
Fault Tolerance in
Distributed Systems

Fault Tolerant
Distributed Systems

Prof. Nalini Venkatasubramanian
(with some slides modified from Prof.
Ghosh, University of Iowa and
Indranil Gupta, UIUC)

❚ What is fault?
❙ A fault is a blemish, weakness, or shortcoming of a

particular hardware or software component.
❙ Fault, error and failures

❚ Why fault tolerant?
❙ Availability, reliability, dependability, …

❚ How to provide fault tolerance ?
❙ Replication
❙ Checkpointing and message logging
❙ Hybrid

Fundamentals

Reliability
❚ Reliability is an emerging and critical concern in

traditional and new settings
❙ Transaction processing, mobile applications, cyberphysical

systems
❚ New enhanced technology makes devices vulnerable to

errors due to high complexity and high integration
❙ Technology scaling causes problems
❘ Exponential increase of soft error rate

❙ Mobile/pervasive applications running close to humans
❘ E.g Failure of healthcare devices cause serious results

❙ Redundancy techniques incur high overheads of power and
performance
❘ TMR (Triple Modular Redundancy) may exceed 200% overheads

without optimization [Nieuwland, 06]
❚ Challenging to optimize multiple properties (e.g.,

performance, QoS, and reliability)

4

Classification of failures

Crash failure

Omission failure

Transient failure Byzantine failure

Software failure

Temporal failure

Security failure

Environmental perturbations

Crash failures

Crash failure = the process halts. It is irreversible.

In	synchronous	system,	 it	is	easy	to	detect	crash	failure	(using	heartbeat	
signals and	timeout).	 But	in	asynchronous	systems,	 it	is	never	accurate,	since	
it	is	not	possible	 to	distinguish	 between	 a	process	that	has	crashed,	and	a	
process	that	 is	running	very	slowly.

Some	failures	may	be	complex	and	nasty.	Fail-stop	failure is	a	simple	
abstraction that	mimics crash	failure	when	program	execution	 becomes	
arbitrary.	Implementations	 help	detect	which	processor	has	failed.	 If	a	system	
cannot	tolerate	 fail-stop	failure,	then	it	cannot	tolerate	 crash.

Transient failure
(Hardware) Arbitrary perturbation of the global state. May be

induced by power surge, weak batteries, lightning, radio-
frequency interferences, cosmic rays etc.

(Software) Heisenbugs are a class of temporary internal
faults and are intermittent. They are essentially permanent
faults whose conditions of activation occur rarely or are not
easily reproducible, so they are harder to detect during the
testing phase.

Over 99% of bugs in IBM DB2 production code are non-
deterministic and transient (Jim Gray)

Not Heisenberg

Temporal failures

Inability	to	meet	deadlines	– correct	results	
are	generated,	but	too	late	to	be	useful.	
Very	important	in	real-time	systems.

May	be	caused	by	poor	algorithms,	poor	
design	strategy	or	loss	of	synchronization	
among	the	processor	clocks

Byzantine failure

Anything	goes!	Includes	every	conceivable	form	
of	erroneous	behavior.	The	weakest	type	of	
failure

Numerous	possible	causes.	Includes	malicious	
behaviors	(like	a	process	executing	a	different	
program	instead	of	the	specified	one)	too.

Most	difficult	kind	of	failure	to	deal	with.

Errors/Failures across
system layers
❚ Faults or Errors can cause Failures

10

Application

Middleware/
OS

Hardware

Network

Soft
Error

Packet
Loss

Bug

Exce
ption

Hardware Errors and Error
Control Schemes11

Failures Causes Metric
s

Traditional
Approaches

Soft Errors,
Hard Failures,
System Crash

External Radiations,
Thermal Effects,
Power Loss, Poor
Design, Aging

FIT, MTTF,
MTBF

Spatial Redundancy (TMR,
Duplex, RAID-1 etc.) and
Data Redundancy (EDC,
ECC, RAID-5, etc.)

