
Distributed Systems 1

CS 230 - Distributed Systems

Lecture 1 - Introduction to Distributed Systems
Mondays, Wednesdays 12:30-1:50p.m.

Prof. Nalini Venkatasubramanian

nalini@ics.uci.edu

Distributed Systems 2

Course logistics and details

� Course Web page
�http://www.ics.uci.edu/~cs230

� Lectures - MW 12:30-1:50p.m

� Must Read: Course Reading List
⌧Collection of Technical papers and reports by topic

� Reference Books
⌧Distributed Systems: Concepts & Design, 4th ed. by Coulouris
et al. ISBN: 0-321-26354-5.

⌧Distributed Systems: Principles and Paradigms, 2nd ed. by
Tanenbaum & van Steen. ISBN: 0-132-39227-5.

⌧Distributed Computing: Principles, Algorithms, and
Systems, 1st ed. by Kshemkalyani & Singhal. ISBN: 0-521-87634-
6

Distributed Systems 3

Prerequisite Knowledge

�Necessary – Operating Systems Concepts and
Principles, basic computer system architecture

�Highly Desirable – Understanding of Computer
Networks, Network Protocols

�Necessary – Basic programming skills in Java,
C++,…

Distributed Systems 4

Course logistics and details

�Homeworks

�Paper summaries

�Midterm Examination

�Course Project

�Maybe done individually or in groups

⌧Project proposal due end of Week 2

⌧Survey of related research due end of Week 6

⌧Final Project presentations/demos/reports – Finals
week

�Potential projects will be available on webpage

Distributed Systems 5

CompSci 230 Grading Policy

�Homeworks - 30% of final grade
⌧1 paper summary due every week from Week 2

�Midterm - 30% of final grade
⌧Tentatively in Week 7

�Class Project - 40% of the final grade

�Final assignment of grades will be based on a
curve.

Distributed Systems 6

Lecture Schedule

�Weeks 1,2,3: Distributed Systems Fundamentals

⌧Introduction – Needs/Paradigms

• Basic Concepts and Terminology, Concurrency

⌧Time and State in Distributed Systems

⌧Messaging/Communication in Distributed Systems

• Naming, Directory Services

�Week 4,5,6: Distributed OS and Middleware Issues

⌧Communication

• Remote Procedure Calls, Remote Method Invocation

⌧Distributed Process and Resource Management

• Task Migration, Load Balancing, SOA

⌧Distributed Process Synchronization

• Distributed Mutual Exclusion, Distributed Deadlocks

⌧Distributed I/O and Storage Subsystems

• Distributed FileSystems

Distributed Systems 7

Lecture Schedule

�Weeks 7,8,9: Non-functional “ilities” in distributed
systems

⌧ Reliability and Fault Tolerance

⌧ Quality of Service and Real-time Needs

⌧ Scalability

⌧ Security and Privacy

�Week 10: Sample Distributed Systems

⌧ P2P, Grid and Cloud Computing

⌧ Mobile and Pervasive Systems/Applications

Distributed Systems 8

Introduction

�Distributed Systems

�Multiple independent computers that appear as one

�Lamport’s Definition

⌧“ You know you have one when the crash of a
computer you have never heard of stops you from
getting any work done.”

�“A number of interconnected autonomous computers
that provide services to meet the information
processing needs of modern enterprises.”

Distributed Systems 9

Next Generation Information Infrastructure

QoS Enabled Wide

Area Network

Battlefield

Visualization

Battle
Planning

Battlefield

Visualization

Collaborative

Multimedia

(Telemedicine)

Collaborative

task Clients
Data servers

Battle
Planning

Electronic

Commerce Distance Learning

Requirements - Availability, Reliability, Quality-of-Service, Cost-effectiveness, Security

DeviceNets

&

SensorNets

Distributed Systems 10

Characterizing Distributed

Systems

� Multiple Autonomous Computers

�each consisting of CPU’s, local memory, stable storage, I/O
paths connecting to the environment

�Geographically Distributed

� Interconnections

�some I/O paths interconnect computers that talk to each other

� Shared State

�No shared memory

�systems cooperate to maintain shared state

�maintaining global invariants requires correct and coordinated
operation of multiple computers.

