Time in Distributed Systems

Prof. Nalini Venkatasubramanian
Distributed Computing Systems - Week 2

-includes slides/examples from
Indy Gupta (UIUC) and Kshemkalyani&Singhal (book slides)

The Concept of Time

The Concept of Time

A standard time is a set of instants with a temporal precedence
order < satisfying certain conditions [Van Benthem 83]:
Transitivity
Irreflexivity
Linearity
Eternity (vxay: x<y)
Density (vX,y: X<y — 3z: X<z<Y)

Transitivity and Irreflexivity imply asymmetry

e A linearly ordered structure may be insufficient to represent
time in distributed systems..

Time and clocks
(A real world example)

Cloud airline reservation system (with multiple servers A, B, C,...)

e Server A receives a client request to purchase last ticket on flight ABC 123.
e Server A timestamps purchase using local clock 9h:15m:32.45s, and logs it. Replies
ok to client.

e That was the last seat. Server A sends message to Server B saying “flight full.”

e B enters “Flight ABC 123 full” + its own local clock value (which reads 9h:10m:

10.11s) into 1its log.

e Server C queries A’s and B’s logs. Is confused that a client purchased a ticket at A
after the flight became full at B.

e This may lead to further incorrect actions at C. cf Indy Gupta, CS 425, UIUC

Time

.
.

GO

LUESTRVIEI BN I
—

Global Time & Global States of
Distributed Systems

Asynchronous distributed systems consist of several

processes

no common shared memory or global clock,
unpredictable processing delays

communicate (solely) via messages with unpredictable transmission
delays

Global time & global state are hard to realize
Rate of event occurrence may be very high
Event execution times may be very small

We can only approximate the global view
Simulate a synchronous distributed system on an asynchronous system
Simulate a global time — Clocks (Physical and Logical)
Simulate a global state — Global Snapshots

Simulate Synchronous
Distributed Systems

Synchronizers [Awerbuch 85]

Simulate clock pulses in such a way that a message is only
generated at a clock pulse and will be received before the next
pulse
Drawback

Very high message overhead

Global time in distributed systems

An accurate notion of global time is difficult to achieve in
distributed systems.

Uniform notion of time is necessary for correct operation

Apps: Mission critical distributed control, online games/

entertainment, financial apps, smart environments
We often derive “causality” from loosely synchronized clocks

Class Activity!!

Check wall clock, laptop clock (with sec setting), and mobile device
clock (use timer)

Check half way ;
Repeat with network/GPS turned off...

Simulating global time

Clocks in a distributed system drift
Relative to each other
Relative to a real world clock
Determination of this real world clock itself may be an issue

Clock Skew versus Drift
Clock Skew = Relative Difference in clock values of two processes
» Like distance between two vehicles on a road

Clock Drift = Relative Difference in clock frequencies (rates) of two
processes

e Like difference in speeds between 2 vehicles on a road

Clock Synchronization

Needed to simulate global time.

A non-zero clock drift will cause skew to continuously increase
e If faster device is ahead, it will drift away
e If faster device is behind, it will catch up and then drift away

Maximum Drift Rate (MDR) of a clock

Absolute MDR is defined relative to a Coordinated Universal Time (UTC)
MDR of a process depends on the environment.
Max drift rate between two clocks with similar MDR is 2 * MDR

Given a maximum acceptable skew M between any pair of clocks, need to
synchronize at least once every: M / (2 * MDR) time units

Since time = distance/speed

Clock Synchronization

Physical Clocks vs. Logical clocks

Physical Clock Synchronization

Physical Clocks

How do we measure real time?
Early — Stonehenge, sundials
13th -17th century
Mechanical clocks based on

Problem (1940): Rotation of earth varies!

