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ABSTRACT 

Timestamping is a common method of totally ordering events in concurrent programs. 
However, for applications requiring access to the global state, a total ordering is inappro
priate. This paper presents algorithms for timestamping events in both synchronous and 
asynchronous n1essage-passing programs that allow for access to the partial ordering in
herent in a parallel system. The algorithms do not change the con1munications graph or 
require a central timestamp issuing authority. 
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INTRODUCTION 

A fundamental problem in concurrent programming is determining the order in which events in 
different processes occurred. An obvious solution is to attach a number representing the current time to 
a permanent record of the execution of each event. This assumes that each process can access an accurate 
clock, but practical parallel systems, by their very nature, make it difficult to ensure consistency among 
the processes. 

There are two solutions to this problem. Firstly, have a central process to issue timestamps, i.e. pro
vide the system with a global clock. In practice this has the major disadvantage of needing communication 
links from all processes to the central clock. 

More acceptable are separate clocks in each process that are kept synchronised as much as necessary 
to ensure that the timestamps represent, at the very least, a possible ordering of events (in light of the 
vagaries of distributed scheduling). Lamport (1978) describes just such a scheme of logical clocks that 
can be used to totally order events, without the need to introduce extra communication links. 

However this only yields one of the many possible, and equally valid, event orderings defined by a 
particular distributed computation. For problems concerned with the global program state it is far more 
useful to have access to the entire partial ordering, which defines the set of consistent "slices" of the global 
state at any arbitrary moment in time. 

This paper presents an implementation of the partially ordered relation "happened before" that is 
true for two given events iff the first could causally affect the second in all possible interleavings of events. 
This allows access to all possible global states for a particular distributed computation, rather than a 
single, arbitrarily selected ordering. Lamport's totally ordered relation is used as a starting point. The 
algorithm is first defined for the asynchronous case, and then extended to cater for concurrent programs 
using synchronous message-passing. 

A TOTAL ORDERING 

For a system of parallel processes communicating via asynchronous signals, an arbitrary total ordering 
"::::}" can be placed on events as follows (Lamport, 1978). 

Each process maintains an integer value, initially zero, which it periodically increments, e.g. once 
after every atomic event. This value is attached to the record of the execution of each event as its 
timestamp; for the purposes of this paper we will assume that the distributed system is recording, as it 
executes, a "history trace" of every event that executes. This may be done centrally, or separate traces 
may be maintained by each process. 

Obviously these local logical clocks will quickly drift out of alignment. To overcome this the clocks 
are (roughly) synchronised by piggybacking the current local time onto every outgoing signal. Upon 
receiving a signal a process examines the attached clock value, and sets its own local clock to be greater 
than this value, if it is not already. This maintains consistency among the distributed clocks, since the 
departure of a signal is always timestamped as preceding its arrival (assuming that signals are the only 
form of communication between processes). See figure 1. 

For two timestamped events a and b, a ::::} b iff the timestamp for a is less than that for b. Clearly 
some events in different processes may be assigned the same timestamp, in which case a '::/? b and b ::j? a. 
The total ordering is completed by arbitrarily (but consistently) ordering the events in this case, for 
example, by assuming a fixed precedence between the different processes. 
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Figure 1. Lamport's algorithn1: a) clock in sender running fast-clock in receiver advanced, b) clock in sender 
nurning slow-no special action required. Dots represent events (with their attached tin1estmnps). 

PROBLEM STATEMENT 

Although always consistent with the observed behaviour of a distributed system, the =? relation 
only defines one of many possible event orderings for a given distributed computation. Knowledge of any 
other, equally valid, orderings is lost. Even the partial ordering resulting from some events having the 
sarne timestamp only preserves a small number of the potential orderings. Problems concerned with the 
global program state are best served by the opposite approach, retaining all potential orderings. 

Consider the example in figure 2b. Here we wish to know that event n could occur concurrently with 
any of d, e or f. Similarly event f could occur concurrently with n, o or p. The desired relation is, of 
course, transitive. For example, event x could occur concurrently with any of a-f. If we are following 
the model that atomic events have no duration then "concurrently" is taken to mean that the events may 
occur in either order (alternatively, think of these "events" as locally saved process states-thus state n 
is consistent with states d, e and f). 
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Figure 2. Example cmnputations: a) asynchronous conununication, b) synchronous conununication. 

