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Abstract This paper provides a comprehensive treatment
of index management in transaction systems. We present
a method, called ARIESIIM (A/gorlthm for Recovery and /so-
/atIon Exploiting Semantics forlndex Management), for con-
currency control and recovery of B + -trees. ARI ES/lM guar-
antees serializability and uses write-ahead logging for re-
covery. K supports very high concurrency and good perfor-
mance by (1) treating as the lock of a key the same lock as
the one on the corresponding record data in a data page
(e.g., at the record level), (2) not acquiring, in the interest
of permitting very high concurrency, commit duration locks
on index pages even during index structure modification op-
erations (SMOS) like page splits and page deletions, and (3)
allowing retrievals, inserts, and deletes to go on concur-
rently with SMOS. During restart recovery, any necessary
redos of index changes are always performed in a page-
oriented fashion (i.e., without traversing the index tree) and,
during normal processing and restart recovery, whenever
possible undos are performed in a page-oriented fashion.
ARIES/lM permits different granularities of locking to be
supported in a flexible manner. A subset of ARIES/lM has
been implemented in the 0S/2 Extended Edition Database
Manager.1 Since the locking ideas of ARIES/lM have general
applicability, some of them have also been implemented in
SQUDS and the VM Shared File System, even though those
systems use the shadow-page technique for recovery.

1. Introduction

Protocols for controlling concurrent access to B-trees and
their variants have been studied for a long time (see
[BaSc77, LeYa81, Mino84, Sagi86, ShGo88] and references
in them). None of those papers considered the problem of
guaranteeing atomicity and serializability of transactions
containing multiple operations (like Fetch, Insert, Delete,
etc.) on B+ -trees, in the face of transaction, system and
media failures, and concurrent accesses by different trans-
actions. [FuKa89] presents an incorrect (e.g., insufficient
locking in the not found case and while locking for range
scans) and expensive (using nested transactions) solution
to the problem (see [MoLe89] for details). The index man-
agers of database management systems (D BMSS) like DB21,
the 0S12 Extended Edition Database Managerl, System R,
NonStop SQLt and SQUDS support serializability (repeat-
able read (RR) or degree 3 consktency [Gray78] ). For re-
covery, DB2, NonStop SQL and the 0S/2 Extended Edition
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Database Manager use write-ahead logging (WAL) [Gray78,
MHLPS92], while System R and SQLiDS use the shadow-
page technique [GM BLL81 ]. Unfortunately, the details of
the algorithms used in most of the above systems have
never been published. In this paper, we present a concur-
rency control and recovery method, called AR/ES//M (A/go-
rithm for Recovery and Isolation Exploiting Semantics for
index Management), for B ‘-tree index data. We developed
ARIES/lM as part of designing the 0S/2 Extended Edition
Database Manager product.

For the first time, most of the details of the System R ap-
proach to index locking were described by us in [Moha90a],
as part of our ARIES/KVL work which improved that ap-
proach’s concurrency and locking overhead characteristics,
In spite of the fine-granularity locking provided via record
locking for data and key value locking for the index infor-
mation, the level of concurrency supported by System R,
which originated the IBM product SQUDS, has been found
to be inadequate by customers. The concurrency enhance-
ments provided in ARIES/KVL are still inadequate since
even in ARI ES/KVL locks are acquired on key values, rather
than on individual keys. The latter makes a significant dif-
ference in the case of nonunique indexes. Furthermore, the
number of locks acquired for even single record operations
like record insert or delete is very high in System R. While
designing ARIES/lM, our primary goals were to modify the
System R algorithm to use WAL and to drastically improve
its concurrency, performance, and functionality character-
istics. Serializable executions had to be supported with ef-
ficient recovery and storage management, and high concur-
rency. AR IES/lM satisfies these requirements,

ARIES/lM is based on the ARIES recovery and concurrency
control method which was introduced in [MH LPS92] and
which has been implemented, to varying degrees, in the
IBM products 0S/2 Extended Edition Database Manager,
Workstation Data Save FacilityA/M and DB2 V2, in the IBM
Research prototypes Starburst and QuickSilver, in
Transarc’s Encinai product suite, and in the University of
Wisconsin’s Gamma data base machine and EXODUS ex-
tensible DBMS. In ARIEWIM, minimal number of locks are
acquired while providing a high level of concurrency. Re-
start and normal performance are improved by implement-
ing undos and redos efficiently and by avoiding deadlocks
during undos. Our measure of concurrency is the qualitative
one defined in [KuPa79] which basically states that the
more the number of permitted different interleavings of the
actions of a set of transactions the higher the level of con-
currency. Our measures of efficiency are the number of
locks acquired, the number of pages accessed during redo,
undo, and normal operations, the number of passes of the
log made during media recovery, and the number of required
synchronous data base page and log 1/0s.

The rest of the paper is organized as follows. In the rest of
this section, we first introduce the tree architecture and list
some of the problems involved in index concurrency control
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This scenario shows why the page (P2) affected during the rollback of an action (key Insert) may be different from the one (P1 ) affected
during forward processing. Such a Iog/ca/ undo may require retraversing the tree from the root to locate the key (K8). This is caused by
an intervening page split (by T2) which moves the originally inserted key to a different page. Writing compensation log records (CLRS)
during roilback actions aliows the change to the different page to be iogged.