•FIT: Failures in Time (109 hours)
•MTTF: Mean Time To Failure
•MTBF: Mean Time b/w Failures
•TMR: Triple Modular Redundancy
•EDC: Error Detection Codes
•ECC: Error Correction Codes
•RAID: Redundant Array of
Inexpensive Drives

¨ Hardware failures are increasing as technology scales
¤ (e.g.) SER increases by up to 1000 times [Mastipuram, 04]

¨ Redundancy techniques are expensive
¤ (e.g.) ECC-based protection in caches can incur 95% performance

penalty [Li, 05]

Soft Errors (Transient
Faults)
❚ SER increases

exponentially as
technology scales

❚ Integration, voltage
scaling, altitude, latitude

❚ Caches are most hit due to:
❙ Larger portion in processors

(more than 50%)
❙ No masking effects (e.g.,

logical masking)

Transistor

01

5 hours MTTF

1 month MTTF

Intel Itanium II Processor

•MTTF: Mean time To Failure
Bit Flip

12

[Baumann, 05]

Soft errors
13

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x10

00
1 hour Technology scaling

and Twice Integration

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x10

00
1 hour Technology scaling

and Twice Integration
A system @ 65
nm

2x2x1000x64x8x
1000

30
minutes

Memory takes up
50% of soft errors in
a system

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x10

00
1 hour Technology scaling

and Twice Integration
A system @ 65
nm

2x2x1000x64x8x
1000

30
minutes

Memory takes up
50% of soft errors in
a system

A system with
voltage scaling
@ 65 nm

100x2x2x1000x6
4x8x1000

18
seconds

Exponential
relationship b/w SER
& Supply Voltage

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x100

0
1 hour Technology scaling and

Twice Integration
A system @ 65 nm 2x2x1000x64x8x10

00
30
minutes

Memory takes up 50%
of soft errors in a
system

A system with
voltage scaling @
65 nm

100x2x2x1000x64x
8x1000

18
seconds

Exponential
relationship b/w SER &
Supply Voltage

A system with
voltage scaling @
flight (35,000 ft) @
65 nm

800x100x2x2x1000
x64x8x1000 FIT

0.02
seconds

High Intensity of
Neutron Flux at flight
(high altitude)

Soft Error Rate (SER) – FIT (Failures in Time) = number of errors in 109 hours

Software Errors and Error
Control Schemes

14

Failures Causes Metrics Traditional
Approaches

Wrong
outputs,
Infinite
loops, Crash

Incomplete
Specification, Poor
software design,
Bugs, Unhandled
Exception

Number of
Bugs/Klines,
QoS, MTTF,
MTBF

Spatial Redundancy (N-
version Programming,
etc.), Temporal
Redundancy (Checkpoints
and Backward Recovery,
etc.)

•QoS: Quality of Service

¨ Software errors become dominant as system’s complexity increases
¤ (e.g.) Several bugs per kilo lines

¨ Hard to debug, and redundancy techniques are expensive
¤ (e.g.) Backward recovery with checkpoints is inappropriate for real-time applications

Software failures

Coding error or human error
On September 23, 1999, NASA lost the $125 million Mars orbiter
spacecraft because one engineering team used metric units
while another used English units leading to a navigation fiasco,
causing it to burn in the atmosphere.

Design flaws or inaccurate modeling
Mars pathfinder mission landed flawlessly on the Martial surface
on July 4, 1997. However, later its communication failed due to
a design flaw in the real-time embedded software kernel
VxWorks. The problem was later diagnosed to be caused due to
priority inversion, when a medium priority task could preempt a
high priority one.

Software failures

Memory leak
Processes fail to entirely free up the physical memory that has
been allocated to them. This effectively reduces the size of the
available physical memory over time. When this becomes
smaller than the minimum memory needed to support an
application, it crashes.

Incomplete specification (example Y2K)
Year = 99 (1999 or 2099)?

Many failures (like crash, omission etc) can be
caused by software bugs too.

