CS 230 - Distributed Systems

Lecture 1 - Introduction to Distributed Systems
Mondays, Wednesdays 12:30-1:50p.m.

Prof. Nalini Venkatasubramanian
nalini@ics.uci.edu

Distributed Systems

Course logistics and details

Course Web page
http://www.ics.uci.edu/~cs230

Lectures - MW 12:30-1:50p.m
Must Read: Course Reading List

Collection of Technical papers and reports by topic

Reference Books

Distributed Systems: Concepts & Design, 4th ed. by Coulouris
et al. ISBN: 0-321-26354-5.

Distributed Systems: Principles and Paradigms, 2nd ed. by
Tanenbaum & van Steen. ISBN: 0-132-39227-5.

Distributed Computing: Principles, Algorithms, and
Systems, 1st ed. by Kshemkalyani & Singhal. ISBN: 0-521-87634-
6

Distributed Systems

Prerequisite Knowledge

Necessary — Operating Systems Concepts and
Principles, basic computer system architecture

Highly Desirable — Understanding of Computer
Networks, Network Protocols

Necessary — Basic programming skills in Java,
C++,...

Distributed Systems

Course logistics and details

Homeworks
Paper summaries

Midterm Examination

Course Project

Maybe done individually or in groups
Project proposal due end of Week 2
Survey of related research due end of Week 6
Final Project presentations/demos/reports — Finals
week

Potential projects will be available on webpage

Distributed Systems

CompSci 230 Grading Policy

Homeworks - 30% of final grade
1 paper summary due every week from Week 2

Midterm - 30% of final grade
Tentatively in Week 7

Class Project - 40% of the final grade

Final assignment of grades will be based on a
curve.

Distributed Systems

Lecture Schedule

Weeks 1,2,3: Distributed Systems Fundamentals
Introduction - Needs/Paradigms
Basic Concepts and Terminology, Concurrency
Time and State in Distributed Systems
Messaging/Communication in Distributed Systems
Naming, Directory Services

Week 4,5,6: Distributed OS and Middleware Issues

Communication
Remote Procedure Calls, Remote Method Invocation
Distributed Process and Resource Management
Task Migration, Load Balancing, SOA
Distributed Process Synchronization
Distributed Mutual Exclusion, Distributed Deadlocks
Distributed I/0 and Storage Subsystems
Distributed FileSystems
Distributed Systems

Lecture Schedule

Weeks 7,8,9: Non-functional “ilities” in distributed
systems

Reliability and Fault Tolerance

Quality of Service and Real-time Needs

Scalability
Security and Privacy

Week 10: Sample Distributed Systems

P2P, Grid and Cloud Computing
Mobile and Pervasive Systems/Applications

Distributed Systems

Introduction

Distributed Systems
Multiple independent computers that appear as one

Lamport’s Definition

" You know you have one when the crash of a
computer you have never heard of stops you from
getting any work done.”
“A number of interconnected autonomous computers
that provide services to meet the information
processing needs of modern enterprises.”

Distributed Systems

Next Generation Information Infrastructure

DeviceNets

&

SensorNets
Electronic E s S
Commerce Distance Learning

i

QoS Enabled Wide
Area Network

Battlefie!
Visualization

Collaborative P Collaborative
Multimedia task Clients
(Telemedicine)

Requirements - Availability, Reliability, Quality-of-Service, Cost-effectiveness, Security
Distributed Systems 9

Characterizing Distributed
Systems

Multiple Autonomous Computers

each consisting of CPU’s, local memory, stable storage, 1/0
paths connecting to the environment

Geographically Distributed

Interconnections
some I/O paths interconnect computers that talk to each other

Shared State

No shared memory
systems cooperate to maintain shared state

maintaining global invariants requires correct and coordinated
operation of multiple computers.

Distributed Systems

10

Examples of Distributed
Systems

Transactional applications - Banking systems
Manufacturing and process control
Inventory systems

General purpose (university, office automation)
Communication — email, IM, VoIP, social networks

Distributed information systems
WWW
Cloud Computing Infrastructures
Federated and Distributed Databases

Distributed Systems

11

Why Distributed Computing?

Inherent distribution

Bridge customers, suppliers, and companies at
different sites.

Speedup - improved performance
Fault tolerance

Resource Sharing
Exploitation of special hardware

Scalability
Flexibility

Distributed Systems

12

Why are Distributed Systems
Hard?