Figure 1: Logical Undo Scenario

and recovery. We then introduce the ARIES recovery and
concurrency control method since ARI ES/lM’s recovery is
based on ARIES. Section 2thenpresents the concurrency
control features of ARIES/l M, while section 3 discusses the
recovery aspects. In section 4, we explain how deadlocks
involving latches are avoided and why rolling back transac-
tions never get involved in deadlocks. We conclude, in sec-
tion 5, with discussions about implementations of ARIES/lM.

1.1. Tree Architecture and Problems

A key in a leaf page is a key-va/ue,record-/D pair, where
record-/D (RID) is the identifier of the record containing that
key value. The records themselves are stored elsewhere in
data pa~es (i.e., outside of the index tree). The leaf pages
alone are forward and backward chained. Every nonleaf
page contains a certain number of child page pointers and
one less number of high keys - each high key is associated
with one child page pointer and there is no high key asso-
ciated with the rightmost child. A high key stored in the
nonleaf page for a given child page is always greater than
the highest key that is actually stored in that child page.

There are four basic index operations that ARIES/lM sup-
ports:

1. Fetch: Given a key value or a partial key value (its
prefix), check if it is in the index and fetch the full key.
A starthrg condition (=, >, or >=) will also be given
with the input value.

2. Fetch Next Having opened a range scan with a Fetch
call, fetch the next key satisfyh’tg the key-range
specification (e.g., a stopping key and a comparison
operator (c, =, or <.)).

3. insert Insert the given key (key-value, RID). For a
unique index, the search logic is called to look for only
the key value since duplicates must be avoided. For a
nonunique index, the whole new key is provided as in-
put for search,

4. Delete Delete the given key.

There are many problems involved in supporting recover-
able, concurrent modifications to an index tree. Some of the
questions to be answered are: (1) how to log the changes
to the index so that, during recovery after a system failure,
any missing updates can be reapplied efficiently? (2) how
to ensure that, if an SMO (structure modification operation
- Le., a page split or a page deletion operation) were to be
in progress at the time of a system failure and some of the
effects of that SMO had already been reflected in the disk
version of the data base, then the system is able to restore
the structural consistency of the tree at the time of system
restart (see Figure 11 for a failure scenario which causes
structural inconsistencies)? (3) how to perform the changes
to index pages so as to minimize the interference caused to
concurrent accessors of the tree? (4) how to ensure that,
even if a transaction were to rollback after successfully comp
leting an SMO, it does not undo the SMO, since doing so
might result in the loss of some updates performed by other
transactions in the intervening period to the pages affected
by the SMO? (5) how to detect that a key that had been
inserted by a transaction TI in page PI had been moved,
due to a subsequent SMO by T2, to P2 so that if TI were to
rollback, then P2 is accessed and the key is deleted (see
Figure 1 for an example of such a logical undo)? (6) how to
detect that a key that had been deleted by TI from PI no
longer belongs on PI but only on P2 due to subsequent
SMOS by other transactions, so that if T1 were to rollback,
then P2 is accessed and the key is inserted in it? (7) how to
avoid a deadlock involving a transaction that is rolling back
so that no special logic is needed to handle a deadlock in-
volving only rolling back transactions? (8) how to support
different granularities of locking and what to designate as
the objects of locking? (9) how to lock the “not found” con-
dition efficiently to guarantee RR (i.e., handling the phantom
problem)? (10) how to guarantee that in a unique index if a
key value were to be deleted by one transaction, then no
other transaction is permitted to insert the same key value
before the former transaction commits? (11 ) how to let tree
traversals go on even as SMOS are in progress and still

1 DB2, IBM and 0S/2 are trademarks of fnternationat Business Machines Corp. NonStop SQL and Tandem are trademarks of Tandem Computers, Inc. Transarc
is a registered trademark of Transarc Corp. Encina is a trademark of Tmrwrc Corp.
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ensure that the traversing transactions are able to recover
if they run into the effects of the SMOS that are still in
progress (see Figure 3 for an illustration of a problem sce-
nario)?

1.2. ARIES

In this subsection, we briefly describe the ARIES recovery
method. The reader is referred to [M HLPS92] for the details
about ARIES, to [MoPi91 ] for the presentation of some op-
timization to the original ARIES method, to [MoNa91 ] for
the descriptions of enhancements to ARIES to handle the
shared disks environment, and to [RoM089] for the descrip-
tion of ARIES/NT, which is the extension of ARIES to the
nested transactions model. We assume that the reader is
familiar with the concept of a latch, the different degrees
of consistency (repeatab le read, cursor stabt 1i ty), the dif-
ferent durations (tnstant, canmt t) and modes (S, X, 1S, 1X,
SIX) of locking and latching, and the differences between
locks and latches, as described in [Gray78, MHLPS92,
Moha90a, Moha90b].

