
1

Processing Data Streams:
An (Incomplete) Tutorial

Johannes Gehrke
Department of Computer Science

johannes@cs.cornell.edu
http://www.cs.cornell.edu

Standard Pub/Sub

z Publish/subscribe (pub/sub) is a
powerful paradigm
z Publishers generate data

zEvents, publications

z Subscribers describe interests in
publications
zQueries, subscriptions

z Asynchronous communication
z Decoupling of publishers and subscribers

z Much commercial software …

2

Limitation of Standard Pub/Sub

z Scalable implementations have very simple
query languages
z Simple predicates, comparing message attributes

to constants
z E.g., topic=‘politics’ AND author=‘J. Doe’

z Individual events vs. event sequences
z Many monitoring applications need

sequence patterns
z Stock tickers, RSS feeds, network monitoring,

sensor data monitoring, fraud detection, etc.

Example: RSS Feed Monitoring

z Once CNN.com posts an article on
Technology, send me the first post
referencing (i.e., containing a link to) this
article from the blogs to which I subscribe

z Send postings from all blogs to which I
subscribe, in which the first posting is a
reference to a sensitive site XYZ, and
each later posting is a reference to the
previous.

3

Example: System Event Log Monitoring
z In the past 60 seconds, has the number of

failed logins (security logs) increased by more
than 5? (break-in attempt)

z Have there been any failed connections in the
past 15 minutes? If yes, is the rate increasing?

z Have there been any disk errors in the past 30
minutes? If yes, is the rate increasing? (failed
disk indicator)

z Have there been any critical errors (those
added to the dbase table to monitor by
administrators) in the past 10 minutes?

Example: Stock Monitoring

z Notify me when the price of IBM is above
$83, and the first MSFT price afterwards
is below $27.

z Notify me when some stock goes up by at
least 5% from one transaction to the
next.

z Notify me when the price of any stock
increases monotonically for ≥30 min.

z Notify me when the next IBM stock is
above its 52-week average.

7

Solutions?

z Traditional pub/sub
z Scalable, but not expressive enough

z Database Management System
z Static datasets
z One-shot queries
z Triggers

z Data Stream Management Systems
z Event Processing Systems

Real-Time DSP Requirements

(1) Support a high-level “StreamSQL” language
(2) Deal with out-of-order data
(3) Generate predictable and repeatable

outcomes
(4) Integrate well with static data
(5) Fault-tolerance
(6) Scale with hardware resources
(7) Low latency Æ process data as it streams by

(“in-stream processing”); no requirement to
store data first

10

Comparison of Stream Systems

High

Low

CEPDSMS

Publish/
subscribe

☺
Complexity
of queries

ManyFew

Number of
concurrent queries

Tutorial Outline

z Basics
z How to model time
z Data stream query languages and

processing models
z Fault tolerance
z New operators
z A Case Study

11

Temporal Model

z Questions:
z How are timestamps defined?
zWhat is the timestamp of an output record?

z Approaches:
zPoint timestamps
z Interval timestamps

z Surprises like E1;(E2;E3)=E2;(E1;E3)?

Imperfections in Event Streaming

Slide courtesy
of Mingsheng
Hong.

12

Imperfections in Event Streaming

Network imperfections:
Tuples are late and/or out of order

Slide courtesy
of Mingsheng
Hong.

Item X, Qty Q, Value, VItem X, Qty Q, Value, V

Imperfections in Event Streaming

Stream source retractions:
A tuple is retracted after
it is streamed on the wire

Slide courtesy
of Mingsheng
Hong.

28

Data Model

z Stream S is a sequence of tuples
z are data attribute values

z Like relational tuples

z t’s are temporal values
z Starting and detection times of an event
z Events have duration

z Example
z Schema of stock ticker stream: (Name, Price)
z Base stream events: (IBM, 85; 9:15, 9:15), (MSFT, 27;

9:16, 9:16), (DELL, 29; 9:17, 9:17)

Data Model

z Stream S is a sequence of tuples
z are data attribute values

z Like relational tuples

z t’s are temporal values
z Starting and detection times of an event
z Events have duration

z Example
z Schema of stock ticker stream: (Name, Price)
z Base stream events: (IBM, 85; 9:15, 9:15), (MSFT, 27;

9:16, 9:16), (DELL, 29; 9:17, 9:17)

29

Data Model

z Stream S is a sequence of tuples
z are data attribute values

z Like relational tuples

z t’s are temporal values
zStarting and detection times of an event
zEvents have duration

z Example
zSchema of stock ticker stream: (Name, Price)
zBase stream events: (IBM, 85; 9:15, 9:15), (MSFT,

27; 9:16, 9:16), (DELL, 29; 9:17, 9:17)