Scale
numeric, geographic, administrative

Loss of control over parts of the system

Unreliability of message passing

unreliable communication, insecure communication,
costly communication

Failure
Parts of the system are down or inaccessible
Independent failure is desirable

Distributed Systems

13

Design goals of a distributed
system

Sharing
HW, SW, services, applications

Openness(extensibility)

use of standard interfaces, advertise services,
microkernels

Concurrency
compete vs. cooperate

Scalability

avoids centralization
Fault tolerance/availability

Transparency
location, migration, replication, failure, concurrency

Distributed Systems

14

SLrECe Ao AtarE . -

Virtual
Display

oy

+I.j'| - Kﬂl'dk PHJJ

Distributed

Pervasive Sensing and Computing
— UCI Responsphere

e — - 70y . Commercial
- — ’.s:# e S— Internet
| — =

w
1 CalREN e
SBC SO-CAL ¢ v 10Ghps P :
; 5 Sy (CENIC) —~
- e —

Campus-wide infrastructure to instrument, experiments,
monitor, disaster drills & to validate technologies

sensing, communicating, storage & computing infrastructure

Software for real-time collection, analysis, and processing of
sensor information

used to create real time information awareness & post-drill
analysis

-

' People RS Cameras =l
counters ey -

Classifying Distributed
Systems

Based on degree of synchrony
Synchronous
Asynchronous

Based on communication medium
Message Passing
Shared Memory

Fault model
Crash failures
Byzantine failures

Distributed Systems

17

Computation in distributed
systems

Asynchronous system
no assumptions about process execution speeds and message
delivery delays

Synchronous system

make assumptions about relative speeds of processes and delays
associated with communication channels

constrains implementation of processes and communication

Models of concurrency
Communicating processes
Functions, Logical clauses
Passive Objects
Active objects, Agents

Distributed Systems 18

Concurrency issues

Consider the requirements of transaction based
systems
Atomicity - either all effects take place or none
Consistency - correctness of data
Isolated - as if there were one serial database
Durable - effects are not lost

General correctness of distributed computation
Safety
Liveness

Distributed Systems 19

Communication in Distributed
Systems

Provide support for entities to communicate
among themselves

Centralized (traditional) OS’s - local communication
support

Distributed systems - communication across machine
boundaries (WAN, LAN).
2 paradigms

Message Passing
Processes communicate by sharing messages

Distributed Shared Memory (DSM)
Communication through a virtual shared memory.

Distributed Systems 20

Message Passing

Basic communication primitives
Send message
Receive message

Modes of communication
Synchronous
atomic action requiring the participation of the sender and receiver.
Blocking send: blocks until message is transmitted out of the

system send queue
Blocking receive: blocks until message arrives in receive queue

Asynchronous
Non-blocking send:sending process continues after message is sent

Blocking or non-blocking receive: Blocking receive implemented b}/
timeout or threads. Non-blocking receive proceeds while waiting tor
message. Message is queued(BUFFERED) upon arrival.

Distributed Systems 21

Reliability issues

Unreliable communication
Best effort, No ACK’s or retransmissions

App
mec

Reliab

ication programmer designs own reliability
nanism

e communication

Different degrees of reliability

Processes have some guarantee that messages will
be delivered.

Reliability mechanisms - ACKs, NACKs.

Distributed Systems

22

Reliability issues

Unreliable communication
Best effort, No ACK’s or retransmissions

App
mec

Reliab

ication programmer designs own reliability
nanism

e communication

Different degrees of reliability

Processes have some guarantee that messages will
be delivered.

Reliability mechanisms - ACKs, NACKs.

Distributed Systems

23

Distributed Shared Memory

Abstraction used for processes on machines that do not
share memory

Motivated by shared memory multiprocessors that do share
memory

Distributed Systems

24

Distributed Shared Memory

Processes read and write from virtual shared memory.
Primitives - read and write
OS ensures that all processes see all updates

Caching on local node for efficiency
Issue - cache consistency

= o) e
e

Distributed Systems

25

Remote Procedure Call

Builds on message passing

extend traditional procedure call to perform transfer of control
and data across network

Easy to use - fits well with the client/server model.

Helps programmer focus on the application instead of the
communication protocol.

Server is a collection of exported procedures on some shared
resource
Variety of RPC semantics

“maybe call”

“at least once call”

“at most once call”

Distributed Systems

26

Fault Models in Distributed
Systems

Crash failures

A processor experiences a crash failure when it
ceases to operate at some point without any warning.
Failure may not be detectable by other processors.