Distributed Systems 11

Examples of Distributed

Systems

� Transactional applications - Banking systems

� Manufacturing and process control

� Inventory systems

� General purpose (university, office automation)

� Communication – email, IM, VoIP, social networks

� Distributed information systems

� WWW

� Cloud Computing Infrastructures

� Federated and Distributed Databases

Distributed Systems 12

Why Distributed Computing?

�Inherent distribution

�Bridge customers, suppliers, and companies at
different sites.

�Speedup - improved performance

�Fault tolerance

�Resource Sharing

�Exploitation of special hardware

�Scalability

�Flexibility

Distributed Systems 13

Why are Distributed Systems

Hard?

�Scale

�numeric, geographic, administrative

�Loss of control over parts of the system

�Unreliability of message passing

�unreliable communication, insecure communication,
costly communication

�Failure

�Parts of the system are down or inaccessible

�Independent failure is desirable

Distributed Systems 14

Design goals of a distributed

system

�Sharing
�HW, SW, services, applications

�Openness(extensibility)
�use of standard interfaces, advertise services,
microkernels

�Concurrency
�compete vs. cooperate

�Scalability
�avoids centralization

�Fault tolerance/availability
�Transparency

�location, migration, replication, failure, concurrency

Distributed Systems 15

Distributed Systems 16

Pervasive Sensing and Computing

– UCI Responsphere

16

Campus-wide infrastructure to instrument, experiments,
monitor, disaster drills & to validate technologies

sensing, communicating, storage & computing infrastructure

Software for real-time collection, analysis, and processing of
sensor information

used to create real time information awareness & post-drill
analysis

Distributed Systems 17

Classifying Distributed

Systems

�Based on degree of synchrony
�Synchronous
�Asynchronous

�Based on communication medium
�Message Passing
�Shared Memory

�Fault model
�Crash failures
�Byzantine failures

Distributed Systems 18

Computation in distributed

systems

� Asynchronous system
�no assumptions about process execution speeds and message

delivery delays

� Synchronous system
�make assumptions about relative speeds of processes and delays

associated with communication channels
�constrains implementation of processes and communication

� Models of concurrency
�Communicating processes
�Functions, Logical clauses
�Passive Objects
�Active objects, Agents

Distributed Systems 19

Concurrency issues

�Consider the requirements of transaction based
systems

�Atomicity - either all effects take place or none

�Consistency - correctness of data

�Isolated - as if there were one serial database

�Durable - effects are not lost

�General correctness of distributed computation

�Safety

�Liveness

Distributed Systems 20

Communication in Distributed

Systems

�Provide support for entities to communicate
among themselves
�Centralized (traditional) OS’s - local communication
support

�Distributed systems - communication across machine
boundaries (WAN, LAN).

�2 paradigms
�Message Passing

⌧Processes communicate by sharing messages

�Distributed Shared Memory (DSM)
⌧Communication through a virtual shared memory.

Distributed Systems 21

Message Passing

� Basic communication primitives
�Send message
�Receive message

� Modes of communication
�Synchronous

⌧atomic action requiring the participation of the sender and receiver.
⌧Blocking send: blocks until message is transmitted out of the
system send queue

⌧Blocking receive: blocks until message arrives in receive queue

�Asynchronous
⌧Non-blocking send:sending process continues after message is sent
⌧Blocking or non-blocking receive: Blocking receive implemented by
timeout or threads. Non-blocking receive proceeds while waiting for
message. Message is queued(BUFFERED) upon arrival.

Distributed Systems 22

Reliability issues

�Unreliable communication

�Best effort, No ACK’s or retransmissions

�Application programmer designs own reliability
mechanism

�Reliable communication

�Different degrees of reliability

�Processes have some guarantee that messages will
be delivered.