In ARIES, every data base page has a page-LS#l field which
contains the log sequence number (LSW) of the log record
that describes the most recent update to the page. Since
LSNS monotonically increase over time, by comparing at
recovery time a page_LSN with the LSN of a log record for
that page, we can unambiguously determine whether that
version of the page contains that log record’s update. That
is, if the page_LSN is less than the log record’s LSN, then
the effect of the latter is not present in the page. ARIES
uses latches on pages to assure physical consistency of the
accessed information, while it uses locks on data to assure
logical consistency. ARIES supports fine-granularity (e.g.,
record) locking with semantically-rich lock modes (e.g.,
increment/decrement-type locks), partial rollbacks, nested
transactions, write-ahead logging, selective and deferred
restart, fuzzy image copies (archive dumps), media recov-
ery, and the steal and no-force buffer management policies.

In ARIES, restart recovery after a system failure consists of
three passes of the log: analysts, redo and unda. First the
log is scanned, starting from the log record of the last com-
plete checkpoint, up to the end of the log. This analysis pass
determines the starting point for the log scan of the next
pass. It also provides the list of in-flight and in-doubt trans-
actions. In the redo pass, ARI ES repeats history by redoing
those updates logged on stable storage but whose effects
on the data base pages did not get reflected on disk before
the crash. This is done for the updates of al 1 transactions,
including the updates of in-flight transactions. The
redo pass also reacquires the locks needed to protect the
uncommitted updates of the in-doubt transactions.

The next pass is the undo pass during which all in-flight
transactions’ updates are rolled back, in reverse chronolog-
ical order, in a single sweep of the log. In addition to logging
updates performed during forward processing of transac-
tions, ARIES also logs, typically using compensation log

records (CLRS), updates performed during partial or total
rollbacks of transactions. CLRS have the property that they
are redo-only log records. By appropriate chaining of the
CLRS to log records written during forward processing, a
bounded amount of logging is ensured during rollbacks,
even in the face of repeated failures during restart recovery
or of nested rollbacks. When the undo of a log record
(nonCLi?) causes a CLR to be written, the CLR is made to
point, via the UndoNxtLSFJ field of the CLR, to the
predecessor (Le., setting it etpial to the PrevLSN value) of
the log record being undone.

There are times when we would like some changes of a
transaction to be committed irrespective of whether later
on the transaction as a whole commits or not. We do need
the atomicity property for these changes themselves. A few
of the many situations where this is very useful are for
performing page splits and page deletes in indexes as we
show later in this paper, and for relocating records in a hash-
based storage method [Moha92]. ARIES supports this via
the concept of nested top actions. The desired effect is ac-
complished by writing a dummy CLi? at the end of the nested
top action (see Figure 9). The dummy CLR has as its
UndoNxtLSN the LSN of the most recent log record written
by the current transaction just before it started the nested
top action. Thus, the dummy CLR lets ARIES bypass the log
records of the nested top action if the transaction were to
be rolled back af ter the completion of the nested top action.
ARIES’S repeating history feature ensures that the nested
top action’s changes would be redone, if necessary, after a
system failure even though they may be changes performed
by an in-flight transaction. If a system failure were to occur
before the dummy CLR is written to stable storage, then the
incomplete nested top action will be undone since the nested
top action’s log records are written as undo-redo (as op-
posed to redo-only) log records. This provides the desired
atomicity property for the nested top action itself.

2. Concurrency Control in ARIES/IM

In this section, we present those features of ARIES/lM which
are intended for concurrency control purposes, We first give
an overview of those features in a general way and then
present the specifics for the different basic index operations.
Those features of ARIES/lM which are intended to allow re-
covery to be performed correctly are presented in the sec-
tion “3. Recovery in ARI ES/l M”. The recovery requirements
will be shown to place further restrictions on the allowed
concurrency during certain operations. More details are
presented in [MoLe89].

2.1. Overview oJLocking and Latching

Locking The table in Figure 2, summarizes the locks ac-
quired during different operations. ARIES/lM supports very
high concurrency and good performance by (1) treating as
the lock of a key the same lock as the one on the corre-
sponding record data in a data page (at the locking granu-

NEXT KEY CURRENT KEY

FETCH & FETCH NEXT S for commit duration

INSERT X for Instant duration X for commit duration if Index-specific locking is used

DELETE X for commit duration X for instant duration If index-sps!cific locking is used

Figure 2 Summary of Locking in ARIEWIM
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Figure 3: Undesirable Interaction Between a Structure Modifying Transaction and an Insert Transaction

Iarity (page, record, .,.) associated with the table/file), (2)
not acquiring, in the interest of permitting very high concur-
rency, commit duration locks on index pages even during
SMOS, and (3) aiiowing key retrievals, inserts, and deletes
to go cm concurrently with SMOS. To iock a key, ARiES/iM
iocks the record whose record 10 is present in the key (or
the data page iD which is part of the record iD, if the locking
granularity is a page). A iock on a key is reaily a iock on the
corresponding piece of data which contains the key. We call
this data-only locking. This is to be contrasted with the key
value iocking approaches of System R and ARiESIKVL
[Moha90a], and the index (mini)page locking approaches
of DB2 and System R (with page locking). We call those
other approaches to iocking as index-specific locking. Ac-
tualiy, ARIES/lM can be easily modified to perform index-
specific locking also for slightly more concurrency compared
to data-oniy locking, but with extra iocking costs (see
[MoLe89] ). With data-only locking, the current key is not
explicitly locked by the index manager during key deletes
and inserts, since the record manager would have already
locked the corresponding data with a commit duration X
lock during the data page operation. The explicit locking
of the deleted or inserted key by the index manager is
needed only if index-specific iocking is being done. Since,
with data-oniy iocking, during fetch and fetch next calls, the
index manager locks the current key, the record manager
does not have to lock the corresponding record during the
subsequent record retrievai from the data page. Obviously,
with index-specific iocking, the record manager would have
to do that locking also.