Failstop - processor fails by halting; detectable by
other processors.

Byzantine failures
completely unconstrained failures

conservative, worst-case assumption for behavior of
hardware and software

covers the possibility of intelligent (human) intrusion.

Distributed Systems 27

Other Fault Models in
Distributed Systems

Dealing with message loss

Crash + Link

Processor fails by halting. Link fails by losing
messages but does not delay, duplicate or corrupt
messages.

Receive Omission
processor receives only a subset of messages sent to
it

Send Omission

processor fails by transmitting only a subset of the
messages it actually attempts to send.

General Omission
Receive and/or send omission

Distributed Systems 28

Other Distributed System
issues

Concurrency and Synchronization
Distributed Deadlocks
Time in distributed systems
Naming
Replication

improve availability and performance
Migration

of processes and data

Security

eavesdropping, masquerading, message tampering,
replaying

Distributed Systems

29

Client/Server Computing

Client/server computing allocates application
processing between the client and server
processes.

A typical application has three basic
components:

Presentation logic

Application logic

Data management logic

Distributed Systems

30

Client/Server Models

There are at least three different models for

distributing these functions:

Presentation logic module running on the client
system and the other two modules running on one or
more servers.

Presentation logic and application logic modules
running on the client system and the data
management logic module running on one or more
servers.

Presentation logic and a part of application logic
module running on the client system and the other
part(s) of the application logic module and data
management module running on one or more servers

Distributed Systems 31

Management
and Support

Network

Management

Enterprise Systems:
Perform enterprise activities

Application Systems:
support enterprise systems

Distributed Computing Platform

e Application Support Services (OS,
DB support, Directories, RPC)

e Communication Network Services
(Network protocols, Physical devices)

e Hardware

>
N
v
5
av]
—
O
'ﬁ:%
o
;_‘vl—i
O
e O
_— 3
~N—
.
@)
A

Integration

Distributed Systems

32

Management
and Support

Network

Enterprise Systems:
*Engineering systems ¢ Manufacturing

*Business systems

e Office systems

Management

Application Systems:

User
Interfaces

Processing

programs

Data files &
Databases

Distributed Computing Platform
e Application Support Services

C/S Support

Dist. Data
Trans. Memt.

Distributed
OS

Common Network Services

» Network protocols & interconnectivity

OSI
protocols

TCP/IP

SNA

Interoperability

Portability

Integration

Distributed Systems

33

Distributed Computing
Environment (DCE)

DCE is from the Open Software Foundation
(OSF), and now X/Open, offers an environment

that spans multiple architectures, protocols, and

operating systems.
DCE supported by major software vendors.

It provides key distributed technologies,

including RPC, a distributed naming service, time
synchronization service, a distributed file system,

a network security service, and a threads
package.

Distributed Systems

34

DCE

Applications
DCE DCE Distributed File Service
SeC“?“y : DCE .DCE Other Basic
Service | Distributed | Directory :
. . . Services
Time Service Service
DCE Remote Procedure Calls

Management

DCE Threads Services

Operating System Transport Services

Distributed Systems

35

Distributed Systems Middleware

Middleware is the software between the
application programs and the operating
System and base networking

Integration Fabric that knits together

Middleware provides a comprehensive set of
higher-level distributed computing
capabilities and a set of interfaces to access
the capabilities of the system.

applications, devices, systems software, data

Distributed Systems

36

The Evergrowing Middleware

Distributed t §_O* QVS —
Computing nng
Environment (DCE) > WSIL

WSDL Java Transaction API (JTA) .
JNDI JMS
BPEL BEA Tuxedo®

Message Queuing (MSMQ)

XQuery
opalORB
Remote Method XPath
Invocation

Rendezvous B TIBCO’ ORBlite (RMI)

omeren e BEA WebLogic®
Remote Procedure Call [o‘]’ ‘[ﬂ
(RPC) ORACLE | Zhea

Nistributed SyshLES LY software = d EE

The Evergrowing Alphabet Soup

CORBA, OMG, CanCORBA, ORBIX, JavaORB, ORBLite, TAO, Zen,
RTCORBA, FTCORBA,DCOM, POA,IDL,IOP,IIOP,

ObjectBroker, Visibroker, Orbix, ObjectBus,ESBs

MOM - TIBCO TIB/Rendezvous, BEA MessageQ, Microsoft MSMQ,
ActiveWorks

JVM, JINI, RMI, J2EE, EJB,J2ME, JDBC,JTA, JTS,IJMS, JNDI,

Enterprise Middleware Technologies -- BEA WebLogic, IBM
WebSphere, TivoliBeans

ENCINA, Tuxedo, CICS
XML, XQuery,
SOAP, Web Services, WSDL, BPEL

Distributed Systems

38

Distributed Systems
Middleware

e R
EL |

Enables the modular interconnection of distributed
software

abstract over low level mechanisms used to

implement resource management services.
Computational Model

Support separation of concerns and reuse of services

Customizable, Composable Middleware Frameworks

Provide for dynamic network and system
customizations, dynamic
invocation/revocation/installation of services.