�Reliability mechanisms - ACKs, NACKs.

Distributed Systems 23

Reliability issues

�Unreliable communication

�Best effort, No ACK’s or retransmissions

�Application programmer designs own reliability
mechanism

�Reliable communication

�Different degrees of reliability

�Processes have some guarantee that messages will
be delivered.

�Reliability mechanisms - ACKs, NACKs.

Distributed Systems 24

Distributed Shared Memory

� Abstraction used for processes on machines that do not
share memory

�Motivated by shared memory multiprocessors that do share
memory

CPU Memory

CPU1 Memory

CPU4

CPU2

CPU3

Distributed Systems 25

Distributed Shared Memory

� Processes read and write from virtual shared memory.

�Primitives - read and write

�OS ensures that all processes see all updates

� Caching on local node for efficiency

�Issue - cache consistency

CPU CPU CPU Memory

CPU

Cache
MemoryCPU

Cache

CPU

Cache

CPU

Cache

Distributed Systems 26

Remote Procedure Call

� Builds on message passing

�extend traditional procedure call to perform transfer of control
and data across network

�Easy to use - fits well with the client/server model.

�Helps programmer focus on the application instead of the
communication protocol.

�Server is a collection of exported procedures on some shared
resource

�Variety of RPC semantics

⌧“maybe call”

⌧“at least once call”

⌧“at most once call”

Distributed Systems 27

Fault Models in Distributed

Systems

�Crash failures
�A processor experiences a crash failure when it
ceases to operate at some point without any warning.
Failure may not be detectable by other processors.
⌧Failstop - processor fails by halting; detectable by
other processors.

�Byzantine failures
�completely unconstrained failures
�conservative, worst-case assumption for behavior of
hardware and software

�covers the possibility of intelligent (human) intrusion.

Distributed Systems 28

Other Fault Models in

Distributed Systems

�Dealing with message loss
�Crash + Link

⌧Processor fails by halting. Link fails by losing
messages but does not delay, duplicate or corrupt
messages.

�Receive Omission
⌧processor receives only a subset of messages sent to
it.

�Send Omission
⌧processor fails by transmitting only a subset of the
messages it actually attempts to send.

�General Omission
⌧Receive and/or send omission

Distributed Systems 29

Other Distributed System

issues

�Concurrency and Synchronization
�Distributed Deadlocks
�Time in distributed systems
�Naming
�Replication

�improve availability and performance

�Migration
�of processes and data

�Security
�eavesdropping, masquerading, message tampering,
replaying

Distributed Systems 30

Client/Server Computing

�Client/server computing allocates application
processing between the client and server
processes.

�A typical application has three basic
components:

�Presentation logic

�Application logic

�Data management logic

Distributed Systems 31

Client/Server Models

�There are at least three different models for
distributing these functions:
�Presentation logic module running on the client
system and the other two modules running on one or
more servers.

�Presentation logic and application logic modules
running on the client system and the data
management logic module running on one or more
servers.

�Presentation logic and a part of application logic
module running on the client system and the other
part(s) of the application logic module and data
management module running on one or more servers

Distributed Systems 32

Distributed Computing Platform

• Application Support Services (OS,

DB support, Directories, RPC)

• Communication Network Services

(Network protocols, Physical devices)

• Hardware

Application Systems:

support enterprise systems

Enterprise Systems:

Perform enterprise activities
M

an
ag

em
en

t

an
d

 S
u

p
p

o
rt

N
et

w
o

rk

M
an

ag
em

en
t

I n
t e

ro
p

er
a b

il
i t

y

P
o

rt
ab

i l
it

y
In

te
g

ra
ti

o
n

Distributed Systems 33

Application Systems:

Enterprise Systems:

•Engineering systems

•Business systems

M
an

ag
em

en
t

an
d

 S
u

p
p

o
rt

N
et

w
o

rk

M
an

ag
em

en
t

I n
t e

ro
p

er
a b

il
i t

y

P
o

rt
ab

i l
it

y
In

te
g

ra
ti

o
n

• Manufacturing

• Office systems

User

Interfaces

Processing

programs

Data files &

Databases

Distributed Computing Platform
• Application Support Services

C/S Support
Distributed

OS

Dist. Data

Trans. Mgmt.