During the insert or delete of a key, a lock is requested on
the next key currentiy in the index in order to support RR
(thus soiving the phantom problem) and aiso to guarantee,
in the case of a unique index, that muitipie keys with the
same key value do not show up due to transaction roiibacks
(see the sections “2.4. Insert” and “2.5. Delete”). During a

fetch or fetch next operation aiso, in order to guarantee RR,
the next key is iocked if the requested key value is not
present (see the sections “2.2. Fetch” and “2.3. Fetch Next”).

Latching Oniy page latches are used to provide physical
consistency of information, when the tree is being traversed
for any kind of operation. These minimize the number of
locks acquired and improve performance in terms of both
pathlength and concurrency. Not more than 2 index pages
are held iatched simultaneously at anytime. In order to im-
prove concurrency and to avoid deadlocks involving latches,
even those iatches are not held while waiting for a lock
which is not immediately grantable. No data page latch is

held or acquired during an index access. Latch coupling is
used whiie traversing the tree - i.e., the iatch on a parent
page is held while requesting a iatch on a child page. The
steps executed during a tree traversai are as foliows:

1. S latch the root making it the current page.
2. Examine the current page, identify the chiid page to be

iatched, and make the chiid page the current page. If
the current page is not a leaf, S latch it, unlatch the
parent page, and do step (2) again. if the current page
is a ieaf, X (respectively, S) latch it if the operation is a
key insert/deiete (fetch/fetch next).

Later, some checks wiil be added to the above logic to take
care of conditions caused by concurrent activities (SMO,
etc.) of other transactions (see Figure 4).

Structure Modification Operations An SMO (page spiit
or delete) is performed by the same transaction that en-
countered a need for it, unlike in some other methods
[Sagi86, ShGo88]. When a page is split by a transaction,
other transactions are not prevented from reading that page
or even modifying that page before the transaction which
performed the split conmt ts. To improve concurrency, the
effects of SMOS are propagated in the tree in a bottom-up
manner (i.e., from the leaves to the nonieaves), without the
notion of a safe node (page) (see [BaSc77] ). To avoid dead-
locks involving latches, the latches on the Iower-ievel pages
are reieased before the higher-ievel page(s) is iatched and
modified. This ieaves open the possibility of a traverser
seeing an inconsistent tree (see Figure 3). The rationale
for this design decision is discussed in [MoLe89]. Splits are
done to the “right”. That is, the higher valued keys are
moved to the new page. A page that becomes empty is de-
leted from the tree. it is ensured that under no circum-
stances an empty page remains a part of the index with no
SMO remaining to be completed (i.e., with the SM_Bit (see
below) equai to ‘O’ and the page being reachable from the
root of the tree). in order to avoid undesirable interactions
between an SMO of one transaction and the actions of the
other transactions (see, e.g., Figure 3), ARIES/lM does the
foiiowing:

SFfOswithin u stngle tndex tree ore serialized us’lng an
X trse 1atch that ts spectf tc to thts f ndex.

The tree latch is acquired in the X mode by a transaction
just before it performs the SMO at the leaf level and is held
until ALL the effects of that SMO are propagated up the
tree. As the SMO is performed at the ieaf ievei and is prop-
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agated up the tree, a bit, call it the SiW-Bit, is set to ‘1’ in
each page affected by the SMO to warn other transactions.
The SM_Bit is used to avoid problems like the one where
an insert is performed on the wrong page because of an
incomplete SMO. The SM_Bit can be reset to ‘O’ once the
SMO which caused it to be set to’1’ has been completed.

In order to support high levels of concurrency, the tree latch
is not acquired during tree traversals. But ARIES/l M uses
the tree latch also to synchronize, under certain conditions,
the different transactions performing key inserts, key de-
letes, and SMOS involving a particular tree. The tree latch
is acquired by a transaction traversing a tree when a page
which has participated in a yet-to-be-completed SMO is en-
countered (i.e., SM_Bit ==’1’ for the page) and (1) there is
ambiguity, when the page is a nonleaf, about whether or not
it is correct to traverse further down that subtreez, or (2)
the page is a leaf”and it needs to be modified.3 Under these
conditions, the tree latch is requested in the S mode to wait
for the SMO to be completed (see Figure 4, Figure 6 and
Figure 7). Because ARIES/iM propagates SMOS bottom-up,
the high key in a parent page for a particular child page can
be trusted only if latches are held on both the parent and
the child, and the SM_Bit is equal to ‘O’ on the child. This
means that the parent-child path is valid.

