
Lecture 4

• Inter application communication
• SOAP as a messaging protocol
• Structure of a SOAP message
• SOAP communication model
• SOAP fault message
• SOAP over HTTP
• Advantages and disadvantages of SOAP

Inter-Application Communication

• To address the problem of overcoming proprietary
systems running on heterogeneous infrastructures,
Web services rely on SOAP, an XML-based
communication protocol for exchanging messages
between computers regardless of their operating
systems, programming environment or object
model framework.

What is SOAP?
• SOAP is Simple Object Access Protocol. SOAP’s primary application

is inter application communication. SOAP codifies the use of XML as
an encoding scheme for request and response parameters using
HTTP as a means for transport.

Service providerService requestor

Application object
(client)

Application object
(service provider)

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

exchanged on top of,
HTTP, SMTP, or other
transport

Converts procedure calls to/from XML
messages sent through HTTP or other
protocols.

What is SOAP? (continued)

• SOAP covers the following four main areas:
– A message format for one-way communication describing

how a message can be packed into an XML document.
– A description of how a SOAP message should be

transported using HTTP (for Web-based interaction) or SMTP
(for e-mail-based interaction).

– A set of rules that must be followed when processing a
SOAP message and a simple classification of the entities
involved in processing a SOAP message.

– A set of conventions on how to turn an RPC call into a
SOAP message and back.

SOAP as a lightweight protocol

• SOAP is a lightweight
protocol that allows
applications to pass
messages and data back and
forth between disparate
systems.

• By lightweight we mean that
the SOAP protocol
possesses only two
fundamental properties. It
can:
– send and receive HTTP (or

other) transport protocol
packets, and

– process XML messages.

• This can be contrasted with
the heavyweight protocols
such as ORPC protocols.

Distributed messaging using SOAP

SOAP messages

• Messages are seen as envelopes where
the application encloses the data to be
sent.

• A SOAP message consists of a SOAP of
an <Envelope> element containing an
optional <Header> and a mandatory
<Body> element.

• The contents of these elements are
application defined and not a part of the
SOAP specifications.

• A SOAP <Header> contains blocks of
information relevant to how the message is
to be processed. This helps pass
information in SOAP messages that is not
application payload.

• The SOAP <Body> is where the main end-
to-end information conveyed in a SOAP
message must be carried.

SOAP envelope

SOAP header

header block

SOAP body

body block

<env:Envelope
xmlns:env=“http://www.w3.org/2003/05/soap-envelope”
env:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

……
</env:Envelope>

<env:Envelope
xmlns:env=“http://www.w3.org/2003/05/soap-envelope” >
…

<env:Header>
<tx:transaction-id

xmlns:tx=”http://www.transaction.com/transaction”
env:mustUnderstand=”true”>

512
</tx:transaction-id>

<notary:token xmlns:notary=”http://www.notarization-services.com/token”
env:mustUnderstand=”true”>

GRAAL-5YF3
</notary:token>

</env:Header>
……………

</env:Envelope>

Example of SOAP envelope

Example of SOAP header

SOAP envelope and header

SOAP Intermediaries

• SOAP headers have been
designed in anticipation of
participation of other SOAP
processing nodes – called SOAP
intermediaries – along a
message's path from an initial
SOAP sender to an ultimate
SOAP receiver.

• A SOAP message travels along
the message path from a sender
to a receiver.

• All SOAP messages start with an
initial sender, which creates the
SOAP message, and end with an
ultimate receiver.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope

xmlns:env=“http://www.w3.org/2003/05/soap-envelope”>
<env:Header>
<m:order

xmlns:m="http://www.plastics_supply.com/purchase-order"
env:role="http://www.w3.org/2003/05/soap-

envelope/role/next"
env:mustUnderstand="true">

<m:order-no >uuid:0411a2daa</m:order-no>
<m:date>2004-11-8</m:date>

</m:order>
<n:customer xmlns:n="http://www.supply.com/customers"

env:role="http://www.w3.org/2003/05/soap-
envelope/role/next"

env:mustUnderstand="true">
<n:name> Marvin Sanders </n:name>

</n:customer >
</env:Header>
<env:Body>

<-- Payload element goes here -->
</env:Body>

</env:Envelope>

Example of SOAP header with
message routing

The SOAP Body

• The SOAP body is the area of the SOAP message, where the
application specific XML data (payload) being exchanged in the
message is placed.

