach with Good Fault Tolerant Properties
■ Choose a destination node, uniformly at random, and send it the message
■ After Log(N) rounds, all nodes will have the message w.h.p.
■ Requires N*Log(N) messages in total
■ Needs a ‘random sampling’ service

Usually implemented as
■ Rebroadcast ‘fanout’ times
■ Using UDP: Fire and Forget

 BiModal Multicast (99), Lpbcast (DSN 01), Rodrigues’04 (DSN), Brahami ’04, Verma’06 (ICDCS),

Eugster’04 (Computer), Koldehofe’04, Periera’03

Gossip-based Broadcast:
Drawbacks

Problems
■ More faults, higher fanout needed (not dynamically adjustable)

■ Higher redundancy 🡪 lower system throughput 🡪 slower dissemination

■ Scalable view & buffer management

■ Adapting to nodes’ heterogeneity

■ Adapting to congestion in underlying network

CREW: Preliminaries

Deshpande, M., et al. CREW: A Gossip-based Flash-Dissemination System IEEE International
Conference on Distributed Computing Systems (ICDCS). 2006.

CREW (Concurrent Random
Expanding Walkers) Protocol

1231

5

3

4

2

6

1

5

3

4

2

6

■ Basic Idea: Servers
‘serve’ data to only a
few clients

■ Who In turn become
servers and ‘recruit’
more servers

■ Split data into chunks
■ Chunks are

concurrently
disseminated through
random-walks

■ Self-scaling and
self-tuning to
heterogeneity

What is new about CREW
■ No need to pre-decide fanout or complex protocol to adjust it

■ Deterministic termination
■ Autonomic adaptation to fault level (More faults 🡪more pulls)

■ Scalable, real-time and low-overhead view management
■ Number of neighbors as low as Log(N) (expander overlay)
■ Neighbors detect and remove dead node 🡪 disappears from all nodes’ views

instantly
■ List of node addresses not transmitted in each gossip message

■ Use of metadata plus handshake to reduce data overhead
■ No transmission of redundant chunks

■ Handshake overloading
■ For ‘random sampling’ of

the overlay
■ Quick feedback about

system-wide properties
■ Quick adaptation

■ Use of TCP as underlying transport
■ Automatic flow and congestion control at

network level
■ Less complexity in application layer

■ Implemented using RPC middleware

CREW Protocol: Latency,
Reliability

http://www.youtube.com/watch?v=hlzybxTLZ50

EXTRA SLIDES

More on P2P Search/Lookup

CAN : Content Addressable
Network

■ Hash value is viewed as a point in a D-dimensional Cartesian
space

■ Hash value points <n1, n2, …, nD> as a key.
■ D-dimensional requires D distinct hash functions.

■ Each node responsible for a D-dimensional “cube” in the space

CAN : Neighbors

■ Nodes are neighbors if their cubes “touch” at
more than just a point

■ Neighbor information : Responsible space and
node IP Address

• Example: D=2
• 1’s neighbors: 2,3,4,6
• 6’s neighbors: 1,2,4,5
• Squares “wrap around”, e.g.,
7 and 8 are neighbors
• Expected # neighbors: O(D)

CAN : Routing
■ To get to <n1, n2, …, nD> from <m1, m2, …, mD>

■ choose a neighbor with smallest Cartesian distance from <n1,
n2, …, nD> (e.g., measured from neighbor’s center)

• e.g., region 1 needs to send to
node covering X
• Checks all neighbors, node 2 is
closest
• Forwards message to node 2
• Cartesian distance
monotonically decreases with
each transmission
• Expected # overlay hops:
(DN1/D)/4

CAN : Join

■ To join the CAN overlay:
■ find some node in the CAN (via

bootstrap process)
■ choose a point in the space

uniformly at random
■ using CAN, inform the node

that currently covers the space
that node splits its space in half

■ 1st split along 1st dimension
■ if last split along dimension i <

D, next split along i+1st
dimension

■ e.g., for 2-d case, split on
x-axis, then y-axis

■ keeps half the space and gives
other half to joining node

The likelihood of a
rectangle being selected

is proportional to it’s
size, i.e., big rectangles
chosen more frequently

CAN Failure recovery

■ View partitioning as a binary tree
■ Leaves represent regions covered by overlay nodes
■ Intermediate nodes represents “split” regions that could

be “reformed”
■ Siblings are regions that can be merged together

(forming the region that is covered by their parent)

