Lecture 4

Inter application communication

SOAP as a messaging protocol
Structure of a SOAP message

SOAP communication model

SOAP fault message

SOAP over HTTP

Advantages and disadvantages of SOAP

Inter-Application Communication

 To address the problem of overcoming proprietary
systems running on heterogeneous infrastructures,
Web services rely on SOAP, an XML-based
communication protocol for exchanging messages
between computers regardless of their operating

systems, programming environment or object
model framework.

What is SOAP?

SOAP is Simple Object Access Protocol. SOAP’s primary application
IS Inter application communication. SOAP codifies the use of XML as
an encoding scheme for request and response parameters using
HTTP as a means for transport.

Service requestor Service provider
Application object Appligation opject
(client) (service provider)
VL v
{ SOAP-based |, [soAP-based J
middleware J SOAP messages L middleware
\ exchanged on top of, /
HTTP, SMTP, or other

\ transport /

Converts procedure calls to/from XML
messages sent through HTTP or other
protocols.

What is SOAP? (continued)

SOAP covers the following four main areas:

— A message format for one-way communication describing
how a message can be packed into an XML document.

— A description of how a SOAP message should be
transported using HTTP (for Web-based interaction) or SMTP
(for e-mail-based interaction).

— A set of rules that must be followed when processing a
SOAP message and a simple classification of the entities
Involved in processing a SOAP message.

— A set of conventions on how to turn an RPC call into a
SOAP message and back.

SOAP as a lightweight protocol

SOAP is a lightweight
protocol that allows
applications to pass
messages and data back and
forth between disparate
systems.

By lightweight we mean that
the SOAP protocol
possesses only two
fundamental properties. It
can:

— send and receive HTTP (or

other) transport protocol
packets, and

— process XML messages.

This can be contrasted with
the heavyweight protocols
such as ORPC protocols.

p
WSDL interface ‘
A v

N

Web service

‘ WSDL interface
N

SOAP messages

AN

Transfer protocol (e.g., HTTP)

N N Y

TCP/IP stack

, S G

Distributed messaging using SOAP

Web service
requestor

ol Cien
ipp..ﬁ‘b

A
O

SOAP message
XML document

Network transport
protocol
(HTTP)

Web service
provider

ICE

Web service
implementation
infrastructure

SOAP server

Network transport
protocol
(HTTP)

T

SOAP messages

Messages are seen as envelopes where
the application encloses the data to be
sent.

A SOAP message consists of a SOAP of
an <Envelope> element containing an
optional <Header> and a mandatory
<Body> element.

The contents of these elements are
application defined and not a part of the
SOAP specifications.

A SOAP <Header> contains blocks of
information relevant to how the message is
to be processed. This helps pass
information in SOAP messages that is not
application payload.

The SOAP <Body> is where the main end-
to-end information conveyed in a SOAP
message must be carried.

<Envelope>

0..1

<Header>

T

<Header block>

<Body entry>

SOAP enve

lope

SOAP

header

header block

SOAP

body

body block

SOAP envelope and header

<env:Envelope
xmlns:-env=*http://www.w3.0rg/2003/05/soap-envelope”
env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”’>

</env:Envelope>

Example of SOAP envelope

<env:Envelope
xmlns:-env=*http://www.w3.0rg/2003/05/soap-envelope” >

<env:Header>
<tx:transaction-id
xmIns:tx="http://www.transaction.com/transaction”
env:mustUnderstand="true”’>
512
</tx:transaction-id>
<notary:token xmlns:notary="http://www.notarization-services.com/token”
env:mustUnderstand=""true”’>
GRAAL-5YF3
</notary:token>
</env:Header>

</env:Envelope>

Example of SOAP header

SOAP Intermediaries

SOAP headers have been
designed in anticipation of
participation of other SOAP
processing nodes — called SOAP
Intermediaries — along a
message's path from an initial
SOAP sender to an ultimate
SOAP receiver.

A SOAP message travels along
the message path from a sender
to a receiver.

All SOAP messages start with an
Initial sender, which creates the
SOAP message, and end with an
ultimate receiver.

