Virtual Time and Global
States in Distributed
Systems

Prof. Nalini
Venkatasubramanian

Distributed Systems
Middleware - Lecture 2

Virtual Time & Global States of
Distributed Systems

Asynchronous distributed systems consist of several
processes without common memory which communicate
(solely) via messages with unpredictable transmission
delays

Global time & global state are hard to realize in distributed
systems

Rate of event occurrence is very high

Event execution times are very small

We can only approximate the global view

Simulate synchronous distributed system on a given asynchronous
systems

Simulate a global time — Logical Clocks
Simulate a global state — Global Snapshots

Simulate Synchronous
Distributed Systems

Synchronizers [Awerbuch 85]

Simulate clock pulses in such a way that a message is only

generated at a clock pulse and will be received before the next
pulse

Drawback
Very high message overhead

The Concept of Time

A standard time is a set of instants with a temporal

precedence order < satisfying certain conditions [Van
Benthem 83]:

Transitivity

Irreflexivity

Linearity

Eternity (Vx3y: x<y)

Density (VX,y: X<y — 3z: X<z<y)

Transitivity and Irreflexivity imply asymmetry

Clock Synchronization in
Distributed Systems

Clocks in a distributed system drift:
Relative to each other

Relative to a real world clock

Determination of this real world clock may be an
Issue

Physical clocks are logical clocks that must not
deviate from the real-time by more than a certain
amount.

We often derive causality from loosely
synchronized clocks

Claims

A linearly ordered structure of time is not always
adequate for distributed systems

Captures dependence, not independence of distributed activities

A partially ordered system of vectors forming a /attice
structure is a natural representation of time in a
distributed system

Resembles Einstein-Minkowski’s relativistic space-time

Event Structures

A process can be viewed as consisting of a
sequence of events, where an event is an
atomic transition of the local state which
happens in no time

Process Actions can be modeled using the 3
types of events

Send

Receive

Internal (change of state)

Causal Relations

Distributed application results in a set of
distributed events
Induces a partial order - causal precedence relation

Knowledge of this causal precedence relation is
useful in reasoning about and analyzing the
properties of distributed computations

Liveness and fairness in mutual exclusion

Consistency in replicated databases

Distributed debugging, checkpointing

An Event Framework for Logical
Clocks

Events are related

Events occurring at a particular process are totally ordered by
their local sequence of occurrence

Each receive event has a corresponding send event
Future can not influence the past (causality relation)
Event structures represent distributed computation (in an
abstract way)

An event structure is a pair (£,<), where £Eis a set of events and <
is a irreflexive partial order on £, called the causality relation

For a given computation, e<e’ holds if one of the following
conditions holds
e,e’ are events in the same process and e precedes €’

e is the sending event of a message and e’ the corresponding
receive event

Je”: e<e” A e"<e’

Event Ordering

Lamport defined the “happens before”
(=>) relation
If a and b are events in the same process,
and a occurs before b, then a => b.

If a is the event of a message being sent
by one process and b is the event of the
message being received by another
process, then a => b.

If X =>Y and Y=>Z then X => Z.
Ifa => b then time (a) => time (b)

Causal Ordering

“"Happens Before” also called causal ordering

Possible to draw a causality relation between 2
events if

They happen in the same process

There is a chain of messages between them

“Happens Before” notion is not straightforward
in distributed systems

No guarantees of synchronized clocks
Communication latency

Logical Clocks

Used to determine causality in distributed systems
Time is represented by non-negative integers

A logical Clock C is some abstract mechanism which
assigns to any event ecE the value C(e) of some time

domain T such that certain conditions are met
C:E—>T :: T is a partially ordered set : e<e’»C(e)<C(e") holds

Consequences of the clock condition [Morgan 85]:
If an event e occurs before event e’ at some single process,
then event e is assigned a logical time earlier than the logical
time assigned to event €’
For any message sent from one process to another, the logical
time of the send event is always earlier than the logical time of
the receive event

Implementation of Logical
Clocks

Requires
Data structures local to every process to represent logical time and
a protocol to update the data structures to ensure the consistency condition.