Network Errors and Error
Control Schemes17

Failures Causes Metrics Traditional
Approaches

Data Losses,
Deadline
Misses, Node
(Link) Failure,
System Down

Network
Congestion,
Noise/Interfere
nce, Malicious
Attacks

Packet Loss
Rate,
Deadline
Miss Rate,
SNR, MTTF,
MTBF, MTTR

Resource Reservation, Data
Redundancy (CRC, etc.),
Temporal Redundancy
(Retransmission, etc.),
Spatial Redundancy
(Replicated Nodes, MIMO,
etc.)

•SNR: Signal to Noise Ratio
•MTTR: Mean Time To Recovery
•CRC: Cyclic Redundancy Check
•MIMO: Multiple-In Multiple-Out

¨ Omission Errors – lost/dropped messages
¨ Network is unreliable (especially, wireless networks)

❙ Buffer overflow, Collisions at the MAC layer, Receiver out of range

¨ Joint approaches across OSI layers have been investigated for
minimal costs [Vuran, 06][Schaar, 07]

Classifying fault-tolerance

Masking tolerance.
Application runs as it is. The failure does not have a visible impact.
All properties (both liveness & safety) continue to hold.

Non-masking tolerance.
Safety property is temporarily affected, but not liveness.

Example 1. Clocks lose synchronization, but recover soon thereafter.
Example 2. Multiple processes temporarily enter their critical sections,
but thereafter, the normal behavior is restored.

Classifying fault-tolerance

Fail-safe tolerance
Given safety predicate is preserved, but liveness may be affected

Example. Due to failure, no process can enter its critical section for
an indefinite period. In a traffic crossing, failure changes the traffic in
both directions to red.

Graceful degradation
Application continues, but in a “degraded”mode. Much depends on
what kind of degradation is acceptable.

Example. Consider message-based mutual exclusion. Processes will
enter their critical sections, but not in timestamp order.

Conventional Approaches
❚ Build redundancy into hardware/software

❘ Modular Redundancy, N-Version ProgrammingConventional
TRM (Triple Modular Redundancy) can incur 200%
overheads without optimization.

❘ Replication of tasks and processes may result in
overprovisioning

❘ Error Control Coding

❚ Checkpointing and rollbacks
❘ Usually accomplished through logging (e.g. messages)
❘ Backward Recovery with Checkpoints cannot guarantee the

completion time of a task.

❚ Hybrid
❘ Recovery Blocks

20

1) Modular Redundancy
❚ Modular Redundancy
❙ Multiple identical replicas

of hardware modules
❙ Voter mechanism
❘ Compare outputs and

select the correct output
èTolerate most hardware

faults
èEffective but expensive

Consumer
Data

Producer B
voter

Producer A
fault

21

2) N-version Programming
❚ N-version Programming
❙ Different versions by

different teams
❘ Different versions may

not contain the same
bugs

❙ Voter mechanism
èTolerate some

software bugs

Producer A Consumer
Data

voter

Program i Program j

Programmer K Programmer L

fault

22

3) Error-Control Coding
❚ Error-Control Coding
❙ Replication is effective

but expensive
❙ Error-Detection Coding

and Error-Correction
Coding
❘ (example) Parity Bit,

Hamming Code, CRC
è Much less redundancy

than replication

Producer A Consumer

Data

Error
Control

Data
fault

23

Concept: Consensus

Reaching Agreement is a fundamental problem in distributed
computing
❚Mutual Exclusion

❙ processes agree on which process can enter the critical section
❚Leader Election

❙ the processes agree on which is the elected process
❚Totally Ordered Multicast

❙ the processes agree on the order of message delivery
❚Commit or Abort in distributed transactions
❚Reaching agreement about which process has failed
❚Other examples

❙ Air traffic control system: all aircrafts must have the same view
❙ Spaceship engine control – action from multiple control processes(“proceed” or “abort”)
❙ Two armies should decide consistently to attack or retreat.

❚ N processes
❚ Each process p has

❙ input variable xp : initially either 0 or 1
1. output variable yp : initially b (b=undecided) – can be changed only

once
❚ Consensus problem: design a protocol so that either

1. all non-faulty processes set their output variables to 0
2. Or non-faulty all processes set their output variables to 1
3. There is at least one initial state that leads to each outcomes 1 and 2

above

Defining Consensus

Solving Consensus

❚ No failures – trivial
❙ All-to-all broadcast

❚ With failures
❙ Assumption: Processes fail only by crash-stopping

❚ Synchronous system: bounds on
❙ Message delays
❙ Max time for each process step
e.g., multiprocessor (common clock across processors)

❚ Asynchronous system: no such bounds!
e.g., The Internet! The Web!