• The <Body> element must be present and is an immediate child of the
envelope. It may contain a number of child elements, called body
entries, but it may also be empty. The <Body> element contains either
of the following:
– Application-specific data is the information that is exchanged with a Web

service. The SOAP <Body> is where the method call information and its
related arguments are encoded. It is where the response to a method call is
placed, and where error information can be stored.

– A fault message is used only when an error occurs.

• A SOAP message may carry either application-specific data or a fault,
but not both.

Example SOAP Message
<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope" >

<env:Header>
<t:transactionID

xmlns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.org/2002/06/soap-envelope/role/next"
env:mustUnderstand="true" >
57539

</t:transactionID>
</env:Header>

<env:Body>
<m:orderGoods

env:encodingStyle="http://www.w3.org/2002/06/soap-encoding"
xmlns:m="http://example.com/procurement">

<m:productItem>
<name>ACME Softener</name>

</m:productItem>
<m:quantity>

35
</m:quantity>
</m:orderGoods>
</env:Body>

</env:Envelope>

Header

Body

Blocks

Envelope

The SOAP Communication Model

• SOAP supports two possible communication styles:
– remote procedure call (RPC) and
– document (or message).

Request
for

quote

Request
for

quote

Quote
document

Quote
document

Web Service Definitions

Business Process Flow

Receive

Check

Send

Database

Request
for

quote

Request
for

quote

Quote
document

Quote
document

Web Service Definitions

Business Process Flow

Receive

Check

SendSend

Database

RPC-style interaction Document-style interaction

RPC-style SOAP Services

• A remote procedure call (RPC)-style Web service appears as a remote
object to a client application. The interaction between a client and an
RPC-style Web service centers around a service-specific interface.
Clients express their request as a method call with a set of arguments,
which returns a response containing a return value.

SOAP envelope

SOAP body
Method name
orderGoods
Input parameter 1
product item

Input parameter 2
quantity

SOAP envelope

SOAP body

Method return

Return value
order id

<env:Envelope
xmlns:SOAP=“http://www.w3.org/2003/05/soap-envelope”
xmlns:m="http://www.plastics_supply.com/product-prices">

<env:Header>
<tx:Transaction-id
xmlns:t=”http://www.transaction.com/transactions”

env:mustUnderstand='1'>
512

</tx:Transaction-id>
</env:Header>
<env:Body>

<m:GetProductPrice>
<product-id> 450R6OP </product-id >

</m:GetProductPrice >
</env:Body>

</env:Envelope>

<env:Envelope
xmlns:SOAP=“http://www.w3.org/2003/05/soap-envelope”
xmlns:m="http://www.plastics_supply.com/product-prices">

<env:Header>
<--! – Optional context information -->

</env:Header>
<env:Body>

<m:GetProductPriceResponse>
<product-price> 134.32 </product-price>

</m:GetProductPriceResponse>
</env:Body>

</env:Envelope>

Example of RPC-style SOAP body

Example of RPC-style SOAP response message

RPC-style web services

Document (Message)-style SOAP Services

• In the document-style of messaging, the SOAP <Body> contains an
XML document fragment. The <Body> element reflects no explicit XML
structure.

• The SOAP run-time environment accepts the SOAP <Body> element
as it stands and hands it over to the application it is destined for
unchanged. There may or may not be a response associated with this
message.