Each process Pi maintains data structures that allow it the following two
capabilities:
A local logical clock, denoted by LC_i, that helps process Pi measure its own
progress.
A Io?ical global clock, denoted by GCi , that is a representation of process Pi ‘s
local view of the logical global time. Typically, Ici is a part of gci
The protocol ensures that a process’s logical clock, and thus its view of the
global time, is managed consistently.
The protocol consists of the following two rules:
R1: This rule governs how the local logical clock is updated by a process when it
executes an event.

R2: This rule governs how a process updates its global logical clock to update its view
of the global time and global progress.

Types of Logical Clocks

Systems of logical clocks differ in their
representation of logical time and also in
the protocol to update the logical clocks.

3 kinds of logical clocks
Scalar

Vector
Matrix

Scalar Logical Clocks -
Lamport

Proposed by Lamport in 1978 as an attempt to
totally order events in a distributed system.

Time domain is the set of non-negative integers.

The logical local clock of a process pi and its
local view of the global time are squashed into
one integer variable Ci .
Monotonically increasing counter

No relation with real clock

Each process keeps its own logical clock used to
timestamp events

Consistency with Scalar
Clocks

To guarantee the clock condition, local clocks
must obey a simple protocol:

When executing an internal event or a send event at
process P, the clock C; ticks

C+=d (d>0)
When P, sends a message m, it piggybacks a logical
timestamp t which equals the time of the send event

When executing a receive event at P, where a
message with timestamp £is received, the clock is
advanced

C = max(C,H+d (d>0)

Results in a partial ordering of events.

a7 0r 9€

e

0c OE o

t\mm 0z

EC SE 8C

l 07 31
Ll Gl Al
m4/E 3
2 G /q
0 0 0
¢ed dd |Id

| | 242 [5G 154

AL d1E L

bz 0 JE

e

1z GE it
3l e FT
E\\ﬁ 0z
zl 07 31
m/m_ Al
£ 0l 3
3 G I
0 0 /D
¢ed d&d |Id

3009 |eo1b6o7 podweT

Total Ordering

Extending partial order to total order

Global timestamps:

(Ta, Pa) where Ta is the local timestamp and
Pa is the process id.

(Ta,Pa) < (Tb,Pb) iff
(Ta<Tb)or ((Ta=Tb)and (Pa < Pb))
Total order is consistent with partial order.

Properties of Scalar Clocks

Event counting

If the increment value d is always 1, the scalar time
has the following interesting property: if event e has
a timestamp h, then h-1 represents the minimum
logical duration, counted in units of events, required
before producing the event €;

We call it the height of the event e.

In other words, h-1 events have been produced
sequentially before the event e regardless of the
processes that produced these events.

Properties of Scalar Clocks

No Strong Consistency

The system of scalar clocks is not strongly
consistent; that is, for two events ei and €j ,
Clei) < C(ej) b==cei — €j.

Reason: In scalar clocks, logical local clock and
logical global clock of a process are squashed
into one, resulting in the loss of causal
dependency information among events at
different processes.

Problems with Total Ordering

A linearly ordered structure of time is not always
adequate for distributed systems
captures dependence of events

loses independence of events - artificially enforces an ordering
for events that need not be ordered.

Mapping partial ordered events onto a linearly ordered set of integers it
iS losing information

Events which may happen simultaneously may get different
timestamps as if they happen in some definite order.

A partially ordered system of vectors forming a /attice
structure is a natural representation of time in a
distributed system

Vector Times

The system of vector clocks was developed independently by Fidge,
Mattern and Schmuck.

To construct a mechanism by which each process gets an optimal
approximation of global time

In the system of vector clocks, the time domain is represented by a set of
n-dimensional non-negative integer vectors.

Each process has a clock C, consisting of a vector of length n, where nis
the total number of processes vt[1..n], where vt[j] is the local logical clock
of Pjand describes the logical time progress at process Pj .
A process P, ticks by incrementing its own component of its clock
Clil]+=1
The timestamp C(e) of an event e is the clock value after ticking
Each message gets a piggybacked timestamp consisting of the vector of the
local clock
The process gets some knowledge about the other process’ time approximation
C=sup(C;,t):: sup(u,v)=w : w[i]=max(u[i],v[i]), Vi

Vector Clocks example

An Example of vector clocks

ol

——=

N a1/ \[]

AN

2 .

Figure 3.2: Evolution of vector time.