Variant of Consensus
Problem

❚ Consensus Problem (C)
❙ Each process propose a value
❙ All processes agree on a single value

❚ Byzantine General Problem (BG)
❙ Process fails arbitrarily, byzantine failure
❙ Still processes need to agree

❚ Interactive Consistency (IC)
❙ Each process propose its value
❙ All processes agree on the vector

Consensus in Synchronous
System

❚ Possible
❙ With one or more faulty processes

❚ Solution:
❙ Basic idea: all processes exchange (multicast) what

other processes tell them in several rounds
❚ Proof: to reach consensus with f failures, the

algorithm needs to run in f + 1 rounds
❙ Basic idea: if A and B do not agree on value X, then

some other process C, did send X to A, but not to B.
❙ Requires 1 failure in each round, so f+1 fails.

Contradiction!

Asynchronous Consensus
❚ Messages have arbitrary delay, processes arbitrarily

slow
❚ Impossible to achieve!

❙ a slow process indistinguishable from a crashed process

❚ Theorem: In a purely asynchronous distributed
system, the consensus problem is impossible to
solve if even a single process crashes

❚ Result due to Fischer, Lynch, Patterson (commonly
known as FLP 85).

Byzantine General Problem

Lieutenants agree on what the commander
says

Lieutenants agree on what the commander
says

at
ta

ck

re
tr

ea
t

Byzantine General Problem

Failure detection

The design of fault-tolerant algorithms will be simple if
processes can detect failures.

❚ In synchronous systems with bounded delay channels,
crash failures can definitely be detected using timeouts.

❚ In asynchronous distributed systems, the detection of
crash failures is imperfect.

❚ Completeness – Every crashed process is suspected
❚ Accuracy – No correct process is suspected.

Example

0

6

1 3

5

247

0 suspects {1,2,3,7} to have failed. Does this satisfy completeness?
Does this satisfy accuracy?

Classification of completeness

❚ Strong completeness. Every crashed process
is eventually suspected by every correct
process, and remains a suspect thereafter.

❚ Weak completeness. Every crashed process is
eventually suspected by at least one correct
process, and remains a suspect thereafter.
Note that we don’t care what mechanism is used for suspecting a
process.

Classification of accuracy

❚ Strong accuracy. No correct process is ever
suspected.

❚ Weak accuracy. There is at least one correct
process that is never suspected.

Eventual accuracy

A failure detector is eventually strongly accurate, if there exists a
time T after which no correct process is suspected.

(Before that time, a correct process be added to and removed from
the list of suspects any number of times)

A failure detector is eventually weakly accurate, if there exists a time
T after which at least one process is no more suspected.

Classifying failure
detectors

Perfect P. (Strongly) Complete and strongly accurate
Strong S. (Strongly) Complete and weakly accurate
Eventually perfect ◊P.

(Strongly) Complete and eventually strongly accurate
Eventually strong ◊S

(Strongly) Complete and eventually weakly accurate

Other classes are feasible: W (weak completeness) and
weak accuracy) and ◊W

Detection of crash failures

Failure can be detected using heartbeat messages
(periodic “I am alive” broadcast) and timeout

- if processors speed has a known lower bound
- channel delays have a known upper bound.

Tolerating crash failures

Triple modular redundancy (TMR) for

masking any single failure. N-modular

redundancy masks up to m failures,

when N = 2m +1.

A

B0

B1

B2

C

x

x

x

f(x)

f(x)

?

Take a vote

What if the voting unit fails?

Detection of omission failures
For	FIFO channels:	Use	sequence	numberswith	messages.	