CAN Failure Recovery

■ Failure recovery when leaf S is
removed

■ Find a leaf node T that is either
■ S’s sibling
■ Descendant of S’s sibling where

T’s sibling is also a leaf node
■ T takes over S’s region (move to

S’s position on the tree)
■ T’s sibling takes over T’s previous

region

CAN : speed up routing

■ Basic CAN routing is slower than Chord
or Pastry

■ Manage long ranged links
■ Probabilistically maintain multi-hop away

links (2 hop away, 3 hop away ..)
■ Exploit the nested group routing

Kademlia : BitTorrent DHT
■ Developed in 2002
■ For Distributed Tracker

■ trackerless torrent
■ Torrent files are maintained by all users using

BitTorrent.
■ For each nodes, files, keywords, deploy

SHA-1 hash into a 160 bits space.
■ Every node maintains information about files,

keywords “close to itself”.

Kademlia : XOR based
closeness

■ The closeness between two objects measure
as their bitwise XOR interpreted as an
integer.

■ D(a, b) = a XOR b
■ d (x,x) = 0
■ d (x,y) > 0 if x ≠ y
■ d (x,y) = d (y,x)
■ d (x,y) + d (y,z) ≥ d (x, z)
■ For each x and t, there is exactly one node y for

which d (x,y) = t

Kademlia :
Binary Tree of ID Space

■ Treat node as leaves in a binary tree.
■ For any given node, dividing the binary

tree into a series of successively lower
subtree that don’t contain the node.

■ For any given node, it keeps touch at
least one node (up to k) of its subtrees.
(if there is a node in that tree.) Each
subtree possesses a k-bucket.

Kademlia :
Binary Tree of ID Space

Subtrees for node 0011….
c.f. nested group

Each subtree has k
buckets (delegate
nodes), K = 20 in

general

Kademlia : Lookup
When node 0011…… wants search 1110……

O(log N)

Kademlia : K-bucket
■ K-bucket for each subtree

■ A list of nodes of a subtree
■ The list is sorted by time

last seen.
■ The value of K is chosen so

that any give set of K
nodes is unlikely to fail
within an hour.

■ So, K : Reliability parameter
■ The list is updated

whenever a node receives
a message.

Least recenly
seen

Most recenly
seen

Gnutella showed that the
longer a node Is up, the more
likely it is to remain up for one
more hour

Kademlia : K-bucket
■ By relying on the oldest nodes, k-buckets

promise the probability that they will remain
online.

■ Dos attack is prevented since the new nodes
find it difficult to get into the k-bucket

■ If malicious users live long and dominate all
the K-bucket, what happens?

■ Eclipse attack
■ Sybil attack

Kademlia : RPC
■ PING: to test whether a node is online
■ STORE: instruct a node to store a key
■ FIND_NODE: takes an ID as an argument, a

recipient returns (IP address, UDP port, node
id) of k nodes it knows from closest to ID
(node lookup)

■ FIND_VALUE: behaves like FIND_NODE,
unless the recipient received a STORE for that
key, it just returns the stored value.

Kademlia : Lookup
■ The most important task is to locate the k

closest nodes to some given node ID.
■ Kademlia employs a recursive algorithm for node

lookups. The lookup initiator starts by picking a
nodes from its closest non-empty k-bucket.

■ The initiator then sends parallel, asynchronous
FIND_NODE to the α nodes it has chosen.

■ α is a system-wide concurrency parameter, such
as 3.

■ Flexibility of choosing online nodes from k-buckets
■ Reducing latency

Kademlia : Lookup
■ The initiator resends the FIND_NODE to

nodes it has learned about from previous
RPCs.

■ If a round of FIND_NODES fails to return a
node any closer than the closest already
seen, the initiator resends the FIND_NODE to
all of the k closest nodes it has not already
queried.

■ The lookup terminates when the initiator has
queried and gotten responses from the k
closest nodes it has seen.