Mean solar second = average over many days

astronomical measurements Date Puration fn mean solar

Solar Day - Transit of the sun February 11 24 hours

Solar Seconds - Solar Day/(3600*24) March 26 24 hours — 18.1 sec
May 14 24 hours
June 19 24 hours + 13.1 sec
July 26 24 hours
September 16 24 hours — 21.3 sec
November 3 24 hours
December 22 24 hours + 29.9 sec

Length of apparent solar day (1998)
— (¢f: wikipedia’

Atomic Clocks

Accurate atomic clocks

1948 - C0untin9 tranSitionS Of d CrYSta| Sr now holds the record on the Q and S/N
(Cesium 133, quartz) used as atomic |
clock

crystal oscillates at a well known
frequency

NIST-T NG &TF1 |
CONE
. Sr 94w

2014 — NIST-F2 Atomic clock - | Singc®
Accuracy: + 1 sec in 300 mil years ok
NIST-F2 measures particular transitions in YEAR
Cesium atom (9,192,631,770 vibrations
per second), in much colder environment, UTC (Universal Coordinated Time)

minus 316F, than NIST-F1 From time to time, UTC skips a solar
second to stay in phase with the sun
(30+ times since 1958)

Frequency Uncertainty

=
)
o
=
]
=
2
=
T
@
o
[
o
>
8
o

TAI - International Atomic Time

9,192,631,779 transitions = 1 mean yTC is broadcast by several sources
solar second in 1948 (satellites...)

Next Generation Atomic Clocks
-- NIST F2

How Clocks Work in Computers

Oscillation at a well-
defined frequency

Each crystal oscillation
decrements the counter by 1

When counter is 0, an
interrupt is generated, which

1s call a clock tick

Holding Quartz
register crystal
When counter gets 0, its ﬂ
value reloaded from the
holding register —[> Counter
CPU
At each clock tick, an interrupt ﬂ
service procedure add 1 to time
stored in memory Memory

From Distributed Systems (cs.nju.edu.cn/distribute-systems/lecture-notes/ 15

Accuracy of Computer Clocks

Modern timer chips (RTCs) have a relative
error of 1/100,000 — (~1 - 8 sec a day)

To maintain synchronized clocks

External Synchronization

Can use UTC source (time server) to obtain
current notion of time

Internal Synchronization
Use solutions without UTC.

Cristian’s (Time Server) Algorithm
(external synchronization)

e Uses a time server (S) to synchronize clocks
e Time server keeps the reference time (say UTC)

e A client asks the time server for time, the server responds with
its current time, and the client uses the received value to set its
clock.

Set clock to t Time

P
What’s the\time?

Here'’s the time t!

Check local clock to find time t

Cristian’s Algorithm (cont.)

e But network round-trip time introduces errors...

e By the time response message 1s received at P, time has moved on

e Let RTT = response-received-time — request-sent-time
(measurable at client),

e If we know (@) min = minimum client-server one-way transmission
time and (b) that the server timestamped the message at the last
possible instant before sending it back

e Then, the actual time could be between [T+min, T+RTT— min]

RT

T, Set clock to t
| \

Time

P

What’x the
time?

ere’s the time

S P

A‘heck local clock to find time t

18

Cristian’s Algorithm (cont.)

% Client sets its clock to halfway between T+minand T
+RTT— min l.e., at T+RTT/2
Expected (i.e., average) skew in client clock time = (RTT/2 — min)
Can increase clock value, should never decrease it.
% Can adjust speed of clock too (either up or down is ok)

% Multiple requests to increase accuracy
% For unusually long RTTs, repeat the time request

& For non-uniform RTTs

% Drop values beyond threshold; Use averages (or weighted
average)

Berkeley UNIX algorithm
(Internal Synchronization)

One Version

One daemon without UTC

Periodically, this daemon polls and asks all the machines for
their time

The machines respond.

The daemon computes an average time and then broadcasts
this average time.

Another Version

Master/daemon uses Cristian’s algorithm to calculate time from
multiple sources, removes outliers, computes average and

broadcasts

Decentralized Averaging Algorithm
(Internal Synchronization)

Each machine has a daemon without UTC

Periodically, at fixed agreed-upon times,
each machine broadcasts its local time.

