
Messaging and Group

Communication

ICS 230 Distributed
Systems

Group Communication

� Communication to a collection of processes – process group

� Group communication can be exploited to provide

� Simultaneous execution of the same operation in a group of
workstations

� Software installation in multiple workstations� Software installation in multiple workstations

� Consistent network table management

�Who needs group communication ?
�Highly available servers

� Conferencing

� Cluster management

�Distributed Logging….

What type of group

communication ?

� Peer
� All members are equal

� All members send messages to the group

� All members receive all the messages

Svrs Clients

� Client-Server
� Common communication pattern

⌧replicated servers

� Client may or may not care which server answers

� Diffusion group
� Servers sends to other servers and clients

� Hierarchical
�Highly and easy scalable

Svrs Clients

Message Passing System

� A system consist of n objects a0, …, an-1
� Each object ai is modeled as a (possible
infinite) state machine with state set Qi

� The edges incident on ai are labeled
arbitrarily with integers 1 through r, where r

a
1

a
0

2

1

3 1

2

arbitrarily with integers 1 through r, where r
is the degree of ai

� Each state of ai contains 2r special
components, outbufi[l], inbufi[l], for every
1 ≤ l ≤ r

� A configuration is a vector C=(qo,…,qn-1),
where qi is the state of ai

a
3

a
2

1

2 3

2
1

1

Message Passing System (II)

� A system is said to be asynchronous if there is no fixed upper
bound on how long it takes a message to be delivered or how much
time elapses between consecutive steps

� Point-to-point messages

� sndi(m)� sndi(m)

� rcvi(m,j)

� Group communication

� Broadcast

⌧one-to-all relationship

�Multicast

⌧one-to-many relationship

⌧A variation of broadcast where an object can target its messages to a
specified subset of objects

Using Traditional

Transport Protocols

�TCP/IP

⌧Automatic flow control, reliable delivery,
connection service, complexity

• linear degradation in performance• linear degradation in performance

�Unreliable broadcast/multicast

⌧UDP, IP-multicast - assumes h/w support

⌧message losses high(30%) during heavy load

• Reliable IP-multicast very expensive

Group Communication

Issues

�Ordering

�Delivery Guarantees

�Membership�Membership

�Failure

Ordering Service

� Unordered

� Single-Source FIFO (SSF)

� For all messages mm11, mm22 and all objects aaii, aajj, if aaii sends mm11 before it
sends mm22, then mm22 is not received at aajj before mm11 is

� Totally Ordered� Totally Ordered

� For all messages mm11, mm22 and all objects aaii, aajj, if mm11 is received at aaii
before mm22 is, the mm22 is not received at aajj before mm11 is

� Causally Ordered

� For all messages mm11, mm22 and all objects aaii, aajj, if mm11 happens before mm22,
then mm22 is not received at aaii before mm11 is

Delivery guarantees

�Agreed Delivery
• guarantees total order of message delivery and allows a
message to be delivered as soon as all of its
predecessors in the total order have been delivered.

Safe Delivery�Safe Delivery
• requires in addition, that if a message is delivered by the
GC to any of the processes in a configuration, this
message has been received and will be delivered to each
of the processes in the configuration unless it crashes.

Membership

� Messages addressed to the group are received by all group
members

� If processes are added to a group or deleted from it (due to
process crash, changes in the network or the user's preference),
need to report the change to all active group members, while need to report the change to all active group members, while
keeping consistency among them

� Every message is delivered in the context of a certain configuration,
which is not always accurate. However, we may want to guarantee

� Failure atomicity

�Uniformity

� Termination

Failure Model

� Failures types

�Message omission and delay

⌧Discover message omission and (usually) recovers lost messages

� Processor crashes and recoveries

�Network partitions and re-merges�Network partitions and re-merges

� Assume that faults do not corrupt messages (or that message
corruption can be detected)

� Most systems do not deal with Byzantine behavior

� Faults are detected using an unreliable fault detector, based on a
timeout mechanism

Some GC Properties

�Atomic Multicast
⌧Message is delivered to all processes or to none at all. May
also require that messages are delivered in the same order
to all processes.