Vector Times (cont)

Because of the transitive nature of the scheme, a
process may receive time updates about clocks in non-

neighboring process

Since process P, can advance the it" component of global
time, it always has the most accurate knowledge of its
local time

At any instant of real time vi,j: G[i]> Ci]

For two time vectors u,v

u<v iff Vi: u[i]<v[i]

u<v iff usv A uzv

ul|v iff ~(u<v) A~(v<u) :: || is not transitive

Structure of the Vector Time

For any n>0, (N",<) is a lattice

The set of possible time vectors of an event set E is a sublattice of
(N",<)

For an event set E, the lattice of consistent cuts and the lattice of
possible time vectors are isomorphic

ve,e'cE:e<e’ iff C(e)<C(e") A e||e’iff iff C(e)||C(e")
In order to determine if two events e,e’ are causally

related or not, just take their timestamps C(e) and C(e")
if C(e)<C(e") v C(e")<C(e), then the events are causally related

Otherwise, they are causally independent

Matrix Time

Vector time contains information about latest
direct dependencies

What does Pi know about Pk

Also contains info about latest direct
dependencies of those dependencies

What does Pi know about what Pk knows about P;
Message and computation overheads are high

Powerful and useful for applications like
distributed garbage collection

Physical Clocks

How do we measure real time?

17th

century - Mechanical clocks based on

astronomical measurements

So
So

Prob
(gets

ar Day - Transit of the sun
ar Seconds - Solar Day/(3600*24)

em (1940) - Rotation of the earth varies
slower)

Mean solar second - average over many days

Atomic Clocks

1948

counting transitions of a crystal (Cesium 133) used
as atomic clock

TAI - International Atomic Time
9192631779 transitions = 1 mean solar second in 1948

UTC (Universal Coordinated Time)

From time to time, we skip a solar second to stay in phase
with the sun (30+ times since 1958)

UTC is broadcast by several sources (satellites...)

Accuracy of Computer
Clocks

Modern timer chips have a relative error
of 1/100,000 - 0.86 seconds a day

To maintain synchronized clocks

Can use UTC source (time server) to obtain
current notion of time

Use solutions without UTC.

Berkeley UNIX algorithm

One daemon without UTC

Periodically, this daemon polls and asks all
the machines for their time

The machines respond.

The daemon computes an average time
and then broadcasts this average time.

Decentralized Averaging
Algorithm

Each machine has a daemon without UTC

Periodically, at fixed agreed-upon times,
each machine broadcasts its local time.

Each of them calculates the average time
by averaging all the received local times.

Clock Synchronization in
DCE

DCE’s time model is actually in an interval
I.e. time in DCE is actually an interval

Comparing 2 times may vield 3 answers
tl <t2
2 <tl
not determined
Each machine is either a time server or a clerk

Periodically a clerk contacts all the time servers on its
LAN

Based on their answers, it computes a new time and
gradually converges to it.

gl

|| 24n1daT rek e 4

AL 1)

a]EINI0E 5587

(o S1EIND0E 1504

d.LN ul Ayoselaly

Time Manager Operations

Logical Clocks

C.adjust(L,T)
adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

C.read
returns the current value of clock C
Timers
TP.set(T) - reset the timer to timeout in T units
Messages

receive(m,l); broadcast(m); forward(m,I)

Simulate A Global State

The notions of global time and global state are closely
related

A process can (without freezing the whole computation)
compute the best possible approximation of a global
state [Chandy & Lamport 85]

A global state that cou/d have occurred

No process in the system can decide whether the state did
really occur

Guarantee stable properties (i.e. once they become true, they
remain true)

Event Diagram

Time

ell el2 el3

P1 \
e2l e22 e23 e24 e25
P2 @

e32 e33 \34
P3 @

Poset Diagram

el3

el2

e23

e22

ell 21 @

e34

e33

. e32

e31

Equivalent Event Diagram

Time

ell el3

Pl

e21 e22 e23

P2 —@

e34

P3

e31

Rubber Band Transformation

Time

|
ell : el2
Pl]
e2l e22
P2

N
N
\
1
L

—\

e41 e42

Poset Diagram

e22

el2

e21

Consistent Cuts

A cut (or time slice) is a zigzag line cutting a time
diagram into 2 parts (past and future)