(1,	2,	3,	5,	6	…)	⇒message	4	is	missing

Non-FIFO	bounded	delay	channels - use	timeout

What	about	non-FIFO	channels	for	which	the	upper	bound
of	the	delay	is	not	known?	
Use	unbounded	sequence	numbers and	acknowledgments.
But	acknowledgments	may	be	lost	too!

Let	us	look	how	a	real	protocol	deals	with	omission	….

Tolerating omission failures

A central issue in networking
A

B

router

router

Routers may drop messages, but
reliable end-to-end transmission is an
important requirement. If the sender

does not receive an ack within a time period,
it retransmits (it may so happen that the

was not lost, so a duplicate is generated).
This implies, the communication must

tolerate Loss, Duplication, and Re-ordering
of messages

Replication
v Enhances a service by replicating data

v Increased Availability
v Of service. When servers fail or when the

network is partitioned.
v Fault Tolerance

v Under the fail-stop model, if up to f of f+1
servers crash, at least one is alive.

vLoad Balancing
v One approach: Multiple server IPs can be

assigned to the same name in DNS, which
returns answers round-robin.
P: probability that one server fails= 1 – P= availability of service.

e.g. P = 5% => service is available 95% of the time.

Pn: probability that n servers fail= 1 – Pn= availability of service.
e.g. P = 5%, n = 3 => service available 99.875% of the time

Goals of Replication

v Replication Transparency
User/client need not know that multiple physical copies of data

exist.
v Replication Consistency

Data is consistent on all of the replicas (or is converging towards
becoming consistent)

Client Front End
RM

RM

RM
Client Front End

Client Front End

Service
serve

r

serve
r

serve
r

Replica Manager

Replication Management

v Request Communication
v Requests can be made to a single RM or to multiple RMs

v Coordination: The RMs decide
v whether the request is to be applied
v the order of requests

vFIFO ordering: If a FE issues r then r’, then any correct RM handles r and
then r’.

vCausal ordering: If the issue of r “happened before” the issue of r’, then
any correct RM handles r and then r’.

vTotal ordering: If a correct RM handles r and then r’, then any correct RM
handles r and then r’.

v Execution: The RMs execute the request (often they
do this tentatively).

Replication Management

v Agreement: The RMs attempt to reach consensus on the effect
of the request.
v E.g., Two phase commit through a coordinator
v If this succeeds, effect of request is made permanent

v Response
v One or more RMs responds to the front end.
v The first response to arrive is good enough because all the RMs will return

the same answer.
v Thus each RM is a replicated state machine

“Multiple copies of the same State Machine begun in the Start state, and
receiving the same Inputs in the same order will arrive at the same State
having generated the same Outputs.” [Wikipedia, Schneider 90]

Group Communication: A building block

v“Member”= process (e.g., an RM)
v Static Groups: group membership is pre-defined
v Dynamic Groups: Members may join and leave, as

necessary

Group
Send

Address
Expansion

Multicast
Comm.

Membership
Management

Leave

Fail

Join

Group

EXTRA SLIDES

Replication using GC

Client Front End
RM

RM

RM
Client Front End

Client Front End

Service
server

server

server

Need consistent updates to all copies of an object
•Linearizability

•Sequential Consistency

Linearizability
vLet the sequence of read and update operations

that client i performs in some execution be oi1,
oi2,….
v“Program order” for the client

vA replicated shared object service is linearizable if
for any execution (real), there is some interleaving
of operations (virtual) issued by all clients that:
q meets the specification of a single correct copy of objects
q is consistent with the real times at which each operation occurred during

the execution

qMain goal: any client will see (at any point of time) a copy
of the object that is correct and consistent

Sequential Consistency
v The real-time requirement of linearizability is hard, if not

impossible, to achieve in real systems
v A less strict criterion is sequential consistency: A replicated

shared object service is sequentially consistent if for any
execution (real), there is some interleaving of clients’ operations
(virtual) that:

q meets the specification of a single correct copy of objects
q is consistent with the program order in which each individual client

executes those operations.
v This approach does not require absolute time or total order. Only

that for each client the order in the sequence be consistent with
that client’s program order (~ FIFO).

v Linearilizability implies sequential consistency. Not vice-versa!
v Challenge with guaranteeing seq. cons.?

v Ensuring that all replicas of an object are consistent.