Next, we describe the actions taken after we reach a leaf
page for the different operations (Fetch, Insert, ...).

2.2. Fetch

The logic for Fetch is shown in Figure 5. If Fetch reaches
the last(i.e., the rtghtmost) leaf page and no matching or
higher key value is found, then it is treated as the EOF (End
Of File) situation and a special lock name unique to this
index is used as the found key’s lock name. If the requested
key value was not found but a higher valued key was found
or it is the EOF case, then the not found status will be re-

/* for simplicity, root = leaf case not specified here */
S latch root and note root’s page_LSN
Child := Root
Parent := NIL
Descend:
IF child is a leaf AND Op is (insert OR delete) THEN

X latch child
ELSE S latch child
Note child’s page LSN
IF child is a non~eaf page THEN

IF nonempty child & ((input key<=highest key in child)
~~Ef(input key>highest key in child) & SM-Bit=’O’))

/’ Not an ambiguous case ‘/
IF parent <> NIL THENunlatch parent
Parent := Child
Child := Page-Search (Child)

/* Search child to decide next page to access */
Go to Oescend

ELSE /* Unfinished S140causing ambiguity */
Unlatch parent & child
S latch tree for instant duration

/* Wait for unfinished St40 to finish */
Unwind recursion as far as necessary based on

noted page LSNSand go down again
ELSE /* Chil~ is leaf; S or X latch held on child */

CASE On OF------ r-.

Fetch: . . . /* invoke fetch action routine */

Insert: . . . /* invoke insert action routine */
Oelete: . . . /* invoke delete action routine */

END

Figure 4: Search Logic During Tree Traversal

Find requested or next higher key (maybe on NextPage)
Unlatch parent
Request conditional S lock on found key
IF lock granted THEN

Unlatch child & return found key
ELSE

Note LSN and key position and unlatch child
Request unconditional 1ock on key
Once lock granted backup & search if needed

Figure 5: Pseudo-Code for Fetch Action Routine

turned to the caiier. if the first ieaf examined during the tree
traversai does not have a key vaiue equal to or greater than
the one searched for, then the next ieaf wouid be latched
and accessed whiie continuing to hoid the iatch on the first
ieaf in order to find the next higher key (see [MoLe89] for
detaiis). In any case, whiie hoiding the page iatch(es), an S
iock is requested on the found key.\ Getting the iock whiie
hoiding the iatch(es) guarantees that the inferred informa-
tion (e.g., the fact that the requested key exists or does not
exist) is correct (i.e., the inferred state is the committed
state, uniess of course the inferred state is the uncommitted
state of the same transaction).

To shorten the paper, in the foiiowing, aii the iock caiis are
described as if they wouid be granted right away (i.e., when
requested conditional ly whiie hoiding tree andlor page
itch). To avoid deadiocks and to increase concurrency,
if the lock is not granted when requested conditionaiiy, then
the foiiowing steps must be taken: (1) ali the iatches must
be reieased, (2) the iock must be requested uncondi t i anal ly,
and (3) once the iock is granted, a verification must be per-
formed to ensure that a corrective action (e.g., requesting
another iock) is taken if a change of interest had occurred
when the iatches were not heid (e.g., the iocked key may no
ionger exist or a smailer key of interest has appeared in the
index), Before unhatching the pages, their page_LSNs wouid
be noted to make the detection of no changes a cheap op-
eration. The tree iatch aiso shouid not be requested uncon -
di t ional ly whiie hoiding other iatches. As for iocks, if the
tree iatch is obtained without hoiding page iatches, then a
validation of the previously inferred information must be
performed (this may require reexamining the ancestors of
the chiid page),

Even if the requested key is not found, the next higher key
which is currentiy present in the index is iocked to make
sure that the requested key does not appear (due to an
insert by another transaction) before the current transaction
terminates and prevent RR from being possibie. As we wiii
see iater, this iocking, in conjunction with the next key lock-
ing done during key inserts, makes it possibie to guarantee
RR and hence serializability. This locking in Fetch also
makes sure that the requested key has not been deieted by
another transaction which has not yet committed. As we
wiii see iater, the deieter of a key ieaves a trace of its action
by X iocking the next key for commit duration.

2.3. Fetch Next

if the current cursor position aiready satisfies the stopping
key specification (unique index and a stopping condition of
=), then Fetch Next returns right away to the caiier with a
not found status, Otherwise, the ieaf page which is expected
to contain the key on which the cursor is currentiy positioned
is iatched and a check is made to see if the page’s current
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LSN is different from the LSN remembered at the time of
the last positioning. The current key (current cursor position)
may not be in the index anymore due to a key deletion ear-
lier by the same transaction. If a change is noticed, then
repositioning to the next key-value, RID pair is done as in a
Fetch call. Except in the case mentioned above, once the
next key is located it has to be locked. If the next key sat-
isfies the key range specification, then it will be returned;
otherwise, a not found condition needs to be returned to
the caller.