Common Network Services

• Network protocols & interconnectivity
OSI

protocols
SNATCP/IP

Distributed Systems 34

Distributed Computing

Environment (DCE)

�DCE is from the Open Software Foundation
(OSF), and now X/Open, offers an environment
that spans multiple architectures, protocols, and
operating systems.

�DCE supported by major software vendors.

�It provides key distributed technologies,
including RPC, a distributed naming service, time
synchronization service, a distributed file system,
a network security service, and a threads
package.

Distributed Systems 35

Operating System Transport Services

DCE Threads Services

DCE Remote Procedure Calls

DCE

Distributed

Time Service

DCE

Directory

Service

Other Basic

Services

DCE Distributed File Service

Applications

DCE

Security

Service

M
an

ag
em

en
t

DCE

Distributed Systems 36

Distributed Systems Middleware

�Middleware is the software between the
application programs and the operating
System and base networking

�Integration Fabric that knits together
applications, devices, systems software, data

�Middleware provides a comprehensive set of
higher-level distributed computing
capabilities and a set of interfaces to access
the capabilities of the system.

Distributed Systems 37

The Evergrowing Middleware
Alphabet SoupDistributed

Computing
Environment (DCE)

Object Request Broker
(ORB)

opalORB
Distributed Component

Object Model (DCOM)

ZEN

RTCORBA

JINITM
Remote Method

Invocation
(RMI)

Remote Procedure Call
(RPC)

Enterprise
JavaBeans
Technology

(EJB)

BEA WebLogic®

Encina/9000

Extensible Markup Language (XML)

SOAP

EAI

Orbix

ORBlite

WS-BPEL
WSIL

WSDL

XQuery

XPath

BEA Tuxedo®

Message Queuing (MSMQ)

Borland® VisiBroker®

IDL

IOP
IIOP
GIOP

Rendezvous

BPEL

Java Transaction API (JTA)

JNDI JMS
LDAPLDAPLDAPLDAP

Distributed Systems 38

The Evergrowing Alphabet Soup

� CORBA, OMG, CanCORBA, ORBIX, JavaORB, ORBLite, TAO, Zen,
RTCORBA, FTCORBA,DCOM, POA,IDL,IOP,IIOP,

� ObjectBroker, Visibroker, Orbix, ObjectBus,ESBs

� MOM – TIBCO TIB/Rendezvous, BEA MessageQ, Microsoft MSMQ,
ActiveWorks

� JVM, JINI, RMI, J2EE, EJB,J2ME, JDBC,JTA, JTS,JMS, JNDI,

� Enterprise Middleware Technologies -- BEA WebLogic, IBM
WebSphere, TivoliBeans

� ENCINA, Tuxedo, CICS

� XML, XQuery,

� SOAP, Web Services, WSDL, BPEL

� …..

Distributed Systems 39

Distributed Systems

Middleware

�Enables the modular interconnection of distributed
software

⌧abstract over low level mechanisms used to
implement resource management services.

�Computational Model

⌧Support separation of concerns and reuse of services

�Customizable, Composable Middleware Frameworks

⌧Provide for dynamic network and system
customizations, dynamic
invocation/revocation/installation of services.

⌧Concurrent execution of multiple distributed systems
policies.

Distributed Systems 40

Application Program

Middleware

Service 1

API

Middleware

Service 3

API

Middleware

Service 2

API

Modularity in Middleware

Services

Distributed Systems 41

Useful Middleware Services

�Naming and Directory Service

�State Capture Service

�Event Service

�Transaction Service

�Fault Detection Service

�Trading Service

�Replication Service

�Migration Service

Distributed Systems 42

Integration Frameworks

Middleware

�Integration frameworks are integration
environments that are tailored to the needs of a
specific application domain.

