
Virtual Time and Global

States in Distributed

Systems

Prof. Nalini
Venkatasubramanian

Distributed Systems
Middleware - Lecture 2

Virtual Time & Global States of
Distributed Systems

� Asynchronous distributed systems consist of several
processes without common memory which communicate
(solely) via messages with unpredictable transmission
delays

� Global time & global state are hard to realize in distributed
systemssystems
� Rate of event occurrence is very high

� Event execution times are very small

� We can only approximate the global view
� Simulate synchronous distributed system on a given asynchronous
systems

� Simulate a global time – Logical Clocks

� Simulate a global state – Global Snapshots

Simulate Synchronous
Distributed Systems

� Synchronizers [Awerbuch 85]
�Simulate clock pulses in such a way that a message is only
generated at a clock pulse and will be received before the next
pulse

�Drawback�Drawback

⌧Very high message overhead

The Concept of Time

� A standard time is a set of instants with a temporal
precedence order < satisfying certain conditions [Van
Benthem 83]:

�Transitivity

�Irreflexivity

�Linearity

�Eternity (∀x∃y: x<y)

�Density (∀x,y: x<y → ∃z: x<z<y)

�Transitivity and Irreflexivity imply asymmetry

Clock Synchronization in

Distributed Systems

Clocks in a distributed system drift:
�Relative to each other

�Relative to a real world clock
⌧Determination of this real world clock may be an ⌧Determination of this real world clock may be an
issue

⌧Physical clocks are logical clocks that must not
deviate from the real-time by more than a certain
amount.

⌧We often derive causality from loosely
synchronized clocks

Claims

� A linearly ordered structure of time is not always
adequate for distributed systems

�Captures dependence, not independence of distributed activities

� A partially ordered system of vectors forming a lattice
structure is a natural representation of time in a structure is a natural representation of time in a
distributed system

� Resembles Einstein-Minkowski’s relativistic space-time

Event Structures

�A process can be viewed as consisting of a
sequence of events, where an event is an
atomic transition of the local state which
happens in no timehappens in no time

�Process Actions can be modeled using the 3
types of events

�Send

�Receive

�Internal (change of state)

Causal Relations

�Distributed application results in a set of
distributed events

�Induces a partial order � causal precedence relation

�Knowledge of this causal precedence relation is �Knowledge of this causal precedence relation is
useful in reasoning about and analyzing the
properties of distributed computations

�Liveness and fairness in mutual exclusion

�Consistency in replicated databases

�Distributed debugging, checkpointing

An Event Framework for Logical
Clocks

� Events are related
�Events occurring at a particular process are totally ordered by
their local sequence of occurrence

�Each receive event has a corresponding send event

�Future can not influence the past (causality relation)�Future can not influence the past (causality relation)

�Event structures represent distributed computation (in an
abstract way)
⌧An event structure is a pair (E,<), where E is a set of events and <
is a irreflexive partial order on E, called the causality relation

�For a given computation, e<e’ holds if one of the following
conditions holds
⌧e,e’ are events in the same process and e precedes e’

⌧e is the sending event of a message and e’ the corresponding
receive event

⌧∃e’’: e<e’’ ∧ e’’<e’

Event Ordering

�Lamport defined the “happens before”
(=>) relation

�If a and b are events in the same process,
and a occurs before b, then a => b.and a occurs before b, then a => b.

�If a is the event of a message being sent
by one process and b is the event of the
message being received by another
process, then a => b.

�If X =>Y and Y=>Z then X => Z.

If a => b then time (a) => time (b)

Causal Ordering

�“Happens Before” also called causal ordering

�Possible to draw a causality relation between 2
events if

�They happen in the same process�They happen in the same process

�There is a chain of messages between them

�“Happens Before” notion is not straightforward
in distributed systems

�No guarantees of synchronized clocks

�Communication latency

Logical Clocks

� Used to determine causality in distributed systems

� Time is represented by non-negative integers

� A logical Clock C is some abstract mechanism which
assigns to any event e∈E the value C(e) of some time
domain T such that certain conditions are metdomain T such that certain conditions are met

⌧C:E→T :: T is a partially ordered set : e<e’→C(e)<C(e’) holds

� Consequences of the clock condition [Morgan 85]:
�If an event e occurs before event e’ at some single process,
then event e is assigned a logical time earlier than the logical
time assigned to event e’

�For any message sent from one process to another, the logical
time of the send event is always earlier than the logical time of
the receive event

Implementation of Logical

Clocks

� Requires
� Data structures local to every process to represent logical time and
� a protocol to update the data structures to ensure the consistency condition.

� Each process Pi maintains data structures that allow it the following two
capabilities:
� A local logical clock, denoted by LC_i , that helps process Pi measure its own
progress.progress.