2.4. Insert

If there is enough space on the leaf page, then, after the
page is searched, Insert is positioned at a key with the same
key value, positioned at a key with a higher value, or posi-
tioned past the last key in the page. If Insert were positioned
at an equal key value in a unique index, then it requests an
S lock on the found key to make sure that the key value is
in the committed state, unless of course it is an uncommitted
insert of the same transaction. After this lock is granted, if
Insert discovers that the previously found key value is still
in the index, then it returns the unique key vio latton status
to the caller. The lock is obtained for commit duration to
make sure that the error condition is repeatable.

In the other cases (see Figure 6), Insert requests an instant
duration X lock on the next key. This may involve, as in
Fetch, having to access the next leaf page to identify the
next key. In such a case, the latches on both leaves will be
held while the lock is requested. One of the purposes of the
instant duration lock that is requested on the next key
value is to determine if, as of the time the X latch was ac-
quired on the leaf (hence the instant duration rather than
consntt duration lock), there was qny other concurrently run-
ning transaction which had looked for and not found the key
value being inserted. This is to handle the phantom problem
and to guarantee RR. In the case of a unique index, with
next key locking, Insert is also trying to determine if there
exists an uncommitted delete by another transaction of the
same key value as the one to be inserted.

After doing the next key locking, Insert inserts the key in
the correct leaf page, unlatches the page(s), and returns to
the user with the success status. The latching protocol is
used to guarantee that the instant lock was requested on
the correct next key. If there isn’t enough space to insert

IF Sti_Bit I Delete-Bit = ‘1’ THEN
Instant S latch tree, set Bits to ‘O’

Unlatch parent
Find key > insert key & X lock it for instant duration
/* Next key may be on next page ‘/
/* Latch next page while holding latch on current page*/
/* Lock next key while holding latch on next page also*/

/* Unlatch next page after acquiring next key lock */
Insert key, 1og and update page-LSN
Releese child latch

Figure 6: Pseudocode for Key Insert Action Routine
(No Uniqueness Violstion and No Page Split Case)

the key, then the page spiitting aigorithm is executed (see
Figure 8). The tree iatch is acquired in the X mode oniy after
ali the affected pages have been brought into the buffer
pooi. This is done to minimize the serialization deiays
caused by the X tree iatch. The effects of the split are com-
pletely propagated up the tree before the insert which
caused the split is performed. The reason for this deiaying
of the insert is discussed in the section “3. Recovery in
ARiES/iM” (see also [Moha90a, MoLe89]),

2.5. Delete

The logic for Deiete is shown in Figure 7. After searching
the leaf page, Deiete shouid be positioned at the key to be
deleted. A conmtt duration X lock is then requested on the
next key. This iock is necessary to warn other transactions,
which may be iooking to insert or retrieve the key vaiue
being deieted, about the uncommitted deiete. if the key to
be deieted is the smaliest or the largest one in the page, a
condt t i ona 1 S iatch on the tree is requested. The reason
for hoiding the tree iatch when the key to be deieted is a
boundary key is related to recovery (see the section “3.
Recovery in ARiES/iM” for further explanations).

After this iocking is done successfuiiy, usuaiiy Deietedeietes
the specified key, uniatches the page(s) and returns to the
calier, But, if the key to be deieted is the oniy key in the
page, which would make the page become empty after the
key deiete is compieted, Deiete invokes the page deietion
procedure (see Figure 8). This procedure, like the page split
procedure, requests the X iatch on the tree after ensuring
that ali the affected pages are aiready in the buffer pooi to
minimize the time during which the X iatch is heid. On ob-
taining the iatch, it deietes the key and then performs the
page deiete reiated processing (modif@g the neighboring
pages’ pointers, propagating the page deietion, etc.).

2.6. Discussion

In this section, we try to expiain why there are some signif-
icant differences in the locking protocois that are foiiowed
during the different Ieaf-ievel operations. The asymmetry
in the next key iocking duration (tnstont versus conmtt)for
insert and deiete comes from the fact that an uncommitted
insert is visible since a key once inserted begins to exist
in the index, whereas a key once deleted is not visibie any-
more since it disappears from the index. So, in the iatter

IF S!I-Bit = ‘1’ THEN
Instant S latch tree and set St4-Bit to ‘O’

Set Delete_Bit to ‘1’
Unlatch parent
Find key > delete key & X lock it for comnit duration
IF delete key is smallest/largest on page THEN

S latch tree and set Delete-Bit to ‘O’
Delete key, log and update page_LSN
Release child latch and tree latch, if held

Figure 7: Pseudo-Code for Key Deiete Action Routine
(No Page Deiete Case)

2 In the algorithms that adopt the BIlnk.tiee ~cMk~ [LeYagl, Sa~86], thi5 embi@y is prevented &om arising by storing explicitly in a no~eaf page Me

frigh key associated with its rightmost child also. We discuss in [MoLe89] the negative implications of using Blink-trees.