Each of them calculates the average time
by averaging all the received local times.

Network Time Protocol (NTP)

Most widely used physical clock synchronization protocol
on the Internet (http://www.ntp.orq)
Currently used: NTP V3 and V4

10-20 million NTP servers and clients in the Internet

Claimed Accuracy (Varies)

milliseconds on WANSs, submilliseconds on LANS,
submicroseconds using a precision timesource

Nanosecond NTP in progress

Computer

Network

Time

Synchronization
The Network Time Protocol

NTP Design

Hierarchical tree of time
servers.
The primary server at the root
synchronizes with the UTC.
The next level contains

secondary servers, which act
as a backup to the primary
server.

At the lowest level is the
synchronization subnet which
has the clients.

Variant of Cristian’s algorithm
that does not use RTT's, but
multiple 1-way messages

Hierarchy in NTP

Most accurate @ (UTC)

(2)
/\
Less accurate @ @ @

Yair Amir Fall 98/ Lecture 11 18

NTP Protocol - Determining Error

Message 1 recv time trl _
Message 2 send time ts2

Time

Child

5

Let’s start.protocol

Message
Message 1 i, tr

Parent

Message 2 recv time tr2

Message 1 send time tsl

» Child calculates offset between its clock and parent’s
clock

o Usestsl, trl, ts2, tr2
o (Offset 1s calculated as

24

NTP Protocol - Determining Error

* Suppose real offset is oreal
— Child is ahead of parent by oreal
— Parent is ahead of child by -oreal
* Suppose one-way latency of Message 1 is L1 (L2 for Message 2)
No one knows L1 or L2!
Then
trl =tsl + L1 + oreal
tr2 =ts2 + L2 — oreal

* Subtracting second equation from the first
oreal = (trl —tr2 + ts2 —tsl)/2 + (L2 —-L1)/2 => oreal =0 + (L2 - L1)/2
=> |oreal —o| < |(L2—-L1)/2| <|(L2 + L1)/2|
— Thus, the error 1s bounded by the round-trip-time

We still have a non-zero error! Will exist as long as message latency exists!
25

NTP architecture overview

1
NTP Messages VFO

| Fi Clock Discipline

Peer 1 g Filter 1 > Pt
1 Selection y-m- ot E

= and > Combining | i , |

Peer 2 g Filter 2 Clustering Algorithm [4 Loop Filter |
1 Algorithms : |

1 Fi ! P/F-Lock Loop | !

Peer3 | Filter 3 > : :
) Timestamps | i

! 1

!]

o Multiple servers/peers provide redundancy and diversity.
o Clock filters select best from a window of eight time offset samples.

o Intersection and clustering algorithms pick best truechimers and
discard falsetickers.

o Combining algorithm computes weighted average of time offsets.

o Loop filter and variable frequency oscillator (VFO) implement hybrid
phase/frequency-lock (P/F) feedback loop to minimize jitter and
wander.

NTP protocol header and timestamp formats

NTP Protocol Header Format (32 bits)

Cryptosum

Authenticator
(Optional)

LI [VN| Mode | Strat | Poll | Prec

Root Delay

Root Dispersion

Reference |dentifier

Reference Timestamp (64)

leap warning indicator

VN version humber (4)
Strat stratum (0-15)

Poll poll interval (log2)
Prec precision {log2)

NTP Timestamp Format (64 bits)

Originate Timestamp (64)

Receive Timestamp (64)

Transmit Timestamp (64)

Authenticator uses MD5 cryptosum

of NTP header ilus extension fields ‘NTPV4‘

| Seconds(32) | Fraction (32) |
Value is in seconds and fraction
since 0" 1 January 1900

NTP v4 Extension Field

Last field padded to 64-bit boundary

NTP v3 and v4

Logical Clock Synchronization

Ordering Events in a Distributed System

e Trying to sync physical clocks is one approach.