�Failure Atomicity�Failure Atomicity
⌧Failures do not result in incomplete delivery of multicast
messages or holes in the causal delivery order

�Uniformity
⌧A view change reported to a member is reported to all other
members

�Liveness
⌧A machine that does not respond to messages sent to it is
removed from the local view of the sender within a finite
amount of time.

Virtual Synchrony

� Virtual Synchrony

�Introduced in ISIS, orders group membership changes along
with the regular messages

�Ensures that failures do not result in incomplete delivery of
multicast messages or holes in the causal delivery order(failure multicast messages or holes in the causal delivery order(failure
atomicity)

�Ensures that, if two processes observe the same two
consecutive membership changes, receive the same set of
regular multicast messages between the two changes

⌧A view change acts as a barrier across which no multicast can pass

�Does not constrain the behavior of faulty or isolated processes

More Interesting GC

Properties

� There exists a mapping k from the set of messages appearing in all
rcvi(m) for all i, to the set of messages appearing in sndi(m) for all
i, such that each message m in a rcv() is mapped to a message
with the same content appearing in an earlier snd() and:

� Integrity� Integrity

� k is well defined. i.e. every message received was previously sent.

� No Duplicates

� k is one to one. i.e. no message is received more than once

� Liveness

� k is onto. i.e. every message sent is received

Reliability Service

� A service is reliable (in presence of f faults) if exists a partition of
the object indices into faulty and non-faulty such that there are at
most f faulty objects and the mapping of k must satisfy:

� Integrity

�No Duplicates�No Duplicates

⌧no message is received more than once at any single object

� Liveness

⌧Non-faulty liveness

• When restricted to non-faulty objects, k is onto. i.e. all messages broadcast by a
non-faulty object are eventuallyeventually received by all non-faulty objects

⌧Faulty liveness

• Every message sent by a faulty object is either received by allall non-faulty objects
or by nonenone of them

Faults and Partitions

� When detecting a processor P
from which we did not hear for
a certain timeout, we issue a
fault message

� When we get a fault message, � When we get a fault message,
we adopt it (and issue our
copy)

� Problem: maybe P is only slow

� When a partition occurs, we
can not always completely
determine who received
which messages (there is no
solution to this problem)

Extended virtual synchrony

�Introduced in Totem

�Processes can fail and recover

�Network can partition and remerge

�Does not solve all the problems of recovery in fault-tolerant
distributed system, but it avoid inconsistenciesdistributed system, but it avoid inconsistencies

Extended Virtual

Synchrony(cont.)

�Virtual synchrony handles recovered
processes as new processes

�Can cause inconsistencies with network
partitionspartitions

�Network partitions are real

�Gateways, bridges, wireless communication

Extended Virtual

Synchrony Model

�Network may partition into finite number
of components
�Two or more may merge to form a larger
componentcomponent

�Each membership with a unique identifier
is a configuration.

⌧Membership ensures that all processes in a
configuration agree on the membership of that
configuration

Regular and Transitional

Configurations

�To achieve safe delivery with partitions and
remerges, the EVS model defines:

�Regular Configuration

⌧New messages are broadcast and delivered⌧New messages are broadcast and delivered

⌧Sufficient for FIFO and causal communication modes

�Transitional Configuration

⌧No new messages are broadcast, only remaining messages
from prior regular configuration are delivered.

�Regular configuration may be followed and
preceeded by several transitional configurations.

Configuration change

�Process in a regular or transitional configuration can
deliver a configuration change message s.t.

• Follows delivery of every message in the terminated
configuration and precedes delivery of every message in the
new configuration.

Algorithm for determining transitional configuration�Algorithm for determining transitional configuration
⌧When a membership change is identified

• Regular conf members (that are still connected) start
exchanging information

• If another membership change is spotted (e.g. failure
cascade), this process is repeated all over again.

• Upon reaching a decision (on members and messages) –
process delivers transitional configuration message to
members with agreed list of messages.