�Examples

�Workgroup framework - for workgroup computing.

�Transaction Processing monitor frameworks

�Network management frameworks

Distributed Systems 43

Distributed Object Computing

�Combining distributed computing with an object
model.

�Allows software reusability and a more abstract level
of programming

�The use of a broker like entity or bus that keeps track
of processes, provides messaging between processes
and other higher level services

�Examples

⌧CORBA

⌧JINI, EJB, J2EE

⌧E-SPEAK

⌧Note: DCE uses a procedure-oriented distributed
systems model, not an object model.

Distributed Systems 44

Issues with Distributed

Objects

�Abstraction

�Performance

�Latency

�Partial failure

�Synchronization

�Complexity

Distributed Systems 45

Techniques for object

distribution

�Message Passing

⌧Object knows about network; Network data is
minimum

�Argument/Return Passing

⌧Like RPC. Network data = args + return result +
names

�Serializing and Sending Object

⌧Actual object code is sent. Might require
synchronization. Network data = object code + object
state + sync info

�Shared Memory

⌧based on DSM implementation

⌧Network Data = Data touched + synchronization info

Distributed Systems 46

CORBA

�CORBA is a standard specification for developing
object-oriented applications.

�CORBA was defined by OMG in 1990.

�OMG is dedicated to popularizing Object-
Oriented standards for integrating applications
based on existing standards.

Distributed Systems 47

The Object Management

Architecture (OMA)

Application

Objects

Object Request

Broker

Common

facilities

Object Services

Distributed Systems 48

OMA

�ORB: the communication hub for all objects
in the system

�Object Services: object events, persistent
objects, etc.

�Common facilities: accessing databases,
printing files, etc.

�Application objects: document handling
objects.

Distributed Systems 49

Virtual Time & Global States of

Distributed Systems

� Asynchronous distributed systems consist of several processes
without common memory which communicate (solely) via
messages with unpredictable transmission delays

� Global time & global state are hard to realize in distributed systems

�We can only approximate the global view

⌧Simulate synchronous distributed system on a given asynchronous
systems

⌧Simulate a global time

⌧Simulate a global state

Distributed Systems 50

Simulate Synchronous

Distributed Systems

� Synchronizers [Awerbuch 85]

� Simulate clock pulses in such a way that a message is only generated at
a clock pulse and will be received before the next pulse

�Drawback

⌧Very high message overhead

Distributed Systems 51

Clock Synchronization in

Distributed Systems

�Clocks in a distributed system drift:

�Relative to each other

⌧Logical Clocks are clocks which are synchronized
relative to each other.

�Relative to a real world clock

⌧Determination of this real world clock may be an
issue

⌧Physical clocks are logical clocks that must not
deviate from the real-time by more than a certain
amount.

Distributed Systems 52

Synchronizing Logical Clocks

�Need to understand the ordering of events

�Notion of time is critical

�“Happens Before” notion.

�E.g. Concurrency control using timestamps

�“Happens Before” notion is not straightforward
in distributed systems

�No guarantees of synchronized clocks

�Communication latency

Distributed Systems 53

Event Ordering

�Lamport defined the “happens before” (=>)
relation

�If a and b are events in the same process, and a
occurs before b, then a => b.

�If a is the event of a message being sent by one
process and b is the event of the message being
received by another process, then a => b.

�If X =>Y and Y=>Z then X => Z.

If a => b then time (a) => time (b)

Distributed Systems 54

Causal Ordering

�“Happened Before” also called causal ordering

�Possible to draw a causality relation between 2
events if

�They happen in the same process

�There is a chain of messages between them

Distributed Systems 55

Logical Clocks

�Monotonically increasing counter

�No relation with real clock

�Each process keeps its own logical clock Cp used
to timestamp events

Distributed Systems 56

Causal Ordering and Logical

Clocks

�Cp is incremented before each event.