By using simple integer values for timestamps, Lamport's algorithm cannot (and in fairness is not 
intended to) provide this type of information. 

The aim therefore is to implement the relation "--+" ("happened before") in which a--+ b iff a must 
occur before b in all possible event interleavings for this particular distributed computation, i.e. a can 
causally affect b. If a -/-+ b and b-/-+ a then the two events may have occurred concurrently, i.e. they form 
part of a consistent slice of the global program state. This is denoted "a -+ b". Lamport (1978) notes 
that --+ is irrefiexive since it is not meaningful to say that an event happened before itself, i.e. a-/-+ a. 

THE PARTIAL ORDERING 

The key to the algorithm is to recognise that communication events form "boundaries" that limit the 
possible interleavings of concurrent events. As an illustration, think of the events in figure 2 as beads that 
can slide up and down the process time lines. A line drawn horizontally through the diagram represents 
an arbitrary moment in time. 

In the asynchronous case (figure 2a), event y could be pushed down to occur before l, or up to occur 
after p. Also event a could be pushed up to occur after m, but it could never occur at the same time as, 
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or after, event n. This is because the signal arrows must always point forwards in time, i.e. the departure 
of a signal must always precede its arrival. The signal from b to n precludes the possibility that a could 
have occurred after n, since b must strictly occur before n and a must occur before b. 

Similarly for the synchronous case (figure 2b) event .f could be pushed clown to occur before n, or 
up to occur after p. However it could never occur after event r since the synchronous communication 
event g-q forms a ba.rrier, temporally separating it from the time segment containing r. 

Informally, therefore, a-+ b if there was a communication between the processes containing a and b 
that occurred after a and before b (the algorithms given below also allow for the case where either a, b 
or both are themselves communication events). It is therefore necessary for each process to know when 
it last communicated with every other process. 

Asynchronous Communication 

Rather than a single integer value, timestamps are represented as an array 

with an integer clock value for every process in the network. Let 

represent an event e executed by process p, and 

the timestamp array attached to the permanent record of the execution of this event. For example the 
following timestamp 

[4, 7, 6, 12] 

attached to an event x in process 2 had local clock value 

when x was executed, while the last known clock value for process 4 was 

In practice the clock in process 4 may have advanced well beyond this value by the time this timestamp 
was recorded, but 12 is the most recent value available to process 2. 

These timestamp arrays are maintained as follows: 

Rule RAl: Initially all values are zero. 

Rule RA2: The local clock value is incremented at least once before each atomic event. 

Rule RA3: The current value of the entire timestamp array is piggybacked on every outgoing 
signal. 

Rule RA4: Upon receiving a signal, a process sets the value of each entry in the timestamp 
array to be the ma.ximum of the two corresponding values in the local array, and in the 
piggybacked array received. The value corresponding to the sender, however, is a special 
case and is set to be one greater than the value received (to allow for transit time), but only 
if the local value is not already greater than that received (to allow for signal "overtaking" 
as described below), i.e. 

q?other_array; /* receive timestamp array from process q * / 
if locaLarray[q] :=:; other_array[q] then 

locaLarray[q] := 1 + other_array[q]; 
fori := 1 ton do 

locaLarray[i] := max(locaLarray[i], other_array[i]); 

In this way each process receives updates about the clocks m other processes, including 
non-neighbours. 

Rule RA5: Values in the tirnestamp arrays are never decremented. 

For example see figure 3. 

58 



d [4,0,4] 
q [4,6,3] 

z [2,5,5] 

• I\ 

·~ c [3,0,0] 
y [0,0,4] 

X [0,0,3] 

b [2,0,0] 

w [0,0,2] 

a [1,0,0] 
l [0,1,0] 

v [0,0,1] 

process 1 process 2 process 3 

Figure 3. Use of tirnestamp arrays for asynchronous communication. 

Timestamps attached to the stored records of events are compared as follows: 

ep -+ Jq iff Tep [p] < Tjq [p] EA1 

In essence this says that event ep must have occured before event Jq iff process q has received a signal 
from p (either directly or indirectly) that was sent after, or at the same time as, the execution of ep. 