Passive Replication
(Primary-Backup)

vRequest Communication: the request is issued to the
primary RM and carries a unique request id.

vCoordination: Primary takes requests atomically, in order, checks
id (resends response if not new id.)

vExecution: Primary executes & stores the response

vAgreement: If update, primary sends updated state/result, req-id
and response to all backup RMs (1-phase commit enough).

vResponse: primary sends result to the front end

Client Front End

RM
RM

RM
Client Front End RM

prima
ry

Backu
p

Backu
pBacku

p

….

Fault Tolerance in Passive
Replication
vThe system implements linearizability, since the

primary sequences operations in order.
v If the primary fails, a backup becomes primary by

leader election, and the replica managers that survive
agree on which operations had been performed at the
point when the new primary takes over.
vThe above requirement can be met if the replica managers

(primary and backups) are organized as a group and if the
primary uses view-synchronous group communication to send
updates to backups.

v Thus the system remains linearizable in spite of
crashes

Active Replication

v Request Communication: The request contains a unique identifier and
is multicast to all by a reliable totally-ordered multicast.

v Coordination: Group communication ensures that requests are
delivered to each RM in the same order (but may be at different physical
times!).

v Execution: Each replica executes the request. (Correct replicas return
same result since they are running the same program, i.e., they are
replicated protocols or replicated state machines)

v Agreement: No agreement phase is needed, because of multicast
delivery semantics of requests

v Response: Each replica sends response directly to FE

Client Front End RM

RM

Client Front End RM

….

FT via Active Replication
v RMs work as replicated state machines, playing equivalent

roles. That is, each responds to a given series of requests in the
same way. One way of achieving this is by running the same
program code at all RMs (but only one way – why?).

v If any RM crashes, state is maintained by other correct RMs.
v This system implements sequential consistency

v The total order ensures that all correct replica managers process the same
set of requests in the same order.

v Each front end’s requests are served in FIFO order (because the front end
awaits a response before making the next request).

v So, requests are FIFO-total ordered.
v Caveat (Out of band): If clients are multi-threaded and

communicate with one another while waiting for responses from
the service, we may need to incorporate causal-total ordering.

Backward vs. forward error
recovery

Backward error recovery
When safety property is violated, the computation rolls
back and resumes from a previous correct state.

time

rollback
Forward error recovery
Computation does not care about getting the history right, but
moves on, as long as eventually the safety property is restored.
True for self-stabilizing systems.

Conventional Protection
for Caches
❚ Cache is the most hit by soft

errors
❚ Conventional Protected

Caches
❙ Unaware of fault tolerance at

applications
❙ Implement a redundancy

technique such as ECC to protect
all data for every access
❘ Overkill for multimedia

applications
❙ ECC (e.g., a Hamming Code)

incurs high performance
penalty by up to 95%, power
overhead by up to 22%, and
area cost by up to 25%

High Cost

Cache ECC

Unaw
are of Application

56

PPC (Partially Protected
Caches)
❚ Observation

¨ Not all data are equally
failure critical
¨ Multimedia data vs. control

variables
❚ Propose PPC architectures

to provide an unequal
protection for mobile
multimedia systems [Lee,
CASES06][Lee, TVLSI08]
❙ Unprotected cache and

Protected cache at the
same level of memory
hierarchy

❙ Protected cache is typically
smaller to keep power and
delay the same as or less
than those of Unprotected
cache

Unprotected
Cache

Protected
Cache

Memory

PPC

57

PPC for Multimedia
Applications

❚ Propose a selective data
protection [Lee,
CASES06]

❚ Unequal protection at
hardware layer exploiting
error-tolerance of
multimedia data at
application layer

❚ Simple data partitioning
for multimedia
applications
❙ Multimedia data is failure

non-critical
❙ All other data is failure

critical

Fault Tolerance

Pow
er/Delay Reduction

58

Unprotected
Cache Protected

Cache

Memory

PPC

PPC for general purpose apps

❚ All data are not equally failure itical
❚ Propose a PPC architecture to provide unequal protection