Concurrent execution of multiple distributed systems
policies.

Distributed Systems 39

Modularity in Middleware

Services
Application Program
API API API
Middleware Middleware Middleware
Service 1 Service 2 Service 3

Distributed Systems

40

Useful Middleware Services

C—————

Naming and Directory Service
State Capture Service

Event Service

Transaction Service

Fault Detection Service
Trading Service

Replication Service

Migration Service

Distributed Systems

41

Integration Frameworks
Middleware

Integration frameworks are integration
environments that are tailored to the needs of a
specific application domain.

Examples
Workgroup framework - for workgroup computing.
Transaction Processing monitor frameworks
Network management frameworks

Distributed Systems

42

Distributed Object Computing

Combining distributed computing with an object
model.

Allows software reusability and a more abstract level
of programming
The use of a broker like entity or bus that keeps track

of processes, provides messaging between processes
and other higher level services

Examples
CORBA
JINI, EJB, J2EE
E-SPEAK

Note: DCE uses a procedure-oriented distributed
systems model, ntt'&iroljEet model. 43

Issues with Distributed
Objects

Abstraction
Performance
Latency

Partial failure
Synchronization
Complexity

Distributed Systems

Techniques for object
distribution

Message Passing
Object knows about network; Network data is
minimum

Argument/Return Passing

Like RPC. Network data = args + return result +
names

Serializing and Sending Object

Actual object code is sent. Might require
synchronization. Network data = object code + object
state + sync info

Shared Memory
based on DSM implementation

Network Data = Data touched + synchronization info
Distributed Systems 45

CORBA

CORBA is a standard specification for developing

object-oriented applications.
CORBA was defined by OMG in 1990.

OMG is dedicated to popularizing Object-
Oriented standards for integrating applications
based on existing standards.

Distributed Systems

46

The Object Management
Architecture (OMA)

Application
Objects

Common
facilities

N

Object Request

e

Broker

Object Services

Distributed Systems

47

OMA

ORB: the communication hub for all object

in the system

Object Services: object events, persistent
objects, etc.

Common facilities: accessing databases,
printing files, etc.

Application objects: document handling
objects.

Distributed Systems

48

Virtual Time & Global States of
Distributed Systems

Asynchronous distributed systems consist of several processes
without common memory which communicate (solely) via
messages with unpredictable transmission delays

Global time & global state are hard to realize in distributed systems

We can only approximate the global view

Simulate synchronous distributed system on a given asynchronous
systems

Simulate a global time
Simulate a global state

Distributed Systems 49

Simulate Synchronous
Distributed Systems

Synchronizers [Awerbuch 85]

Simulate clock pulses in such a way that a message is only generated at
a clock pulse and will be received before the next pulse

Drawback
Very high message overhead

Distributed Systems 50

Clock Synchronization in
Distributed Systems

Clocks in a distributed system drift:

Relative to each other
Logical Clocks are clocks which are synchronized
relative to each other.

Relative to a real world clock

Determination of this real world clock may be an
issue

Physical clocks are logical clocks that must not
deviate from the real-time by more than a certain
amount.

Distributed Systems

51

Synchronizing Logical Clocks

Need to understand the ordering of events
Notion of time is critical

“Happens Before” notion.

E.g. Concurrency control using timestamps
“Happens Before” notion is not straightforward
in distributed systems

No guarantees of synchronized clocks

Communication latency

Distributed Systems 52

Event Ordering

relation

If a and b are events in the same process, and a
occurs before b, then a => b.

If a is the event of a message being sent by one
process and b is the event of the message being
received by another process, then a => b.