� A logical global clock, denoted by GCi , that is a representation of process Pi ’s
local view of the logical global time. Typically, lci is a part of gci

� The protocol ensures that a process’s logical clock, and thus its view of the
global time, is managed consistently.
� The protocol consists of the following two rules:

⌧ R1: This rule governs how the local logical clock is updated by a process when it
executes an event.

⌧ R2: This rule governs how a process updates its global logical clock to update its view
of the global time and global progress.

Types of Logical Clocks

�Systems of logical clocks differ in their
representation of logical time and also in
the protocol to update the logical clocks.

�3 kinds of logical clocks

�Scalar

�Vector

�Matrix

Scalar Logical Clocks -

Lamport

�Proposed by Lamport in 1978 as an attempt to
totally order events in a distributed system.

�Time domain is the set of non-negative integers.
�The logical local clock of a process pi and its
local view of the global time are squashed into

�The logical local clock of a process pi and its
local view of the global time are squashed into
one integer variable Ci .

�Monotonically increasing counter
�No relation with real clock

�Each process keeps its own logical clock used to
timestamp events

Consistency with Scalar

Clocks

�To guarantee the clock condition, local clocks
must obey a simple protocol:
�When executing an internal event or a send event at
process Pi the clock Ci ticks

• Ci += d (d>0)• Ci += d (d>0)

�When Pi sends a message m, it piggybacks a logical
timestamp t which equals the time of the send event

�When executing a receive event at Pi where a
message with timestamp t is received, the clock is
advanced

• Ci = max(Ci,t)+d (d>0)

�Results in a partial ordering of events.

Total Ordering

�Extending partial order to total order

time Proc_id

�Global timestamps:

�(Ta, Pa) where Ta is the local timestamp and
Pa is the process id.

�(Ta,Pa) < (Tb,Pb) iff

⌧(Ta < Tb) or ((Ta = Tb) and (Pa < Pb))

�Total order is consistent with partial order.

Properties of Scalar Clocks

�Event counting

�If the increment value d is always 1, the scalar time
has the following interesting property: if event e has
a timestamp h, then h-1 represents the minimum a timestamp h, then h-1 represents the minimum
logical duration, counted in units of events, required
before producing the event e;

�We call it the height of the event e.

�In other words, h-1 events have been produced
sequentially before the event e regardless of the
processes that produced these events.

Properties of Scalar Clocks

�No Strong Consistency

�The system of scalar clocks is not strongly
consistent; that is, for two events ei and ej ,
C(ei) < C(ej) 6=⇒ ei → ej .C(ei) < C(ej) 6=⇒ ei → ej .

�Reason: In scalar clocks, logical local clock and
logical global clock of a process are squashed
into one, resulting in the loss of causal
dependency information among events at
different processes.

Problems with Total Ordering

� A linearly ordered structure of time is not always
adequate for distributed systems

�captures dependence of events

�loses independence of events - artificially enforces an ordering
for events that need not be ordered.for events that need not be ordered.

�Mapping partial ordered events onto a linearly ordered set of integers it
is losing information

• Events which may happen simultaneously may get different
timestamps as if they happen in some definite order.

� A partially ordered system of vectors forming a lattice
structure is a natural representation of time in a
distributed system

Vector Times

� The system of vector clocks was developed independently by Fidge,
Mattern and Schmuck.

� To construct a mechanism by which each process gets an optimal
approximation of global time

� In the system of vector clocks, the time domain is represented by a set of
n-dimensional non-negative integer vectors.

� Each process has a clock C consisting of a vector of length n, where n is � Each process has a clock Ci consisting of a vector of length n, where n is
the total number of processes vt[1..n], where vt[j] is the local logical clock
of Pjand describes the logical time progress at process Pj .
� A process Pi ticks by incrementing its own component of its clock

⌧ Ci[i] += 1

� The timestamp C(e) of an event e is the clock value after ticking
� Each message gets a piggybacked timestamp consisting of the vector of the
local clock
⌧ The process gets some knowledge about the other process’ time approximation
⌧ Ci=sup(Ci,t):: sup(u,v)=w : w[i]=max(u[i],v[i]), ∀i

Vector Clocks example

�An Example of vector clocks

From A. Kshemkalyani and M. Singhal (Distributed Computing)

Figure 3.2: Evolution of vector time.