❙ Support an unequal protection at
hardware layer by exploiting error-tolerance and vulnerability at
application

❚ DPExplore [Lee, PPCDIPES08]
❙ Explore partitioning space by exploiting

vulnerability of each data page
❚ Vulnerable time

❙ It is vulnerable for the time when
eventually it is read by CPU or written
back to Memory

❚ Pages causing high vulnerable
time are failure critical

59

Application
(Multimedia)

Middleware/OS

Hardware
(PPC)

Application Data &
Code

Failure Non-
Critical

Failure
Critical

Unprotected
Cache

Protect
ed

Cache
PPC

Page Partitioning
Algorithms

Error-tolerance of MM
data

Vulnerability of Data &
Code

FNC & FC are mapped
into Unprotected &

Protected Caches

CC-PROTECT

❚ Approach which cooperates existing
schemes across layers to mitigate the
impact of soft errors on the failure rate and
video quality in mobile video encoding systems
❙ PPC (Partially Protected Caches) with EDC

(Error Detection Codes) at hardware layer
❙ DFR (Drop and Forward Recovery) at

middleware
❙ PBPAIR (Probability-Based Power Aware

Intra Refresh) at application layer

❚ Demonstrate the effectiveness of low-
cost (about 50%) reliability (1,000x) at
the minimal cost of QoS (less than 1%)

60

Application

Middleware/
OS

Hardware Unprotected
Cache Protected

Cache

ECC

DFR -
Error Correction

PBPAIR -
Error Resilience

EDC

CC-PROTECT61

frame K frame K+1

Unprotected
Cache

Protected
Cache PPCEDC

Error-prone
Networks

Mobile Video Application

Error-prone
Networks

Mobile Video Application

Error-Aware Video Encoder (EAVE)

Error-Resilient
Encoder (e.g., PBPAIR)

Error-Controller
(e.g., frame drop)

Original
Video

Error-
Aware
Video

DFR (Drop &
Forward Recovery)

BER (Backward
Error Recovery)

Feedback

Monitor &
Translate SER

Trigger
Selective DFR

Support
EAVE & PPC

Parameter

MW/OS

Packet
Loss

Frame
Drop

Error detection

QoS Loss

Soft
Error

Energy Saving
❚ BASE = Error-prone video

encoding + unprotected
cache

❚ HW-PROTECT = Error-prone
video encoding + PPC with
ECC

❚ APP-PROTECT = Error-
resilient video encoding +
unprotected cache

❚ MULTI-PROTECT = Error-
resilient video encoding +
PPC with ECC

❚ CC-PROTECT1 = Error-prone
video encoding + PPC with
EDC

❚ CC-PROTECT2 = Error-prone
video encoding + PPC with
EDC + DFR

❚ CC-PROTECT = error-
resilient video encoding +
PPC with EDC + DFR

62

EDC impact
17% Reduction compared to HW-PROTECT
4% Reduction compared to BASE

EDC + DFR impact
36% Reduction compared to HW-PROTECT
26% Reduction compared to BASE

EDC + DFR + PBPAIR(CC-PROTECT) impact
56% Reduction compared to HW-PROTECT
49% Reduction compared to BASE

Application
(Error-Prone or
Error-Resilient)

Hardware
(Unprotected
or Protected)

4) Checkpoints &
Rollbacks
❚ Checkpoints and

Rollbacks
❙ Checkpoint
❘ A copy of an application’s

state
❘ Save it in storage immune

to the failures
❙ Rollback
❘ Restart the execution

from a previously saved
checkpoint

è Recover from transient
and permanent
hardware and software
failures

Producer A Consumer
Data

Application

state (K-1) state K

faultCheckpoint

Rollback

State K

63

Message Logging

❙ Tolerate crash failures
❙ Each process periodically records its local

state and log messages received after
❘ Once a crashed process recovers, its state must

be consistent with the states of other processes
❘ Orphan processes

• surviving processes whose states are inconsistent with
the recovered state of a crashed process

❘ Message Logging protocols guarantee that upon
recovery no processes are orphan processes