3 Note that in the case of a leaf and a key delete/insert operation, even if there is no ambiguity about whether that is the right leaf to be aL ARIES/IM waits for
any incomplete SMO to be completed. The reason for this has to do with recovery (see the section “3, Recovery in ARIES/IM”).
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Fix needed neighboring pages in buffer pool
X latch tree and unlatch parent
IF key delete THENdo it as before (Figure 7)
RememberLSN of last log record of transaction
Perform SMOat leaf, set St4-Bit - ‘1’, modify

neighboring pages’ pointers, log, and unlatch pages
Propagate St40 to higher levels setting SM-Bit to ‘ 1’
Write OumnyCLR pointing to remembered LSN
Reset SM_Bit to ‘O’ in affected pages (optional)
IF key insert THENdo it as before (Figure 6)
Release tree latch

Figure 8: Pseudo-Code for Structure Modification Dur-
ing Forward Proceeding

case, as ions as the kev is in the uncommitted deieted state.
we need to have behi~d a strong lock on a stiii-existing key
for other transactions to trip on (i.e., conflict on a iock re-
quest) and reaiize that there is an uncommitted deiete. The
iock haa to be strong enough to prevent others from buiiding
a wal 1 behind the tripping point such that the waii hides
the tripping point from the point of deletion. Permitting such
a waii to be built wouid aiiow some transaction to conciude
that a key does not exist when in fact it is stiii an uncommitted
deiete and the deietion couid get roiied back anytime. In
the case of an insert, the inserted key itseif serves as the
tripping point, whereas for deiete the tripping point has to
be another key which must be guaranteed to be a stable
one (i.e., nondeietabie by other transactions). The reader
shouid now be abie to visuaiize what is going on. More dis-
cussions aiong these iines with examples may be found in
[Moha90a].

3. Recovery in ARIES/IM

Recovery in generai works as in ARiES, as we briefly de-
scribed in the section “1.2. ARi ES”. in this section, we ad-
dress those aspects of recovery that are specific to index
management. We discuss how some of the concurrency
control aspects discussed in the previous section are im-
pacted by recovery considerations. Some of these are very
subtie and require carefui anaiysis to understand the prob-
iems and the soiutions.

Logg/ng in ARiES/iM, all index changes, including those
performed as part of undo of updates, are iogged such that
each iog record contains the identity of the affected page
and the inserted or the deieted key. The changes performed
during undo are typical ly iogged using CLRS. During re-
start, any required redos are performed in a page-oriented
manner. in System R, index changes are not iogged. Hence,
during recovery, any required redos and undos are aiways
performed iogicaiiy, based on iog records for the data pages.
To work correctiy, that method depends cruciaiiy on the
shadow-page recovery technique.

Structure Modification Operations Even if a transaction
which performed an SMO were to roii back, if aii the effects
of the SMO had been propagated successfully up the tree
before the roiiback is initiated, then that eariier SMO is not
undone in a page-oriented fashion in order to avoid wiping
out the subsequent changes, by other transactions, to the
pages invoived in that eariier SMO, This is accomplished
by taking the foilowing steps:

. The SMO is performed as a nested top action.

-~

Page Spl It
and Propagat I on

r---l
. . .

r-
~

Figure 9: Page Spiit During Forward Processing

●

●

If an insert requires a page spiit, then aii the actions re-
iating to that spiit (the Ieaf-ievei actions, the propagation
up the tree and the writing of the dummy CLR) are com-
pieted before the insert which necessitated the spiit is
performed (see Figure 8 and Figure 9).
if the deletion of a key necessitates a page deietion (be-
cause the page became empty), then the key deietion is
first performed and logged and then ali the actions reiating
to that page deietion are compieted. The dummy CLR wiii
point to the key deietion iog record (see Figure 8 and
Figure 10).

Thus, the dummy CLR iets the transaction, if it were to roii-
back after competing the SMO, bypass the iog records re-
lating to the SMO. At the same time, by performing the key
insert/deiete causing the SMO outside of the nested top ac-
tion, it is ensured that, on a roil back, the insert/deiete op-
eration causing the SMO will definitely be undone. Partiaiiy
compieted SMOS are undone in a page-oriented fashion to
restore the structural consistency of the tree, This undo is
acceptable since no other transactions wouid have been
aiiowed (by the use of the SM_Bit and the tree iatch - see
below) to modi~ those pages after this SMO started. At the
time of restart recovery, no speciai processing is performed
to determine which indexes are structurally inconsistent.
There is no speciai handiing of such indexes. If an incomplete
SMO is being undone during normai processing due to a
process faiiure, then the tree iatch would be reieased after
ail the iog records reiating to the incomplete SMO are un-
done.

During a key insert or deiete operation (see Figure 6 and
Figure 7), if the ieaf to be modified is found to have the
SM Bit set to ‘1’, then, even if it is not ambiguous whether
thafis the page to be affected (e.g., in the scenario of Figure
3, the vaiue B, instead of i, is to be inserted by T2), the
modification is stiii deiayed untii it is ensured that any in-
progress SMO has compieted (i.e., the SM_Bit can be reset
to ‘O’), This is important since if the insert or delete were
to be permitted prematurely then the inserting or deleting
transaction couid commit and after that the incomplete SMO
might have to be undone due to a processor a system faii-
ure. The undoing of the incomplete SMO in a page-oriented
fashion wili cause the state of the leaf page to be restored
to the state which existed prior to the beginning of that SMO,

~~
Page Delete
and Propagat I on

n. . .