E is augmented with a cut event ¢, for each process P;:E" =E U
{C,...C.} -
A cut C of an event set E is a finite subset CcE: ecC A e'<ie —»€e’eC
A cut C, is later than G, if C,oC,
A consistent cut C of an event set E is a finite subset CcE : ecC A
e'<e »e’ eC

i.e. a cut is consistent if every message received was previously sent
(but not necessarily vice versa!)

initial
value

Cuts (Summary)

Instant of local
observation

Time

v

Pl @

5

N
Ll_l
|
3
|
2

|

I

|
'

not attainable

LI.I

ideal consistent
(vertical) cut
cut aas)

(15) 7

equivalent to a vertical cut
(rubber band transformation)

inconsistent

cut
19

can’t be made vertical
(message from the future)

“Rubber band transformation” changes metric, but keeps topology

Consistent Cuts

Theorems

With operations U and n the set of cuts of a partially ordered
event set E form a lattice

The set of consistent cuts is a sublattice of the set of all cuts

For a consistent cut consisting of cut events c,...,C,,, ho pair of cut
events is causally related. i.e V¢, ¢ ~(¢i< ¢) A ~(G<)

For any time diagram with a consistent cut consisting of cut events
c,...,C,, there is an equivalent time diagram where c,...,c, occur
simultaneously. i.e. where the cut line forms a straight vertical line

All cut events of a consistent cut can occur simultaneously

Global States of Consistent Cuts

A global state computed along a consistent cut is correct

The global state of a consistent cut comprises the local
state of each process at the time the cut event happens
and the set of all messages sent but not yet received

The snapshot problem consists in designing an efficient
protocol which yields only consistent cuts and to collect
the local state information

Messages crossing the cut must be captured

Chandy & Lamport presented an algorithm assuming that message
transmission is FIFO

Chandy-Lamport Distributed
Snapshot Algorithm

If (P1 has not yet recorded its state) it
records its process state now
records the state of ¢ as the empty set
turns on recording of messages arriving over other channels
else
Pi records the state of ¢ as the set of messages received over ¢
since 1t saved its state

After Pi has recorded its state, for each outgoing channel c:
Pi sends one marker message over ¢
(before it sends any other message over ¢)

Independence

Two events e,e’ are mutually independent (i.e. e||e’) if
~(e<e)a~(e'<e)
Two events are independent if they have the same timestamp
Events which are causally independent may get the same or
different timestamps
By looking at the timestamps of events it is not possible
to assert that some event cou/d not influence some
other event

If C(e)<C(e’) then ~(e<e’) however, it is not possible to decide
whether e<e’ or e||€’

C is an order Aomomorphism which preserves < but it does not
preserves negations (i.e. obliterates a lot of structure by
mapping E into a linear order)

An /somorphism mapping E onto T is requiered

Computing Global States without
FIFO Assumption

Algorithm

All process agree on some future virtual time s or a set of virtual
time instants s,,...s, which are mutually concurrent and did not
yet occur

A process takes its local snapshot at virtual time s
After time sthe local snapshots are collected to construct a
global snapshot

P, ticks and then fixes its next time s=C; +(0,...,0,1,0,...,0) to be the
common snhapshot time

P. broadcast s
P, blocks waiting for all the acknowledgements

P, ticks again (setting C,=s), takes its snapshot and broadcast a
dummy message (i.e. force everybody else to advance their clocks
to a value > s)

Each process takes its snapshot and sends it to P, when its local
clock becomes > s

Computing Global States without
FIFO Assumption (cont)

Inventing a n+1 virtual process whose clock is managed by P,
P, can use its clock and because the virtual clock C,,; ticks only
when P, initiates a new run of snapshot :

The first n component of the vector can be omitted

The first broadcast phase is unnecessary

Counter modulo 2

2 states
White (before snapshot)
Red (after snapshot)

Every message is red or white, indicating if it was send before or after
the snapshot

Each process (which is initially white) becomes red as soon as it
receives a red message for the first time and starts a virtual broadcast
algorithm to ensure that all processes will eventually become red

Computing Global States without
FIFO Assumption (cont)

Virtual broadcast
Dummy red messages to all processes

Flood the network by using a protocol where a process sends dummy
red messages to all its neighbors

Messages in transit
White messages received by red process
Target process receives the white message and sends a copy to the
initiator
Termination
Distributed termination detection algorithm [Mattern 87]

Deficiency counting method

Each process has a counter which counts messages send — messages
received. Thus, it is possible to determine the number of messages still in
transit