Cayuga Stream Algebra

z Compositional: Operators produce new
streams from existing streams

z Translation to Nondeterministic Finite
Automata
z Edge transitions on input events
z Automaton instances carry relevant data from

matched events

30

Operators
z Relational operators (on non-temporal

attributes)
z Selection
z Projection
z Renaming
z Union

z Together these give standard pub/sub

Sequence Operator
z Sequence operator S1;θ S2

z After an event from S1 is detected, match the
first event from S2 that satisfies the condition

z Examples
z IBM price increases by at least $1 in two

consecutive sales:

z Find a stock whose price stays constant in two
consecutive sales:

31

Sequence Operator (Contd.)

z Sequencing is a weak join on timestamps
z Can join an event with one later in future...
z Or with the immediate successor

z Can be useful for queries about causal relationships

Sequence Operator: Example

z Query 1:
z Send me the first new posting from

apple.slashdot.org after a product
announcement on www.apple.com.

32

Sequence Operator (Contd.)
z Automaton edges search

for matches.
z θ1: www.apple.com

announcement
z θ2: apple.slashdot.org

posting

z Intermediate state stores
Apple announcements
z Waits to pair with next

available Slashdot post.

Parameterized Sequencing

z Problems with previous query
z Assumes a quick response to Apple announcements
z There may be several announcements (i.e.,

MacWorld Expo)

z Want Slashdot post to refer to right product
z Post has link to announcement as a parameter

z Query 2:
z Once a new product announcement appears on

www.apple.com, send me the first posting from
apple.slashdot.org that links to this announcement.

33

Parameterized Sequencing (Contd.)
z Intermediate information

is already there
z Each announcement is an

automaton instance

z Just change edge filters
to leverage information
z θ1: www.apple.com

announcement
z θ2: apple.slashdot.org

posting linking to an
instance

Iteration Operator
z Iteration operator (similar to Kleene-+)

z Intuitively:

34

Iteration Example
z IBM stock price monotonically increases

IBM
85

MSFT
27

IBM
85.5

IBM
85.7

DELL
29

MSFT
27.4

IBM
85.9

IBM
85.6

Name
Price

Automaton for Iteration Operator

35

Iteration: Another Example

z Following the spread of crazy Apple
rumors...

z Query 3:
z Send me a sequence of Apple blog postings,

in which the first posting is a rumor about an
upcoming Apple product announcement, and
each later posting is a reference (i.e.,
contains a direct quote from or a hypertext
link to) to the previous.

Implementing Iteration

z Similar to parameters sequencing
z θ1: Initial Apple rumor
z θ2: Rumor that references the previous one

z Purple edge is a rebind edge
z Updates instance information with latest rumor

36

Aggregation

z Recall: Iteration also allows for aggregation.
z Iterate over all posts of this type
z Keep a running aggregate of some post attribute

z e.g. current number of comments, average word count,
etc...,

z Implemented like normal aggregates
z Need initializer, iterator, finalizer

z Query 4:
z Send me an product review from apple.slashdot.org

once it receives an above average number of user
comments.

Implementing Aggregation

z Rebind edge performs the aggregation
z g is attached to rebind edge to update values

z Note outgoing edge different from rebind edge
z θ3: Above average number of comments

37

Other Features

z Resubscription
z Ability for one query to subscribe to the

output of another (as a stream)
z Significantly more expressive

z Extensibility
z incorporate user-defined datatypes, data

mining algorithms, predicates, aggregation
functions, ...

Example

z Notify me when
1. for any stock, there is a a very large trade

(volume > 10K);
2. followed by a monotonic decrease in price for

at least 10 minutes;
3. the next quote on the same stock after this

monotonic sequence is 5% above the
previously seen (bottom) price.

z Intuition: Large sale, followed by price
drop, followed by sudden upwards move

38

Example
z Algebra expression:

Example

39

Example
(name,price,vol)

(company,maxP)

(company,maxP,minP)

(company,maxP,minP,finalP)

Example

40

Cayuga Query Language

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{Price > 1.05*MinPrice}(
FILTER{DUR > 10min}(

(SELECT Name, Price_1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price}
Stock)

NEXT{$2.Name = $1.Name}
Stock)

Cayuga Automata

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{Price > 1.05*MinPrice}(
FILTER{DUR > 10min}(

(SELECT Name, Price_1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price}
Stock)

NEXT{$2.Name = $1.Name}
Stock)

41

Cayuga Automata

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{Price > 1.05*MinPrice}(
FILTER{DUR > 10min}(

(SELECT Name, Price_1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price}
Stock)

NEXT{$2.Name = $1.Name}
Stock)

Cayuga Automata

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{Price > 1.05*MinPrice}(
FILTER{DUR > 10min}(

(SELECT Name, Price_1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price}
Stock)

NEXT{$2.Name = $1.Name}
Stock)

