

A D IS T R IB U T E D IN F R A S T R U C T U R E
F O R T H E S Y N C H R O N IZ E D A C Q U IS IT IO N

O F S E N S O R D A T A

-IC S 2 1 4 b c la s s p r o je c t-
W in te r 2 0 0 6

C h i F a i C h a n
H o j ja t J a fa r p o u r
S h e n g y u e J i

K u a n S u n g L e e
D a n ie l M a s s a g u e r

R a r e s V e r n ic a
{c h a n c f , h ja fa r p o , s h e n g y u e , k le e 1 0 , d m a s s a g u , r v e r n ic a }@ u c i.e d u

P r o je c t a d v is o r s : U t z W e s te rm a n n a n d P r o f . S h a r a d M e h r o t r a

RES PONS PHERE

RES PONS PHERE

RES PONS PHERE

RES PONS PHERE

Computing, visualization,
and datasets

●RAID storage server
●multi-tile visualization display
●8-32-bit-processor IBM server
●8-64-bit-processor Sun server
●Datasets: drill, 911 calls, 9-11,
CAD, GIS, people counter
logs, LDC TDT4, disasters,
KDD, UCI facilities

http://rescue-ibm.calit2.uci.edu/datasets/

Augmented drill

Real drill Simulated drill

APPLICATIONS
The infrastructure will allow to perform:

– People counting
– People tracking
– Event detection (hazard, security policy

violation, etc)
– etc

Which enables applications such as:
– Testing IT solutions for emergency

response in the context of a drill
– Surveillance (e.g. Video and/or RFID

surveillance)
● Coffee room control

– Augmenting a drill simulation
– SAMI
– Quasar
– Media broker (SAMI, VIEWS)
– Aut. sensing platform
– etc

PROBLEM

Collect data from sensing infrastructure

Data is unsynchronized

Data is multi-modal

Event detection by multi-modal processing

A DIS TRIBUTED INFRAS TRUCTURE
FOR THE S YNCHRONIZED ACQUIS ITION

OF S ENS OR DATA

Multi-model sensing

Flexibility to support different applications

Simple real-time content analysis:
reliability (nodes failing)
synchronization
abstraction from physical nuisances

TECHNICAL GOALS

 LOG storage

Inbox Outbox

Logging

OperatorController

Data
Flow

A NODE

● Controls the node's functionality
● Function:

– Creating different modules
– Connecting them to each other
– Starting up the node

● Configuration
– File
– Network

CONTROLLER

● Sample configuration file content:

Server Config

Port
8089
Server Channel
channel_1
Server Channel
channel_2

Client Config

addChannel
channelName
channel_1
serverName
localhost
serverPort
8089
addChannel
channelName
channel_2
serverName
127.0.0.1
serverPort
8089

CONTROLLER

Reason for wrapping:
– Network traffic modes: data stream, data

diagram…
– Data formats: mpeg, asf…

By wrapping we provide a generic data
sending/receiving interface for different kinds of
usage.

Also we hide the networking details of
transferring data from the above layer.

COMMUNICATION BETWEEN NODES

Data wrapping

● We are using:
– TCP protocol (to ignore data lost in network)
– Data packet mode (to provide support for data

diagram, also compatible with data stream)
*this also enables the controlling of traffic loads.

– HTTP protocol (to take advantage of existing
protocol)

COMMUNICATION BETWEEN NODES

Data wrapping

First line
Attribute
Attribute
Attribute
End of header

H
eader

C
ontent

POST / HTTP/1.1

Content-Length: 64

Content-Type: video/mpeg

Connection: Keep-Alive

Channel: channel_1

[64 bytes of binary content]

H
eader

C
ontent

Timestamp: 433632

Anything: aaaa

COMMUNICATION BETWEEN NODES

Data wrapping

Client
(Out)

Server
(In)

Agent

Client
(Out)

Server
(In)

Agent
receive receivesend send

connect
post
ok

post
ok

…

Node 1 Node 2pushing

COMMUNICATION BETWEEN NODES

Communication method

Node A

Node B

Node C

Node D

Node E

Channel 1

Channel 2
Channel 3

Channel 4

Channel 5

Channel 6

COMMUNICATION BETWEEN NODES

Channels in the network

OPERATOR
Mobile agent middleware for injecting arbitrary operators/agents (Java)

Discussion: Operator generates agents—data wrapped by agent (e.g. Access control)

AGENT

OUTBOX

package1
(to chan_1)

chan_y

chan_x

..

chan_2

chan_1

ThreadChannel
Name

Some other node..

chan_1

chan_2

Thread creation process

Buffer
(Message Queue)

packagex
(to chan_x)

chan_x

package1
(to chan_1)

LOG

OUTBOX

● outbox(client*);
● int startUp(char*, char*, int);
● int send(packages*);
● int getStatus();
● static void *run(void *arg);
● void getMessage();
● void printChannel();
● messageQueue

– packagesInQueue

OUTBOX
Functions provided in the outbox

LOG MODULE

● Stores all the messages send by Outbox on
external storage

● Retrieves messages from the external storage
(during node recovery)

● Can be adapted for Inbox

LOG MODULE
Functionality

● One log file for all the channels
● Each message has a timestamp (unique and always

increasing)
● Index on timestamp – efficient retrieval of messages

based on timestamp
● Allows retrieval of:

– Message with Timestamp greater or equal to a specified
Timestamp

– Next Message
– Newest Message

LOG MODULE
Features

DEMO