Thus some of the temporal relationships defined by equation EA1 for two arbitrary events a and f3 
in figure 3 are, 

• a and f3 are different events in the same process: 

w-+ y since 
l-+p 
c -;-. b 

2<4 
1 < 5 
312 

• a and f3 are the same event: 

c -/-+ c smce 
y-f-ty 

313 
414 

which implies that c <-+ c and y +--+ y. 

• a and f3 in different processes, no causal relationship: 

l +--+ v smce 
d+-+z 
1+--+b 

(1 I o) A (1 I o) 
C 4 I 2) A (5 I 4) 
(2 I o) A (11 o) 

• a and f3 are events in different processes "separated" by an intervening communication: 

b -+ q smce 2 < 4 
w-+n 2<3 
q-f-tc 610 
a-+z 1<2 

Notice transitivity in this last case. Events a and z can be compared even though processes 1 and 3 have 
never directly communicated at this time. 

The special action taken by the receiving process to compare the last known value of the sender, 
with the value just received (see rule RA4) is necessary to accomodate the possibility that signals do not 
always arrive in the order they are sent. In figure 4, for example, care must be taken to avoid setting the 
timestamp for event z to [7,4] since this would imply that c-+ z. Some of the temporal relationships in 
figure 4 are: 

a-+y smce 4<6 
a-+z 4<6 
b-+y 5<6 
x-f-tc 21 0 
c-f-tx 610 

The last two examples imply that c +--+ x. 
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Figure 4. Exrunple illustrating use of timestan1p arrays during asynchronous signal "overtaking". 

Appendix A justifies the asynchronous algorithm in more detail. 

Synchronous Communication 

If directly applied to a system using synchronous communication such as CSP (Hoare, 1978), Lam
port's algorithm fails since it expects communication to take a finite amount of time, as illustrated by 
figure 5. 
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Figure 5. Failure of Lamport's algorithm when applied to synchronous conununication. Event a is timestamped 
eru·lier than event b although a m1tst occur after b. 

This is easily solved by exchanging timestamps during the communication event, both processes 
setting their local clock to be equal to the largest value. This is necessary due to the symmetry of 
synchronous comnmnication. It can be modelled as the receiving process sending back a dummy message 
with its local clock value to its communication partner, and both processes then adjusting their local 
clocks accordingly (figure 6). As long as all processes adhere to this protocol it cannot introduce deadlock. 
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Figure 6. Lan1port's algoriLln11 adapted for synchronous c01nmunication: a) clock in sender nmning fast, b) clock 
in sender running slow. 
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For the remainder of this paper it is assumed that each synchronous communication is invisibly 
accompanied by this bi-directional timestamp exchange. Also note that due to the symmetry associated 
with this kind of communication, the direction of information transfer is unimportant. In future the 
directional arrows for synchronous communications will be omitted. 

In the synchronous case the timestamp arrays are maintained as follows: 

Rule RSl: Initially all values are zero. 

Rule RS2: The local clock value is incremented at least once before each atomic event. 

Rule RS3: During a communication event, the two processes involved exchange timestamp 
arrays and each element in the local array is set to be the maximum of its old value and 
the corresponding value in the array received, i.e. 

q?other_array; 
for i := 1 to n do 

locaLarray[i] := Inax(locaLarray[i], other_array[i]); 

Rule RS4: Values in the timestamp arrays are never decremented. 

See figure 7. 
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Figure 7. Use of tirnestarnp arrays for synchronous communication. Each comnmnication event appears twice to 
allow for a system in which each individual process separately records the execution of events in its own "history 
trace". 

Notice the way that information is propogated around the network. For example, process 3 receives 
the time in process 1 at event w. In a global sense this value (2) is already out of date, but process 
3's knowledge of process 1 is necessarily limited by the speed at which information can travel (assuming 
that synchronous message-passing is the only communications medium and that there are only the three 
processes shown in the network). Similarly process 1 learns that the clock in process 3 has reached (at 
least) 5 at event e, even though these two processes have not directly communicated at this point. 

Also note that the timestamps for both processes executing a communication event are always the 
same since they both have up-to-elate inforn:mtion about each other (the only time that this is ever 
possible). This conforms with the intuitive notion that a synchronous message-pass is a single, shared 
event. 