Vector Times (cont)

� Because of the transitive nature of the scheme, a
process may receive time updates about clocks in non-
neighboring process

� Since process Pi can advance the i
th component of global � Since process Pi can advance the i component of global

time, it always has the most accurate knowledge of its
local time

⌧At any instant of real time ∀i,j: Ci[i]≥ Cj[i]

�For two time vectors u,v

⌧u≤v iff ∀i: u[i]≤v[i]

⌧u<v iff u≤v ∧ u≠v

⌧u||v iff ~(u<v) ∧~(v<u) :: || is not transitive

Structure of the Vector Time

⌧For any n>0, (Nn,≤) is a lattice

⌧The set of possible time vectors of an event set E is a sublattice of
(Nn,≤)

⌧For an event set E, the lattice of consistent cuts and the lattice of
possible time vectors are isomorphic

⌧ ∀e,e’∈E:e<e’ iff C(e)<C(e’) ∧ e||e’ iff iff C(e)||C(e’)

� In order to determine if two events e,e’ are causally
related or not, just take their timestamps C(e) and C(e’)

�if C(e)<C(e’) ∨ C(e’)<C(e), then the events are causally related

�Otherwise, they are causally independent

Matrix Time

�Vector time contains information about latest
direct dependencies
�What does Pi know about Pk

�Also contains info about latest direct �Also contains info about latest direct
dependencies of those dependencies
�What does Pi know about what Pk knows about Pj

�Message and computation overheads are high

�Powerful and useful for applications like
distributed garbage collection

Physical Clocks

�How do we measure real time?

�17th century - Mechanical clocks based on
astronomical measurements

⌧Solar Day - Transit of the sun

⌧Solar Seconds - Solar Day/(3600*24)

�Problem (1940) - Rotation of the earth varies
(gets slower)

�Mean solar second - average over many days

Atomic Clocks

�1948

�counting transitions of a crystal (Cesium 133) used
as atomic clock

�TAI - International Atomic Time�TAI - International Atomic Time

⌧9192631779 transitions = 1 mean solar second in 1948

�UTC (Universal Coordinated Time)

⌧From time to time, we skip a solar second to stay in phase
with the sun (30+ times since 1958)

⌧UTC is broadcast by several sources (satellites…)

Accuracy of Computer

Clocks

�Modern timer chips have a relative error
of 1/100,000 - 0.86 seconds a day

�To maintain synchronized clocks�To maintain synchronized clocks

�Can use UTC source (time server) to obtain
current notion of time

�Use solutions without UTC.

Berkeley UNIX algorithm

�One daemon without UTC

�Periodically, this daemon polls and asks all
the machines for their timethe machines for their time

�The machines respond.

�The daemon computes an average time
and then broadcasts this average time.

Decentralized Averaging

Algorithm

�Each machine has a daemon without UTC

�Periodically, at fixed agreed-upon times,
each machine broadcasts its local time.each machine broadcasts its local time.

�Each of them calculates the average time
by averaging all the received local times.

Clock Synchronization in

DCE

�DCE’s time model is actually in an interval
�I.e. time in DCE is actually an interval

�Comparing 2 times may yield 3 answers
⌧t1 < t2⌧t1 < t2

⌧t2 < t1

⌧not determined

�Each machine is either a time server or a clerk

�Periodically a clerk contacts all the time servers on its
LAN

�Based on their answers, it computes a new time and
gradually converges to it.

Time Manager Operations

�Logical Clocks
�C.adjust(L,T)

⌧adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

�C.read �C.read
⌧returns the current value of clock C

�Timers
�TP.set(T) - reset the timer to timeout in T units

�Messages
�receive(m,l); broadcast(m); forward(m,l)

Simulate A Global State

� The notions of global time and global state are closely
related

� A process can (without freezing the whole computation)
compute the best possible approximation of a global compute the best possible approximation of a global
state [Chandy & Lamport 85]

� A global state that could have occurred
�No process in the system can decide whether the state did
really occur

�Guarantee stable properties (i.e. once they become true, they
remain true)

P2

P1

Time

e21

e11

e22

Event Diagram

e23 e24 e25

e12 e13

P2

P3
e31

e32 e33 e34

Poset Diagram

P2

P1

Time

e21

e11

e22 e23 e24 e25

e12 e13

Equivalent Event Diagram

P2

P3
e31

e32 e33 e34

Rubber Band Transformation

P2

P1

Time

e11

e21

e12

e22

P2

P3
e31

P4
e41 e42

cut

Poset Diagram

e31

e21

e22

e12

e42

e21

e41

Past

Consistent Cuts

� A cut (or time slice) is a zigzag line cutting a time
diagram into 2 parts (past and future)

�E is augmented with a cut event ci for each process Pi:E’ =E ∪
{ci,…,cn} ∴

⌧A cut C of an event set E is a finite subset C⊆E: e∈C ∧ e’<e →e’∈C⌧A cut C of an event set E is a finite subset C⊆E: e∈C ∧ e’<le →e’∈C

⌧A cut C1 is later than C2 if C1⊇C2
⌧A consistent cut C of an event set E is a finite subset C⊆E : e∈C ∧
e’<e →e’ ∈C

• i.e. a cut is consistent if every message received was previously sent
(but not necessarily vice versa!)