Message logging protocols

❙ Pessimistic Message Logging
• avoid creation of orphans during execution
• no process p sends a message m until it knows that all

messages delivered before sending m are logged; quick
recovery

• Can block a process for each message it receives - slows
down throughput

• allows processes to communicate only from recoverable
states; synchronously log to stable storage any
information that may be needed for recovery before
allowing process to communicate

Message Logging

❙ Optimistic Message Logging
• take appropriate actions during recovery to eliminate all

orphans
• Better performance during failure-free runs
• allows processes to communicate from non-recoverable

states; failures may cause these states to be
permanently unrecoverable, forcing rollback of any
process that depends on such states

Causal Message Logging

❙ Causal Message Logging
• no orphans when failures happen and do not block

processes when failures do not occur.
• Weaken condition imposed by pessimistic protocols
• Allow possibility that the state from which a process

communicates is unrecoverable because of a failure, but
only if it does not affect consistency.

• Append to all communication information needed to
recover state from which communication originates - this
is replicated in memory of processes that causally
depend on the originating state.

KAN – A Reliable Distributed
Object System (UCSB)

❚ Goal
❙ Language support for parallelism and distribution
❙ Transparent location/migration/replication
❙ Optimized method invocation
❙ Fault-tolerance
❙ Composition and proof reuse

❚ Log-based forward recovery scheme
❙ Log of recovery information for a node is maintained externally on

other nodes.
❙ The failed nodes are recovered to their pre-failure states, and the

correct nodes keep their states at the time of the failures.
❚ Only consider node crash failures.

❙ Processor stops taking steps and failures are eventually detected.

Basic Architecture of the
Fault Tolerance Scheme

Logical Node yLogical Node x

Fault Detector Failure handler

Request handler

Communication Layer

IP Address

Network

External
Log

Physical Node i

Egida (UT Austin)

❚ An object-oriented, extensible toolkit for low-
overhead fault-tolerance

❚ Provides a library of objects that can be used to
compose log-based rollback recovery protocols.

❘ Specification language to express arbitrary rollback-recovery
protocols

❘ Checkpointing
• independent, coordinated, induced by specific patterns of

communication
❘ Message Logging

• Pessimistic, optimistic, causal

AQuA

❚ Adaptive Quality of Service Availability
❚ Developed in UIUC and BBN.
❚ Goal:
❙ Allow distributed applications to request and

obtain a desired level of availability.
❚ Fault tolerance
❙ replication
❙ reliable messaging

Features of AQuA

❚ Uses the QuO runtime to process and make
availability requests.

❚ Proteus dependability manager to configure the
system in response to faults and availability
requests.

❚ Ensemble to provide group communication
services.

❚ Provide CORBA interface to application objects
using the AQuA gateway.

Group structure

❙ For reliable mcast and pt-to-pt. Comm
❘ Replication groups
❘ Connection groups
❘ Proteus Communication Service Group for

replicated proteus manager
• replicas and objects that communicate with the manager
• e.g. notification of view change, new QuO request
• ensure that all replica managers receive same info

❘ Point-to-point groups
• proteus manager to object factory

AQuA Architecture

Fault Model, detection and
Handling

❙ Object Fault Model:
❘ Object crash failure - occurs when object stops sending out

messages; internal state is lost
• crash failure of an object is due to the crash of at lease one

element composing the object
❘ Value faults - message arrives in time with wrong content

(caused by application or QuO runtime)
• Detected by voter

❘ Time faults
• Detected by monitor

❘ Leaders report fault to Proteus; Proteus will kill
objects with fault if necessary, and generate new
objects

5) Recovery Blocks
❚ Recovery Blocks
❙ Multiple alternates to

perform the same
functionality
❘ One Primary module and

Secondary modules
❘ Different approaches

1) Select a module with
output satisfying
acceptance test

2) Recovery Blocks and
Rollbacks
❘ Restart the execution from

a previously saved
checkpoint with secondary
module

èTolerate software failures

Producer A Consumer
Data

state (K-1) state K

faultCheckpoint

Rollback

Block X
Block Y
Block Z

Block X2

Application

76