Timestamps attached to the stored records of events are compared as follows: 

ES1 

This comparatively con1plex expression is explained as follows. The first half of the conjunction asserts 
that process q has received a clock value from process p a.t least as recent as the execution of event ep. 
If this is the case then /q must have been executed after ep. The comparator is :::; rather than < to 
allow for the possibility that ep was itself a. communication event (in which case q may have up-to-elate 
information about p when .fq was executed). 

The second half of the conjunction simply states that process p does not have up-to-date information 
about process q, i.e. ep is not the same event as /p. This is necessary to avoid reflexivity. vVe have not 
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attempted to directly test "ep f. fq'' to allow for the possibility that each process is independently gener
ating a history trace of timestamped events for post-mortem analysis, e.g. as in Fidge (1987), in which 
case it may not be clear which events are "matching halves" of a communication event. Alternatively 
we could simply have compared the entire timestamp arrays since they are always the samA if ep ==:: Jq, 
however this could become inefficient if the number of processes is large-the expression given above only 
needs to compare two integer values. Appendix B justifies equation ES1 in more detail. 

Thus some of the temporal relationships between two arbitrary events o: and j3 in figure 7 can be 
determined as follows, 

• o: and j3 in different processes, separated by a communication event: 

a -4 m smce 1 ~ 2 1\ 0 < 2 
3~5/\0<6 

6i0A5/3 

• o: and j3 in different processes, o: is a communication event: 

b -4 1n Slnce 
e -fr v 

2~2/\1<2 

5:bOA5/3 

• o: and j3 are different events in the same process: 

t -4 V Slnce 
c-fra 

• o: and j3 are the same atomic event, or different halves of the same communication event: 

e -fr p smce 
p-fre 
y-fry 

5~5/\5/5 
5~5/\5/5 
6~6/\6/6 

and therefore e ~ p and y ~ y. 

• o: and j3 in different processes, no communication separating them: 

C ~ m SlllCe 
d~y 

d ~t 

(3 i 2 1\ 1 < 2) 1\ (2 i 1/\ 2 < 3) 
( 4 i 2 1\ 0 < 6) 1\ (6 i 0 1\ 2 < 4) 
(4 i 01\0 < 1) 1\ (1 i 01\0 < 4) 

This last category is the most interesting, being the primary motivation for this work-it provides a 
method for detecting which events may occur concurrently. Considering the way that figure 7 is drawn it 
may seem surprising at first glance that event dis considered to be concurrent with two widely separated 
events t andy. However this is the entire purpose of the algorithm-to detect which events may potentially 
occur concurrently, in the absence of a. global overview such as that provided by the diagram. 

STATIC VS. DYNAMIC PROCESSES 

For the purposes of this discussion we have assumed that there are a fixed number of processes 
allocated when the program begins execution, as in occam* (INMOS, 1984). However, provided that all 
processes can be uniquely identified, the algorithms can be trivially extended to handle dynamic process 
creation. 

In this case the timestamp "arrays" should be thought of as extendable lists----each process adds a 
slot for a newly created process to the array when, and if, it receives any communication (either directly 
or indirectly) from that process. VVhen comparing timestamps, if no entry exists for one of the processes 
involved we simply substitute zero. Otherwise the algorithms are unchanged. 

* "occam" is a trademark of the Imnos Group of Con1panics. 
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NAMED CHANNELS VS. NAMED PROCESSES 

To aiel modular program development, the trend in synchronous message-passing language design 
IS now oriented towards uniquely named channels (e.g. INMOS, 1984) rather than uniquely named 
processes (as in Hoare, 1978) for identifying i/o partners. However even if it is assumed that it is not 
possible to know the identity of the process on the other end of a particular channel, the algorithm is 
not affected. Each process merely needs to know its own place in the array-rule RS3 treats all slots in 
the array uniformly and there is thus no need to know the identity of the i/o partner during synchronous 
communication. 