Ultimate
receiver

Purchasing
service
node

Process (é)

purchase order

Submit digitally
signed purchase order

Customer
node

Initial

@) Validate digital sender
signature

Signature
validation
service
node

Intermediary
node

Example of SOAP header with
message routing

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
xmlns:env="http://www.w3.0rg/2003/05/soap-envelope” >
<env:Header>
<m:order
xmlns:m="http://www.plastics_supply.com/purchase-order
env:.role="http://www.w3.0rg/2003/05/soap-
envelope/role/next"
env:mustUnderstand="true">
<m:order-no >uuid:0411a2daa</m:order-no>
<m:date>2004-11-8</m:.date>
</m:order>
<n:.customer xmins:n="http://www.supply.com/customers"
env:role="http://www.w3.0rg/2003/05/soap-
envelope/role/next"
env:mustUnderstand="true">
<n:name> Marvin Sanders </n:name>
</n:customer >
</env:Header>
<env:Body>
<-- Payload element goes here -->
</env:Body>
</env:Envelope>

The SOAP Body

The SOAP body is the area of the SOAP message, where the
application specific XML data (payload) being exchanged in the
message Is placed.

The <Body> element must be present and is an immediate child of the

envelope. It may contain a number of child elements, called body

entries, but it may also be empty. The <Body> element contains either

of the following:

— Application-specific data is the information that is exchanged with a Web
service. The SOAP <Body> is where the method call information and its

related arguments are encoded. It is where the response to a method call is
placed, and where error information can be stored.

— A fault message is used only when an error occurs.

A SOAP message may carry either application-specific data or a fault,
but not both.

Example SOAP Message

<?xml version="1.0" ?>

<env:Envelope xmlns:env="http://www.w3.0rg/2002/06/soap-envelope" > ' Eﬂwvek)pe

<env:Header>

<t:transactioniD
xmIns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.0rg/2002/06/soap-envelope/role/next"
env:mustUnderstand=""true" >
57539

</t:transactionlD>

</env:Header> N

Header

> Blocks

<env:Body> L1
<m:ordercoods ,///

env:encodingStyle="http://www.w3.0rg/2002/06/soap-encoding"

xmIns:m="http://example.com/procurement'>
<m:productltem>

<name>ACME Softener</name> BOdy

</m:productltem>
<m:quantity>

35
</m:quantity>
</m:orderGoods>
</env:Body>

</env:Envelope>

The SOAP Communication Model

« SOAP supports two possible communication styles:
— remote procedure call (RPC) and
— document (or message).

Web services SELUESIE Web Service Definitions
definitions for .
] quote

Price for
given i
product

L Application
b programs
On-line /

price] Quote
response l 3 document

Business Process Flow

RPC-style interaction Document-style interaction

RPC-style SOAP Services

A remote procedure call (RPC)-style Web service appears as a remote
object to a client application. The interaction between a client and an
RPC-style Web service centers around a service-specific interface.
Clients express their request as a method call with a set of arguments,
which returns a response containing a return value.

SOAP envelope SOAP envelope

SOAP body SOAP body

Method name
orderGoods

Input parameter 1 Return value
product item order id

Method return

Input parameter 2
lquantity

RPC-style web services

<env:Envelope
xmlns:SOAP=“http://www.w3.0rg/2003/05/soap-envelope”
xmIns:m="http://www.plastics_supply.com/product-prices'>
<env:Header>
<tx:Transaction-id
xmlns:t="http://www.transaction.com/transactions”
env:mustuUnderstand="1">
512
</tx:Transaction-i1d>
</env:Header>
<env:Body>
<m:GetProductPrice>
<product-i1d> 450R60P </product-id >
</m:GetProductPrice >
</env:Body>
</env:Envelope>

Example of RPC-style SOAP body

<env:Envelope
xmlIns:SOAP="“http://www.w3.0rg/2003/05/soap-envelope”
xmIns:m="http://www.plastics_supply.com/product-prices'>
<env:Header>
<--1 — Optional context information -->
</env:Header>
<env:Body>
<m:GetProductPriceResponse>
<product-price> 134.32 </product-price>
</m:GetProductPriceResponse>
</env:Body>
</env:Envelope>

Example of RPC-style SOAP response message

Document (Message)-style SOAP Services

In the document-style of messaging, the SOAP <Body> contains an
XML document fragment. The <Body> element reflects no explicit XML

structure.