SOAP envelope

SOAP body

PurchaseOrder
document

-product item
-quantity

SOAP envelope

SOAP body

Acknowledgement
document
-order id

<env:Envelope
xmlns:SOAP=“http://www.w3.org/2003/05/soap-envelope”>

<env:Header>
<tx:Transaction-id
xmlns:t=”http://www.transaction.com/transactions”

env:mustUnderstand='1'>
512

</env:Header>
<env:Body>

<po:PurchaseOrder oderDate=”2004-12-02”
xmlns:m="http://www.plastics_supply.com/POs">
<po:from>
<po:accountName> RightPlastics </po:accountName>

<po:accountNumber> PSC-0343-02 </po:accountNumber>
</po:from>
<po:to>
<po:supplierName> Plastic Supplies Inc. </po:supplierName>
<po:supplierAddress> Yara Valley Melbourne </po:supplierAddress>

</po:to>
<po:product>

<po:product-name> injection molder </po:product-name>
<po:product-model> G-100T </po:product-model>
<po:quantity> 2 </po:quantity>

</po:product>
</ po:PurchaseOrder >

</env:Body>
</env:Envelope>

Example of document-style SOAP body

Example of document-style SOAP body

SOAP Fault element
• SOAP provides a model for handling faults arise.
• It distinguishes between the conditions that result in a fault, and the ability to

signal that fault to the originator of the faulty message or another node. The
SOAP <Body> is the place where fault information is placed.

<env:Envelope
xmlns:SOAP=“http://www.w3.org/2003/05/soap-envelope”
xmlns:m="http://www.plastics_supply.com/product-prices">

<env:Header>
<tx:Transaction-id

xmlns:t=”http://www.transaction.com/transactions”
env:mustUnderstand='1'>

512
</tx:Transaction-id>

</env:Header>
<env:Body>

<env:Fault>
<env:Code>

<env:Value>env:Sender</env:Value>
<env:Subcode>

<env:Value> m:InvalidPurchaseOrder </env:Value>
</env:Subcode>

</env:Code>
<env:Reason>

<env:Text xml:lang="en-UK"> Specified product did not exist </env:Text>
</env:Reason>
<env:Detail>
<err:myFaultDetails

xmlns:err="http://www.plastics_supply.com/faults">
<err:message> Product number contains invalid characters </err:message>
<err:errorcode> 129 </err:errorcode>

</err:myFaultDetails>
</env:Detail>

</env:Fault>
</env:Body>

</env:Envelope>

SOAP and HTTP

A binding of SOAP to a transport protocol is
a description of how a SOAP message is to
be sent using that transport protocol.
The typical binding for SOAP is HTTP.
SOAP can use GET or POST. With GET,
the request is not a SOAP message but the
response is a SOAP message, with POST
both request and response are SOAP
messages (in version 1.2, version 1.1
mainly considers the use of POST).
SOAP uses the same error and status
codes as those used in HTTP so that HTTP
responses can be directly interpreted by a
SOAP module.

SOAP envelopeSOAP envelope
SOAP header

Transactional
context

SOAP body

Input parameter 1

Input parameter 2

Name of procedure

HTTP POST

RPC call using SOAP over HTTP

Service provider

SOAP
engine

Service implementation
(other tiers)

HTTP
engine

Service requestor

HTTP
engine

Client implementation (other
tiers)

SOAP
engine

SOAP envelope

SOAP header

Transactional
context

SOAP body

Name of the
procedure

Input parameter 1

Input parameter 2

HTTP Post

SOAP envelope

SOAP header

transactional
context

SOAP body

return
parameter

SOAP envelope

SOAP header

Transactional
context

SOAP body

Return
parameter

HTTP Post

Advantages and disadvantages of SOAP

• Advantages of SOAP are:
– Simplicity
– Portability
– Firewall friendliness
– Use of open standards
– Interoperability
– Universal acceptance.

• Disadvantages of SOAP are:
– Too much reliance on HTTP
– Statelessness
– Serialization by value and not by reference.