e What if we instead assigned timestamps to events that
were not absolute time?

e Timestamps must obey causality to preserve event ordering

O

O

If an event A causally happens before another event B, then
®m timestamp(A) < timestamp(B)

Humans use causality all the time

E.g., I enter a house only after I unlock it

E.g., You receive a letter only after I send it

29

Logical Clocks

Used to determine causality in distributed
systems

Time is represented by non-negative integers

Event structures represent distributed
computation (in an abstract way)

A process can be viewed as consisting of a sequence
of events, where an event is an atomic transition of
the local state which happens in no time

Process Actions can be modeled using the 3 types of
events

Send Message

Receive Message

Internal (change of state)

Causal Relations

Distributed application results in a set of
distributed events
Induces a partial order {i)

Knowledge of this causal precedence relation is
useful in reasoning about and analyzing the
properties of distributed computations

Liveness and fairness in mutual exclusion

Consistency in replicated databases

Distributed debugging, checkpointing

Event Ordering

Lamport defined the “happens

before” (=>) relation
If a and b are events in the same process,
and a occurs before b, then a => b.

If a is the event of a message being sent
by one process and b is the event of the
message being received by another
process, then a => b.

If X =>Y and Y=>Z then X => Z.
Ifa => b then time (a) => time (b)

Event Ordering- an example

Processor Order: e precedes e’ in the same process
Send-Receive: e is a send and e’ is the corresponding
receive

Transitivity: exists e’ s.t. e < e”and e”< e

Example: global time

ell 612 613 eld

\ \ Program order: el3 <el4
e21 €22 23 . Send-Receive: e23<el2

Transitivity: e2l <e32
e31 e32

P3 . =

Causal Ordering

“Happens Before" also called causal ordering

Possible to draw a causality relation between 2
events if
They happen in the same process
There is a chain of messages between them
“Happens Before” notion is not straightforward
in distributed systems
No guarantees of synchronized clocks
Communication latency

Logical Clocks

A logical Clock C is some abstract mechanism which assigns
to any event ecE the value C(e) of some time domain T such
that certain conditions are met

C:E—T :: T is a partially ordered set : e<e’=C(e)<C(e") holds

Consequences of the clock condition [Morgan 85]:
Events occurring at a particular process are totally ordered by their
local sequence of occurrence

If an event e occurs before event e’ at some single process, then event e
is assigned a logical time earlier than the logical time assigned to event e’

For any message sent from one process to another, the logical time of
the send event is always earlier than the logical time of the receive
event

Each receive event has a corresponding send event
Future can not influence the past (causality relation)

Implementation of Logical Clocks

Requires
Data structures local to every process to represent logical time and
A protocol to update the data structures to ensure the consistency condition.

Each process Pi maintains data structures that allow it the following two
capabilities:
A local logical clock, denoted by LC_i , that helps process Pi measure its own
progress.
A logical global clock, denoted by GCi, that is a representation of process Pi
's local view of the logical global time. Typically, Ici is a part of gci

The protocol ensures that a process’s logical clock, and thus its view of
the global time, is managed consistently.

The protocol consists of the following two rules:
R1: This rule governs how the local logical clock is updated by a process when it
executes an event.
R2: This rule governs how a process updates its global logical clock to update its
view of the global time and global progress.

Types of Logical Clocks

Systems of logical clocks differ in their
representation of logical time and also in
the protocol to update the logical clocks.

3 kinds of logical clocks
Scalar

Vector
Matrix

Scalar Logical Clocks - Lamport

Proposed by Lamport in 1978 as an attempt to
totally order events in a distributed system.

Time domain is the set of non-negative integers.

The logical local clock of a process pi and its
local view of the global time are squashed into
one integer variable Ci .