APPLICATIONS 

The original motivation for this work was an effort to generalise the system presented in Baiardi et a! 
(1986) for dynamically checking assertions in CSP programs. Here the assertions could only be expressed 
in terms of inter-process communications. The aim was to allow these expressions to also refer to internal 
process states and thus avoid any inter/intra-process distinction. This provides a more natural interface 
for applications where the user needs to place some sort of integrity constraint on the global program 
state. To achieve this state updates for the variables in the assertion expression were periodically sent to a. 
monitor process which then evaluated the expression. However, since these updates may be received from 
several different processes at any time, it was difficult to know which values may validly be compared. 
The --+ relation provides a. simple way of doing this. 

In a. more general sense, the implementation of the relation developed here allows timestamps to be 
attached to state snapshots saved independently by several processes, making it possible to easily check 
which states form a valid, consistent slice of the global program state. This is clearly a useful capability 
for problems in distributed systems such as reverse execution, error recovery or "rollback" (e.g. Kant and 
Silberscha.tz, 1985), restarting programs from stored local states, etc. For example, Fidge (1987) presents 
an algorithm for reproducible testing of CSP programs, by recording history traces for each process. To 
avoid the need to save extremely long traces, or the necessity of always replaying the entire test, the 
global state is periodically saved; each process saves its local state, consistency being maintained by 
co-ordinating the saves with special "marker" messages. However to improve efficiency redundant state 
saves could be avoided by including a timestamp from the process initiating a. save in the marker message. 
Each process would then only save its local state if the last state saved is out-of-date according to this 
timestamp. Note that in the asynchronous case, any discussion of snapshots of the state of a program 
must consider signals in transit. Assuming that these are held in buffers in the sending or receiving 
processes, these buffers must be included in the stored state (along with values of local variables and the 
program counter) for the process. 

Similarly the algorithms address problems such as that described by Sinha (1 986): to allow for 
greater efliciency in scheduling requests to access data. in a distributed database, requests are given a 
range of timestamps (amounting to a timeout period) so that they may be rescheduled by the server. 
The timestamped ordering may need to be reversed, i.e. it is made commutable. By not placing any 
ordering on those events whose interleaving is not important a. variant of the algorithms described here 
could circumvent this difficulty entirely. 

CONCLUSION 

This paper has described algorithms for timestamping events in a. distributed system that only define 
an order between two events when their temporal relationship is unambiguously defined by inter-process 
con1munications. Variants for both synchronous and asynchronous communication have been presented. 
They are general in the sense that they allow any event to be compared to any other, even if they are 
both in the same process or both in non-neighbouring processes. All processes are treated uniformly; 
there is no need to know anything about the connectivity of the parallel network. 

The algorithms are considerably more complicated than Lamport's algorithm for obtaining an ar
bitrary total ordering, however this level of complexity seems to be inherent in any attempt to access 
the global state of a distributed system. Nevertheless they retain the desirable properties of not chang
ing the communications graph and not introducing any extra communication events (assuming in the 
synchronous case that the timestamp "exchange" is built in to the message-passing implementation). 

As a final point we go full-circle and note that a total ordering equivalent to the =} relation can be 
derived from the timestamp arrays if so desired, by replacing equation EA1 or ESl. 

ACKNOWLEDGEMENTS 

I would like to thank John Ophel for his careful review of a. draft of this paper. 

63 



REFERENCES 

I3AIARDI, F., DE FRANCESCO, N. and VAGLINI, G. (1986): Development of a Debugger for a Concur
rent Language, IEEE Transactions on Software Engineering, Vol. SE-12, No. 4, pp. 547-553. 

FIDGE, C.J. (1987): Reproducible Tests in CSP, The Australian Computer Journal, Vol. 19, No. 2, pp. 
92-98. 

HOARE, C.A.R. (1978): Communicating Sequential Processes, C01nmunications of the ACM, Vol. 21, 
No. 8, pp. 666-677. 

INMOS LIMITED (1984): occam Programming Manual, Prentice-Hall. 

KANT, K. and SILBERSCHATZ, A. (1985): Error Propagation and Recovery in Concurrent Environ
ments, The British Computer Journal, Vol. 28, No. 5, pp. 466-473. 

LAMPORT, L. (1978): Time, Clocks, and the Ordering of Events in a Distributed System, Communica
tions of the ACM, Vol. 21, No. 7, pp. 558-565. 