P2

P1

TimeInstant of local

observation

5

3

8

Cuts (Summary)

initial
P2

P3

ideal

(vertical)

cut

(15)

consistent

cut

(15)

inconsistent

cut

(19)

5

5

2

1

4

3

4

0

7
value

not attainable equivalent to a vertical cut

(rubber band transformation)

can’t be made vertical

(message from the future)

“Rubber band transformation” changes metric, but keeps topology

Consistent Cuts

� Theorems
⌧With operations ∪ and ∩ the set of cuts of a partially ordered
event set E form a lattice

⌧The set of consistent cuts is a sublattice of the set of all cuts⌧The set of consistent cuts is a sublattice of the set of all cuts

⌧For a consistent cut consisting of cut events ci,…,cn, no pair of cut
events is causally related. i.e ∀ci,cj ~(ci< cj) ∧ ~(cj< ci)

⌧For any time diagram with a consistent cut consisting of cut events
ci,…,cn, there is an equivalent time diagram where ci,…,cn occur
simultaneously. i.e. where the cut line forms a straight vertical line

• All cut events of a consistent cut can occur simultaneously

Global States of Consistent Cuts

� A global state computed along a consistent cut is correct

� The global state of a consistent cut comprises the local
state of each process at the time the cut event happens
and the set of all messages sent but not yet received and the set of all messages sent but not yet received

� The snapshot problem consists in designing an efficient
protocol which yields only consistent cuts and to collect
the local state information

⌧Messages crossing the cut must be captured

⌧Chandy & Lamport presented an algorithm assuming that message
transmission is FIFO

Chandy-Lamport Distributed

Snapshot Algorithm

Marker receiving rule for Process Pi

If (Pi has not yet recorded its state) it

records its process state now

records the state of c as the empty set

turns on recording of messages arriving over other channelsturns on recording of messages arriving over other channels

else

Pi records the state of c as the set of messages received over c

since it saved its state

Marker sending rule for Process Pi

After Pi has recorded its state,for each outgoing channel c:

Pi sends one marker message over c

(before it sends any other message over c)

Independence

� Two events e,e’ are mutually independent (i.e. e||e’) if
~(e<e’)∧~(e’<e)
�Two events are independent if they have the same timestamp

�Events which are causally independent may get the same or
different timestampsdifferent timestamps

� By looking at the timestamps of events it is not possible
to assert that some event could not influence some
other event
�If C(e)<C(e’) then ~(e<e’) however, it is not possible to decide
whether e<e’ or e||e’

�C is an order homomorphism which preserves < but it does not
preserves negations (i.e. obliterates a lot of structure by
mapping E into a linear order)

�An isomorphism mapping E onto T is requiered

Computing Global States without
FIFO Assumption

� Algorithm
�All process agree on some future virtual time s or a set of virtual
time instants s1,…sn which are mutually concurrent and did not
yet occur

�A process takes its local snapshot at virtual time s

�After time s the local snapshots are collected to construct a
global snapshot
⌧Pi ticks and then fixes its next time s=Ci +(0,…,0,1,0,…,0) to be the
common snapshot time

⌧Pi broadcast s

⌧Pi blocks waiting for all the acknowledgements

⌧Pi ticks again (setting Ci=s), takes its snapshot and broadcast a
dummy message (i.e. force everybody else to advance their clocks
to a value ≥ s)

⌧Each process takes its snapshot and sends it to Pi when its local
clock becomes ≥ s

Computing Global States without
FIFO Assumption (cont)

� Inventing a n+1 virtual process whose clock is managed by Pi
� Pi can use its clock and because the virtual clock Cn+1 ticks only
when Pi initiates a new run of snapshot :

� The first n component of the vector can be omitted

� The first broadcast phase is unnecessary� The first broadcast phase is unnecessary

� Counter modulo 2

� 2 states

�White (before snapshot)

� Red (after snapshot)

� Every message is red or white, indicating if it was send before or after
the snapshot

� Each process (which is initially white) becomes red as soon as it
receives a red message for the first time and starts a virtual broadcast
algorithm to ensure that all processes will eventually become red

Computing Global States without
FIFO Assumption (cont)

� Virtual broadcast

�Dummy red messages to all processes

� Flood the network by using a protocol where a process sends dummy
red messages to all its neighbors

� Messages in transit� Messages in transit

�White messages received by red process

� Target process receives the white message and sends a copy to the
initiator

� Termination

�Distributed termination detection algorithm [Mattern 87]

�Deficiency counting method

⌧Each process has a counter which counts messages send – messages
received. Thus, it is possible to determine the number of messages still in
transit