Monotonically increasing counter
No relation with real clock

Each process keeps its own logical clock used to
timestamp events

Consistency with Scalar Clocks

To guarantee the clock condition, local clocks
must obey a simple protocol:

When executing an internal event or a send event at
process P, the clock C; ticks

C+=d (d>0)
When P, sends a message m, it piggybacks a logical
timestamp t which equals the time of the send event

When executing a receive event at P, where a
message with timestamp tis received, the clock is

advanced
C = max(C,H+d (d>0)

Results in a partial ordering of events.

Lamport Timestamps

Pl ® ®
Tim
e
P2
P3 ®

® [nstruction or step

— Message

Lamport Timestamps

Pl @ @

Tim

P2

A

P3 ®

® [nstruction or step

— Message

Lamport Timestamps

Pl ® o >
B Tim
e
P3 o

® [nstruction or step

— Message

Lamport Timestamps

Pl ® ®

\ e
P2 \
P3 ®

® [nstruction or step

— Message

Lamport Timestamps

Pl

P2

P3

/

‘ o
Tim
e

/

® [nstruction or step

— Message

Lamport Timestamps

Pl ® ®
Tim
e
P2
P3 ®

® [nstruction or step

— Message

Obeying Causality

A B C D E
P1 @ @
Tim
e
E’ F
P2
H | J
P3 ®
A ;@ B:1<2 ® [nstruction or step

— Message

Obeying Causality (2)

A B C D E
P1 o ®
Tim
e
E’ F
P2
H I J
P3 o

® [nstruction or step

— Message

Not always implying Causality

A B C D E

P1 o @
Tim
e

E’ F
P2
H I J
P3 ® .

® [nstruction or step

. (C F) and (H, C) are pairs of
concurrent events

— Message

Lamport Logical Clock

PI P2 P3 Pl P2 P3
0 0 0 0 0 0
4\ 5 3 4\ 5 3
3 10 ; 3 10 ;
12 15\9 12 15\11
16 20 12 16 20 14
20 25/15 20 25 17
24 3d 18 24 30 20
28/35 21 28/35 23
37" 40 24 360 40 26

Yair Amir

Fall 98/ Lecture 11

Concurrent Events

* A pair of concurrent events doesn’t have a causal path from one event to another
(either way, in the pair)

 Lamport timestamps not guaranteed to be ordered or unequal for concurrent
events
* OKk, since concurrent events are not causality related!

 Remember

) E2 = timestamp(E1) < timestamp (E2), BUT

timestamp(E1) < timestamp (E2) = {E1 {i E2} OR {EI and E2 concurrent}

50

Total Ordering

Extending partial order to total order

time Proc _id

Global timestamps:

(Ta, Pa) where Ta is the local timestamp and
Pa is the process id.
(Ta,Pa) < (Tb,Pb) iff
(Ta<Tb)or ((Ta=Tb)and (Pa < Pb))
Total order is consistent with partial order.

Properties of Scalar Clocks

Event counting

If the increment value d is always 1, the scalar time
has the following interesting property: if event e has
a timestamp h, then h-1 represents the minimum
logical duration, counted in units of events, required
before producing the event e;

We call it the height of the event e.

In other words, h-1 events have been produced
sequentially before the event e regardless of the
processes that produced these events.

Properties of Scalar Clocks

No Strong Consistency

The system of scalar clocks is not strongly
consistent; that is, for two events ei and €j ,
C(ei) < C(ej) does not imply ei — €j .
Reason: In scalar clocks, logical local clock and
logical global clock of a process are squashed
into one, resulting in the loss of causal
dependency information among events at
different processes.

Independence

Two events e,e’ are mutually independent (i.e. e||e’) if
~(e<e)a~(e'<e)
Two events are independent if they have the same timestamp
Events which are causally independent may get the same or
different timestamps
By looking at the timestamps of events it is not possible
to assert that some event could not influence some
other event

If C(e)<C(e’) then ~(e'<e) however, it is not possible to decide
whether e<e’ or e||€’

C is an order homomorphism which preserves < but it does not
preserves negations (i.e. obliterates a lot of structure by
mapping E into a linear order)

Problems with Total Ordering

A linearly ordered structure of time is not always
adequate for distributed systems
captures dependence of events

loses independence of events - artificially enforces an ordering
for events that need not be ordered — loses information

Mapping partial ordered events onto a linearly ordered set of
integers is losing information

Events which may happen simultaneously may get different
timestamps as if they happen in some definite order.