SINHA, NI.K. (1986): Commutable Transactions and the Time_pacl Synchronisation Mechanism for Dis
tributed Systems, IEEE Transactions on Software Engineering, Vol. SE-12, No. 3, pp. 462-476. 

APPENDIX A-Proof of Asynchronous Algorithm 

The appendices seek to improve our confidence in the algorithms by showing that they correctly 
implement the desired relation. 

Lamport (1978) defines ---> for the asynchronous case as: 

"the smallest relation satisfying the following three conditions: (i) If a and b are events in 
the same process, and a comes before b, then a ---> b. (ii) If a is the sending of a message by 
one process and b is the receipt of the same message by another process, then a ---> b. (iii) If 
a ---> b and b ---> c then a ---> c." 

We will examine the algorithm for each of these conditions. 

(i) Let events a and b both belong to same process r, and a occurs before b. Assume 

then by definition (EA 1) 

which is trivially true clue to rules RA2 and RA5. 

(ii) Let ar be a. signal send and bs be the reception of the same signal. Assume 

then by EA1 

Now, assume that b; is the event in process s imJ11ecliately preceding b s. Then by rule RA 4 

The expression on the lUIS of (5) implies that 

which reduces to 

which must be true. 

(iii) Let events a, b and c belong to processes r, s and t respectively. Assume 
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(3) 
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(5) 

(6) 

(7) 

(8) 



and 
(9) 

Then by EA1, from (8) 
(10) 

Note that this is also true if r and s are the same process. 
If s and t are the same process then (9) implies that 

(11) 

since values are monotonically increasing (rule RA5). Alternatively, if s and t are different processes, 
then equation (11) can still be derived from (9) and rules RA4 and RA5. Combining (10) and (11) gives 

(12) 

and by EAl 
(13) 

as required. 

It remains to be shown that the algorithm implements the "smallest" relation -+, i.e. there are no 
other cases where -+ holds. Informally this can be inferred from EAl and the observation that T1 q [p] can 
only be incremented in two ways, by signal reception (rule RA4) or by the passage of time when both 
events are in the same process (rule RA2). In either case there is an unambiguous temporal ordering 
between the events. Any scenario in which we assume that -+ holds without any temporal relationship 
between the events will lead to a contradiction. For example, take the simplest case, reflexivity. If we 
assume 

(14) 

then by EAl 
(15) 

which is immediately in error. 

APPENDIX B-Proof of Synchronous Algorithm 

The proof for the synchronous algorithm closely follows that given in appendix A. The definition of 
-+ is unchanged except for condition (ii): 

(ii') If a is an output/input and b is the corresponding input/output and a-+ c then b-+ c. 

Notice that by definition a and b must belong to different processes in this case since a synchronous 
message-passing process cannot send messages to itself. 

As in appendix A we now examine each of the three conditions defining the -+ relation in turn: 

(i) Let a and b both belong to process 1' and a occurs before b. Assume 

(1) 

then by ESl 
(2) 

which reduces to 
(3) 

which must be true due to rules RS2 and RS4. 

(ii') Let a,. be a communication event and b8 its corresponding "partner". Assume 

(4) 

then by ESl 

(5) 
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By RS3 it is possible to see that 
(6) 

and hence 
T~r [t] = n, [t] (7) 

Thus from (5) and (7) 
(8) 

Rules RS3 and RS4 suggest the following general rule for any two events Xu and Yv where Xu -+ Yv: 

(9) 

for any array element m, i.e. all elements in the arrays for two temporally related events are at least as 
great as that in the earlier array. 

Therefore, from (4), (6) and (9) 
(10) 

and by ES1, equations (8) and (10) imply 
(11) 

as required. 

(iii) Let events a, b and c belong to processes r, s and t respectively. Assume 

(12) 

and 
(13) 

Then by ES1, from (12) 
(14) 

Also, by ES1, from (13) 
(15) 

From (12) and (9) 
(16) 

and thus from the second part of (15) 
(17) 

Also by (13) and (9) 
(18) 

and adding the first part of (14) gives 
(19) 

Together (17) and (19) imply 
(20) 

by definition (ES1), as required. 

Again, to be thorough, we should show that there are no other conditions that allow -+ to hold. 
This can be clone using reasoning similar to that in appendix A. 
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