• After delivery of all messages, new configuration is delivered.

Totem

� Provides a Reliable totally ordered multicast service over LAN

� Intended for complex applications in which fault-tolerance and soft
real-time performance are critical

�High throughput and low predictable latency

� Rapid detection of, and recovery from, faults� Rapid detection of, and recovery from, faults

� System wide total ordering of messages

� Scalable via hierarchical group communication

� Exploits hardware broadcast to achieve high-performance

� Provides 2 delivery services

� Agreed

� Safe

� Use timestamp to ensure total order and sequence numbers to
ensure reliable delivery

ISIS

� Tightly coupled distributed system developed over loosely coupled
processors

� Provides a toolkit mechanism for distributing programming,
whereby a DS is built by interconnecting fairly conventional non-
distributed programs, using tools drawn from the kitdistributed programs, using tools drawn from the kit

� Define

� how to create, join and leave a group

� group membership

� virtual synchrony

� Initially point-to-point (TCP/IP)

� Fail-stop failure model

Horus

� Aims to provide a very flexible environment to configure group of
protocols specifically adapted to problems at hand

� Provides efficient support for virtual synchrony

� Replaces point-to-point communication with group communication
as the fundamental abstraction, which is provided by stacking as the fundamental abstraction, which is provided by stacking
protocol modules that have a uniform (upcall, downcall) interface

� Not every sort of protocol blocks make sense

� HCPI

� Stability of messages

�membership

� Electra

� CORBA-Compliant interface

�method invocation transformed into multicast

Transis

� How different components of a partition network can operate
autonomously and then merge operations when they become
reconnected ?

� Are different protocols for fast-local and slower-cluster
communication needed ?communication needed ?

� A large-scale multicast service designed with the following goals

� Tackling network partitions and providing tools for recovery from them

�Meeting needs of large networks through hierarchical communication

� Exploiting fast-clustered communication using IP-Multicast

� Communication modes

� FIFO

� Causal

� Agreed

� Safe

Future Challenges

� Secure group communication architecture

� Formal specifications of group communication systems

� Support for CSCW and multimedia applications

� Dynamic Virtual Private Networks

� Next Generations� Next Generations

� Spread

� Ensemble

� Wireless networks ?

�Group based Communication with incomplete spatial coverage

� dynamic membership

Horus

A Flexible Group
Communication Subsystem

Horus: A Flexible Group

Communication System

� Flexible group communication model to
application developers.

1. System interface

2. Properties of Protocol Stack

3. Configuration of Horus

⌧ Run in userspace

⌧ Run in OS kernel/microkernel

Architecture

�Central protocol => Lego Blocks

�Each Lego block implements a communication
feature.

�Standardized top and bottom interface (HCPI)�Standardized top and bottom interface (HCPI)

�Allow blocks to communicate

�A block has entry points for upcall/downcall

�Upcall=receive mesg, Downcall=send mesg.

�Create new protocol by rearranging blocks.

Message_send

�Lookup the entry in topmost block and
invokes the function.

�Function adds header�Function adds header

�Message_send is recursively sent down
the stack

�Bottommost block invokes a driver to
send message.

�Each stack shielded from each other.

�Have own threads and memory
scheduler.

Endpoints, Group, and Message

Objects
�Endpoints

�Models the communicating entity

�Have address (used for membership), send and
receive messages

�Group
�Maintain local state on an endpoint.

�Group address: to which message is sent

�View: List of destination endpoint addr of
accessible group members

�Message
�Local storage structure

�Interface includes operation pop/push headers

�Passed by reference

Transis

A Group Communication
Subsystem

Transis : Group

Communication System

�Network partitions and recovery tools.

�Multiple disconnected components in the
network operate autonomously.

�Merge these components upon recovery.

�Hierachical communication structure.

�Fast cluster communication.

Systems that depend on primary
component:

�Isis System: Designate 1 component as
primary and shuts down non-primary.
�Period before partition detected, non-primaries
can continue to operate.