42

Cayuga Automata

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{Price > 1.05*MinPrice}(
FILTER{DUR > 10min}(

(SELECT Name, Price_1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price}
Stock)

NEXT{$2.Name = $1.Name}
Stock)

Cayuga Automata

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{Price > 1.05*MinPrice}(
FILTER{DUR > 10min}(

(SELECT Name, Price_1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price}
Stock)

NEXT{$2.Name = $1.Name}
Stock)

43

Cayuga Automata

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{Price > 1.05*MinPrice}(
FILTER{DUR > 10min}(

(SELECT Name, Price_1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price}
Stock)

NEXT{$2.Name = $1.Name}
Stock)

Example: Double-Top

z Double-Top query pattern

44

Cayuga Resubscription (No Iteration)
z Compute stream of local extrema:
z Union them, then search for actual pattern:

Double-Top Query: Cayuga
SELECT Name, PriceA, PriceB, PriceC, PriceD, Price_1 AS PriceE, Price AS PriceF
FROM FILTER {Price >= Price_1 AND Price <= PriceA}

(FILTER{Price <= 1.1*PriceB} (
SELECT Name, PriceA, PriceB, PriceC, Price_1 AS PriceD, Price
FROM
FILTER{Price >= 0.9*PriceB} (
SELECT Name, PriceA, PriceB, Price_1 AS PriceC, Price
FROM
FILTER{Price >= 0.9*PriceA AND Price <= 1.1*PriceA} (
SELECT Name, PriceA, Price_1 AS PriceB, Price
FROM
FILTER{Price >= 1.2*PriceA} (
SELECT Name, Price_1 AS PriceA, Price
FROM
FILTER {Price < Price_1}
(SELECT Name, Price FROM Stock NEXT {$1.Name=$2.Name} Stock)
FOLD {$1.Name = $2.Name, $2.Price >= $.Price,} Stock)
FOLD {$1.Name = $2.Name, $2.Price <= $.Price,} Stock)
FOLD {$1.Name = $2.Name, $2.Price >= $.Price,} Stock)
FOLD {$1.Name = $2.Name, $2.Price <= $.Price,} Stock)

NEXT {$1.Name = $2.Name}
Stock)

PUBLISH MShapeStock

45

Double-Top Query: CQL
vquery : Rstream (Select S.time, S.name, S.price, (S.price - P.price)
From Stock [Now] as S, Stock [Partition By P.name Rows 2] as P Where S.name = P.name and S.time > P.time);

vtable : register stream StockDiff (time integer, name integer, price float, pdiff float);

vquery : Rstream (Select P.time, P.name, P.price, P.pdiff
From StockDiff [Now] as S, StockDiff [Partition By P.name Rows 2] as P Where S.name = P.name and (S.pdiff * P.pdiff) < 0.0);

vtable : register stream Extrema (time integer, name integer, price float, pdiff float);

vquery : Select name, count(*) from Extrema Group By name;
vtable : register relation ExtremaCounter (name integer, seqNo integer);

vquery : Rstream (Select E.name, E.price, E.pdiff, C.seqNo, C.seqNo – 1
From Extrema [Now] as E, ExtremaCounter as C Where E.name = C.name);

vtable : register stream ExtremaSeq (name integer, price float, pdiff float, seq integer, prevSeq integer);

vquery : Select name, price, seq from ExtremaSeq Where pdiff < 0.0;
vtable : register relation stateA (name integer, price float, seq integer);

vquery : Rstream (Select E.name, E.price, A.price, E.seq
From ExtremaSeq [Now] as E, stateA as A Where E.name = A.name and E.prevSeq = A.seq and E.price > (A.price * 1.2));

vtable : register relation stateB (name integer, bprice float, aprice float, seq integer);

vquery : Rstream (Select E.name, E.price, B.bprice, B.aprice, E.seq From ExtremaSeq [Now] as E, stateB as B
Where E.name = B.name and E.prevSeq = B.seq and E.price > (B.aprice * 0.9) and E.price < (B.aprice * 1.1));

vtable : register relation stateC(name integer, cprice float, bprice float, aprice float, seq integer);

vquery : Rstream (Select E.name, E.price, C.cprice, C.bprice, C.aprice, E.seq from ExtremaSeq [Now] as E, stateC as C
Where E.name = C.name and E.prevSeq = C.seq and E.price > (C.bprice * 0.9) and E.price < (C.bprice * 1.1));

vtable : register relation stateD (name integer, dprice float, cprice float, bprice float, aprice float, seq integer);

query : Rstream (Select E.name, E.price, D.dprice, D.cprice, D.bprice, D.aprice from ExtremaSeq [Now] as E, stateD as D
Where E.name = D.name and E.prevSeq = D.seq and E.price <= D.aprice);

Example: Double-Top

z Real stock data (24 companies, 112,635
events)