A partially ordered system of vectors forming a /attice
structure is a natural representation of time in a
distributed system

Vector Clocks

Independently developed by Fidge, Mattern and Schmuck.

Aim: To construct a mechanism by which each process gets an
optimal approximation of global time

Time representation
Set of n-dimensional non-negative integer vectors.

Each process has a clock C. consisting of a vector of length n, where n
is the total number of processes vtgl..n], where vt[j] is the local logical
clock of Pj and describes the logical time progress at process Pj .

A process P, ticks by incrementing its own component of its clock

Cli] +=1
The timestamp C(e) of an event e is the clock value after ticking
Each message gets a piggybacked timestamp consisting of the vector
of the local clock

The process gets some knowledge about the other process’ time
approximation

C=sup(C,t):: sup(u,v)=w : wli]l=max(u[i],v[i]), vi

Pl

P2

P3

Vector Timestamps

@ 4
N

N

Tim
e

/ \

v

VT, =VT,,
iff (if and only if)
VT,[i]=VT,[i], foralli=1, ... ,N
VT, <VT,,
iff VT,[i]<VT,[i], foralli=1,...,N
Two events are causally related iff
VT, <VT,, 1e,
iff VI, <VT, &
there exists j such that
1<j<N&VT,[j]<VT,[j]

58

Two events VT, and VT, are concurrent
i
NOT (VT, < VT,) AND NOT (VT, <VT))

We’ll denote this as VT, ||| VT,

59

Obeying Causality

A B C
P1 @ . @
Tim
E’ F ©
P2 / > \
// \
H I J
P3 P \4 ,

e AEIF:(1,00)<221)

60

Obeying Causality (2)

A B C
P1 @ . @
Tim
E’ F ©
P2 / > \
// \
H I J
P3 P \4 ,

« HEJ G::(0,0,1)<(2,3,1)
« FRYJ ::(2,2,1)<(5,3,3)
« HRYJ ::(0,0,1)<(5,3,3)
« CRJ1J ::(3,0,0)0<(53,3)

ldentifying Concurrent Events

A B C D E
Pl ® - ® 7 ,
Tim
E’ F ©
P2 / S \ ,
// \
H I J
P3 P \4 e

C&F::(3,0,0) | (2,2,1)
H & C::(0,0,1) [[[(3,0,0)
(C, F) and (H, C) are pairs of concurrent events

Vector Clocks example

i B 5]

u [\m u
] H\H /i

Figure 3.2: Evolution of
From A. Kshemkalyan dMVﬁﬁgﬁ%}i@MRﬁbtdc omputing)

Vector Times (cont)

Because of the transitive nature of the scheme, a
process may receive time updates about clocks in non-

neighboring process
Since process P, can advance the it component of global
time, it always has the most accurate knowledge of its

local time
At any instant of real time vi,j: G[i]= Ci]

Structure of Vector Time

For two time vectors u,v
u<v iff vi: uf[i]=v[i]
u<v iff usv A u#v
ul|v iff ~(u<v) A~(v<u) :: || is not transitive

For an event set E,
ve,e'cE:e<e’ iff C(e)<C(e’) A e||e’ iff iff C(e)||C(e")

In order to determine if two events e,e’ are causally

related or not, just take their timestamps C(e) and C(e")
if C(e)<C(e") v C(e")<C(e), then the events are causally related
Otherwise, they are causally independent

Matrix Time

Vector time contains information about latest
direct dependencies

What does Pi know about Pk

Also contains info about latest direct
dependencies of those dependencies

What does Pi know about what Pk knows about Pj
Message and computation overheads are high

Powerful and useful for applications like
distributed garbage collection