�Operations are inconsistent with primary

�Trans/Total System and Amoeba: �Trans/Total System and Amoeba:
�Allow continued operations

�Inconsistent Operations may occur in different
parts of the system.

�Don’t provide recovery mechanism

Group Service

�Work of the collection of group modules.

�Manager of group messages and group
views

�A group module maintains�A group module maintains

�Local View: List of currently connected and
operational participants

�Hidden View: Like local view, indicated the
view has failed but may have formed in
another part of the system.

Network partition wishlist

1. At least one component of the network should
be able to continue making updates.

2. Each machine should know about the update
messages that reached all of the other messages that reached all of the other
machines before they were disconnected.

3. Upon recovery, only the missing messages
should be exchanged to bring the machines
back into a consistent state.

Transis supports partition
�Not all applications progress is dependent on
a primary component.

�In Transis, local views can be merged
efficiently.
�Representative replays messages upon merging.

Support recovering a primary component.�Support recovering a primary component.
�Non-primary can remain operational and wait to
merge with primary

�Non-primary can generate a new primary if it is
lost.
⌧Members can totally-order past view changes events.
Recover possible loss.

⌧Transis report Hidden-views.

Hierarchical Broadcast

Reliable Multicast Engine

�In system that do not lose messages often

�Use negative-ack

⌧Messages not retransmitted

⌧Positive ack are piggybacked into regular mesg⌧Positive ack are piggybacked into regular mesg

�Detection of lost messages detected ASAP

�Under high network traffic, network and
underlying protocol is driven to high loss rate.

Group Communication as an

Infrastructure for Distributed

System Management

�Table Management

�User accounts, network tables

�Software Installation and Version Control�Software Installation and Version Control

�Speed up installation, minimize latency and
network load during installation

�Simultaneous Execution

�Invoke same commands on several machines

Management Server API

�Status: Return status of server and its host
machines

�Chdir: Change the server’s working directory

�Simex: Execute a command simultaneously�Simex: Execute a command simultaneously

�Siminist: Install a software package

�Update-map: Update map while preserving
consistency between replicas

�Query-map: Retrieve information from the map

�Exit: Terminate the management server process.

Simultaneous Execution

�Identical management command on many
machines.
�Activate a daemon, run a script

�Management Server maintains�Management Server maintains
�Set M: most recent membership of the group
reported by transis

�Set NR: set of currently connected servers
not yet reported the outcome of a command
execution to the monitor

Software Installation
�Transis disseminate files to group members.

�Monitor multicasts a msg advertising

⌧package P

⌧set of installation requirements Rp

⌧installation multicast group Gp

⌧target list Tp.

�Management server joins Gp if belongs to Rp and Tp.

�Status of all Management server reported to Monitor

�Use technique in “Simultaneous Execution” to
execute installation commands.

Table Management

�Consistent management of replicated
network tables.

�Servers sharing replicas of tables form
Service Group

1 Primary Server�1 Primary Server

�Enforces total order of update mesg

�If network partition, one component
(containing Primary) can perform updates

� Could provide tolerance for malicious intrusion

�Many mechanisms for enforcing security policy in distributed systems
rely on trusted nodes

�While no single node need to be fully trusted, the function performed
by the group can be

Questions...

by the group can be

� Problems

�Network partitions and re-merges

�Messages omissions and delays

� Communication primitives available in distributed systems are too weak
(i.e. there is no guarantee regarding ordering or reliability)

� How can we achieve group communication ?

� Extending point-to-point networks

From Group Communication

to Transactions...

� Adequate group communication can support a specific class of
transactions in asynchronous distributed systems

� Transaction is a sequence of operations on objects (or on data) that
satisfies

� Atomicity� Atomicity

� Permanence

�Ordering

� Group for fault-tolerance

� Share common state

�Update of the common state requires

⌧Delivery permanence (majority agreement)

⌧All-or-none delivery (multicast to multiple groups)

⌧Ordered delivery (serializability of multiples groups)

� Transactions-based on group communication primitives represents an
important step toward extending the power and generality of GComm