�Cp = Cp + 1

�When p sends a message m, it piggybacks a
logical timestamp t = Cp.

�When q receives (m,t) it computes:

�Cq = max(Cq,t) before timestamping the message
receipt event.

�Results in a partial ordering of events.

Distributed Systems 57

Distributed Systems 58

Total Ordering

�Extending partial order to total order

�Global timestamps:

�(Ta, Pa) where Ta is the local timestamp and Pa is
the process id.

�(Ta,Pa) < (Tb,Pb) iff

⌧(Ta < Tb) or ((Ta = Tb) and (Pa < Pb))

�Total order is consistent with partial order.

time Proc_id

Distributed Systems 59

Problems with Total Ordering

� A linearly ordered structure of time is not always adequate for
distributed systems

� captures dependence of events

� loses independence of events - artificially enforces an ordering for
events that need not be ordered.

� Mapping partial ordered events onto a linearly ordered set of integers it is losing
information

• Events which may happen simultaneously may get different timestamps
as if they happen in some definite order.

� A partially ordered system of vectors forming a lattice structure is a
natural representation of time in a distributed system

� It resembles Minkowski’s relativistic space-time (see Special Theory
of Relativity)

Distributed Systems 60

Physical Clocks

�How do we measure real time?

�17th century - Mechanical clocks based on
astronomical measurements

⌧Solar Day - Transit of the sun

⌧Solar Seconds - Solar Day/(3600*24)

�Problem (1940) - Rotation of the earth varies (gets
slower)

�Mean solar second - average over many days

Distributed Systems 61

Atomic Clocks

�1948

�counting transitions of a crystal (Cesium 133) used as
atomic clock

�TAI - International Atomic Time

⌧9192631779 transitions = 1 mean solar second in
1948

�UTC (Universal Coordinated Time)

⌧From time to time, we skip a solar second to stay in
phase with the sun (30+ times since 1958)

⌧UTC is broadcast by several sources (satellites…)

Distributed Systems 62

Accuracy of Computer Clocks

�Modern timer chips have a relative error of
1/100,000 - 0.86 seconds a day

�To maintain synchronized clocks

�Can use UTC source (time server) to obtain current
notion of time

�Use solutions without UTC.

Distributed Systems 63

Berkeley UNIX algorithm

�One daemon without UTC

�Periodically, this daemon polls and asks all the
machines for their time

�The machines respond.

�The daemon computes an average time and
then broadcasts this average time.

Distributed Systems 64

Decentralized Averaging

Algorithm

�Each machine has a daemon without UTC

�Periodically, at fixed agreed-upon times, each
machine broadcasts its local time.

�Each of them calculates the average time by
averaging all the received local times.

Distributed Systems 65

Clock Synchronization in DCE

�DCE’s time model is actually in an interval

�I.e. time in DCE is actually an interval

�Comparing 2 times may yield 3 answers

⌧t1 < t2

⌧t2 < t1

⌧not determined

�Each machine is either a time server or a clerk

�Periodically a clerk contacts all the time servers on its
LAN

�Based on their answers, it computes a new time and
gradually converges to it.

Distributed Systems 66

The Network Time Protocol

�Enables clients across the Internet to be
synchronized accurately to the UTC

�Overcomes large and variable message delays

�Statistical techniques for filtering can be applied

⌧based on past behavior of server

�Can survive lengthy losses of connectivity

�Enables frequent synchronization

�Provides protection against interference

�Uses a hierarchy of servers located across the
Internet (Primary servers connected to a UTC time
source).

Distributed Systems 67

Distributed Systems 68

Time Manager Operations

�Logical Clocks

�C.adjust(L,T)

⌧adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

�C.read

⌧returns the current value of clock C

�Timers

�TP.set(T) - reset the timer to timeout in T units

�Messages

�receive(m,l); broadcast(m); forward(m,l)