The SOAP run-time environment accepts the SOAP <Body> element
as it stands and hands it over to the application it is destined for
unchanged. There may or may not be a response associated with this

message.

SOAP envelope SOAP envelope

SOAP body SOAP body

PurchaseOrder Acknowledgement

document document
-product item -order id
-quantity

Example of document-style SOAP body

<env:Envelope
xmlns:SOAP=“http://www.w3.0rg/2003/05/soap-envelope”’>

<env:Header>
<tx:Transaction-id
xmlns:t="http://www.transaction.com/transactions”
env:mustUnderstand="1">
512
</env:Header>
<env:Body>
<po:PurchaseOrder oderDate="2004-12-02"
xmIns:m="http://www.plastics_supply.com/POs"'>
<po: from>
<po:accountName> RightPlastics </po:accountName>
<po:accountNumber> PSC-0343-02 </po:accountNumber>
</po:from>
<po:to>
<po:supplierName> Plastic Supplies Inc. </po:supplierName>
<po:supplierAddress> Yara Valley Melbourne </po:supplierAddress>
</po:to>
<po:product>
<po:product-name> injection molder </po:product-name>
<po:product-model> G-100T </po:product-model>
<po:quantity> 2 </po:quantity>
</po:product>
</ po:PurchaseOrder >
</env:Body>
</env:Envelope>

Example of document-style SOAP body

SOAP Fault element

SOAP provides a model for handling faults arise.

It distinguishes between the conditions that result in a fault, and the ability to
signal that fault to the originator of the faulty message or another node. The

SOAP <Body> is the place where fault information is placed.

<env:Envelope
xmlns :SOAP="http://www.w3.0rg/2003/05/soap-envelope”
xmIns:m="http://www.plastics_supply.com/product-prices'>
<env:Header>
<tx:Transaction-id
xmlns:t="http://www.transaction.com/transactions”
env:mustUnderstand="1">
512
</tx:Transaction-id>
</env:Header>
<env:Body>
<env:Fault>
<env:Code>
<env:Value>env:Sender</env:Value>
<env:Subcode>
<env:Value> m:InvalidPurchaseOrder </env:Value>
</env:Subcode>
</env:Code>
<env:Reason>
<env:Text xml:lang="en-UK"> Specified product did not exist </env:Text>
</env:Reason>
<env:Detail>
<err:myFaultDetails
xmlns:err="http://www.plastics_supply.com/faul ts">
<err:message> Product number contains invalid characters </err:message>
<err:errorcode> 129 </err:errorcode>
</err:myFaultDetai ls>
</env:Detail>
</env:Fault>
</env:Body>
</env:Envelope>

SOAP and HTTP

A binding of SOAP to a transport protocol is
a description of how a SOAP message is to
be sent using that transport protocol.

The typical binding for SOAP is HTTP.

SOAP can use GET or POST. With GET,
the request is not a SOAP message but the
response is a SOAP message, with POST
both request and response are SOAP
messages (in version 1.2, version 1.1
mainly considers the use of POST).

SOAP uses the same error and status
codes as those used in HTTP so that HTTP
responses can be directly interpreted by a
SOAP module.

HTTP POST

SOAP envelope
SOAP header

Transactional
context

SOAP body
Name of procedure

Input parameter 1

Input parameter 2

s

RPC call using SOAP over HTTP

HTTP Post
SOAP envelope

SOAP header

Transactional
context

SOAP body

Name of the
procedure

Service requestor Service provider

Input parameter 1

Input parameter 2 HTTP J‘_’l SOAP I
engine engine

3

A\ 4

Client implementation (other HTTP Post
tiers) SOAP envelope

Service implementation
(other tiers)

SOAP header

Transactional
| context

SOAP body

Return
parameter

Advantages and disadvantages of SOAP

e Advantages of SOAP are:

— Simplicity

— Portability

— Firewall friendliness

— Use of open standards

— Interoperability

— Universal acceptance.
 Disadvantages of SOAP are:

— Too much reliance on HTTP

— Statelessness
— Serialization by value and not by reference.