If X=>Y and Y=>Z then X => Z.
Ifa => b then time (a) => time (b)

Distributed Systems 53

Causal Ordering

“Happened Before” also called causal ordering
Possible to draw a causality relation between 2
events if

They happen in the same process
There is a chain of messages between them

Distributed Systems

54

Logical Clocks

Monotonically increasing counter
No relation with real clock

Each process keeps its own logical clock Cp used

to timestamp events

Distributed Systems

55

Causal Ordering and Logical
Clocks

Cp is incremented before each event.
Cp=Cp+1

When p sends a message m, it piggybacks a

logical timestamp t = Cp.

When g receives (m,t) it computes:

Cqg = max(Cq,t) before timestamping the message
receipt event.

Results in a partial ordering of events.

Distributed Systems

56

P1 P2

12
15
20
74
25

e

cva

alr Amir

Lamport Logical Clock

P3

Fall 98 Lecture 11

/1oLl IVULTJU UyOLUI 110

P1

AN

g

12

16

20

24

2g

36"

P2

P3
0 0
5 3
10 B

15\11

20

25

ad

35

40

14

17

20

23

2B

Total Ordering

Extending partial order to total order

Global timestamps:

(Ta, Pa) where Ta is the local timestamp and Pa is
the process id.

(Ta,Pa) < (Tb,Pb) iff
(Ta<Tb)or ((Ta =Tb)and (Pa < Pb))
Total order is consistent with partial order.

Distributed Systems

58

Problems with Total Ordering

A linearly ordered structure of time is not always adequate for
distributed systems
captures dependence of events
loses independence of events - artificially enforces an ordering for
events that need not be ordered.

Mapping partial ordered events onto a linearly ordered set of integers it is /osing
information

Events which may happen simultaneously may get different timestamps
as if they happen in some definite order.

A partially ordered system of vectors forming a /attice structure is a
natural representation of time in a distributed system

It resembles Minkowski’s relativistic space-time (see Special Theory
of Relativity)

Distributed Systems 59

Physical Clocks

How do we measure real time?

17th century - Mechanical clocks based on
astronomical measurements

Solar Day - Transit of the sun
Solar Seconds - Solar Day/(3600*24)

Problem (1940) - Rotation of the earth varies (gets
slower)

Mean solar second - average over many days

Distributed Systems 60

Atomic Clocks

1948

counting transitions of a crystal (Cesium 133) used as
atomic clock

TAI - International Atomic Time

9192631779 transitions = 1 mean solar second in
1948

UTC (Universal Coordinated Time)

From time to time, we skip a solar second to stay in
phase with the sun (30+ times since 1958)

UTC is broadcast by several sources (satellites...)

Distributed Systems 61

Accuracy of Computer Clocks

Modern timer chips have a relative error of
1/100,000 - 0.86 seconds a day

To maintain synchronized clocks

Can use UTC source (time server) to obtain current
notion of time

Use solutions without UTC.

Distributed Systems

62

Berkeley UNIX algorithm

One daemon without UTC

Periodically, this daemon polls and asks all the
machines for their time

The machines respond.

The daemon computes an average time and
then broadcasts this average time.

Distributed Systems

63

Decentralized Averaging
Algorithm

Each machine has a daemon without UTC

Periodically, at fixed agreed-upon times, each
machine broadcasts its local time.

Each of them calculates the average time by
averaging all the received local times.

Distributed Systems 64

Clock Synchromzatlon in DCE

DCE's time model is actually in an mterval
I.e. time in DCE is actually an interval

Comparing 2 times may yield 3 answers
tl <t2
t2<tl
not determined

Each machine is either a time server or a clerk

Periodically a clerk contacts all the time servers on its

LAN
Based on their answers, it computes a new time and

gradually converges to it.

Distributed Systems

65

The Network Time Protocol

e |

Enables clients across the Internet to be
synchronized accurately to the UTC
Overcomes large and variable message delays

Statistical techniques for filtering can be applied
based on past behavior of server

Can survive lengthy losses of connectivity
Enables frequent synchronization
Provides protection against interference

Uses a hierarchy of servers located across the
Internet (Primary servers connected to a UTC time

source).

Distributed Systems

66

Hierarchy In NTP

Most accurate @ (LTC)

\
®/ ® @

Yalr Amir Fall 92/ Lecture 11

Distributed Systems

18
67

Time Manager Operations

Logical Clocks
C.adjust(L,T)

adjust the local time displayed by clock C to T (can be
gradually, immediate, per clock sync period)

C.read

returns the current value of clock C
Timers
TP.set(T) - reset the timer to timeout in T units

Messages
receive(m,l); broadcast(m); forward(m,|)

Distributed Systems 68