Key
Lo
x

Figure 10: Page Deletion During Forward Processing
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Delete Key Insert Key co~lt >+

● T1 Deletes Key From P6

* T2 Cansumes Space in
P6 With Insert; Commits

w T1 Needs to Abort
Due to System Failure

Tree Traversal
Impossible!

In this scenario, the space freed by T1’s key deletion on P6 is consumed by T2’s key insertion which Is soon committed. When the key
deletion and consumption are happening, the affected leaf page P6 is Inaccesslbie from the root due to an incomplete page spiit caused by
T3 higher up In the tree. Before anything else happens, the system crashes and at restart time the undoing of TI’s key deietion necessitates
a page split of P6 (since T2 consumed the space) which requires traversing the tree from the root to reach P6. This is impossible since
T3’s incomplete page split which made P6 inaccessible Is not yet undone. Using a Deiete_Bit wili avoid this sort of a problem since T2
would have reaiized that before it consumes space it shouid ensure that there is no ongoing structure modification which 1smaking the ieaf
inaccessible from the root.

Figure 11: Interaction Between an Incomplete SMO and a Space Consuming Operation

thereby wiping out the effect of the committed key insert or
deiete operation of the other transaction.

Undo l%ocesshtg During normal and restart undo process-
ing, undos of key inserta and deletes are performed in a
page-oriented fashion, whenever possible. That is, when a
key insertldelete needs to be undone, ARIES/lM f i rst ac-
cesses the page mentioned in the to-be-undone log record
and checks to see if that is the right page to perform the
undo on, given the current state of that page. Sometimes,
undos may have to be performed logically (i.e., by going
back through the root of the index, as during forward pro-
cessing). This will be necessary, for example (see Figure 1),
if originally a key K8 was inserted by transaction TI on page
PI, later another transaction T2 split PI and moved K8 to
P2, and then T1 rolled back. Other cases where logical undos
are needed are discussed below.

During undo processing, SMOS (both splits and page dele-
tions) may have to be performed. Such SMO related actions
will be iogged using regular (i.e., nonCLR) log records, as in
forward processing. This is so that, if such an SMO were to
be interrupted by a failure before the completion of the
SMO, then, during the subsequent restart recovery, the ac-
tiona could be undone and tree consistency restored, This
is an exception to the general practice, in ARIES, of writing
only CLRS during undo processing. ARIES/l M’s exceptional
iogging ia necessary since CLRS are redo-oniy log records
and hence their changes wouid not be undone.

Restart Undo Considerations In order to guarantee that
no traversal of a particular tree wili be attempted at restart
recovery time before any incomplete SMO for that tree is

undone (and also in order to avoid undesirable interactions
between an SMO of one transaction and the actions of the
other transactions during normal processing, as discussed
in the previous section), ARIES/lM serializes SMOa using
the tree latch mentioned before.

The X tree latch is released once the dummy CLR, which
signals the completion of the SMO, is written to the buffer
version of the log. ARIES/l M also uses the tree latch to
synchronize, under certain conditions, the different trans-
actions performing key inserts, key deletes, and SMOS in-
volving a particular tree. The idea is to allow the logging
relating to key inserts and key deletes for a particular tree
by different transactions to go on concurrently with logging
relating to an SMO for the same tree by another transaction
as long as the iatter couid not adversely affect the former
operations’ (key inserts’ and deletes’) correctness or those
operations’ subsequent undo if a system failure were to oc-
cur. To explain this further, we need to discuss in detail
under what conditions Iogicai undos wili be necessary.

If an operation performed originally at time tl needs to be
undone at time t2, then, during such an undo, tree traversal
is performed (i. e., logical undo), only if page-oriented
undo cannot be performed due to

1. lack of enough free space on the original page to undo
a key delete, thereby necessitating a page split SMO
(i.e., the space freed by the original key deiete was con-
sumed by other transactions for their inserts in the time
between tl and t2);
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2.

3.

4.

the key dejtnt tely does not belong on the original page
anymore: in the undo of a key insert case, the key is
not on the page anymore (caused by an intervening
page split SMO); in the undo of a key delete case, the
original page is no longer a leaf page (caused by an
intervening page delete SMO);
it is ambiguous whether the key belongs on the original
page or not: undo of a key delete case - the original
page is still a leaf page but the key to be put back is not
bound on the page (bound means that both a higher key
and a lower key than the one to be inserted are present
in the page); or
the undo causes the original page to become empty,
thereby necessitating a ‘page-delete SMO undo of ‘a
key insert case - since at the time of the original insert
there must have been at least one other key on the
page (guaranteed by page split logic), it means that
there must have been a delete of a boundary key in the
time between tl and t2.

A certain precautionary step must be taken while performing
(at time between tl and t2) any operation on a given page
that follows an earlier performed operation (at time tl ) on
the same page and that could potential ly cause one of the
above four conditions to arise subsequent Zyduring the undo
(at time t2) of the earlier performed (at time tl ) action,
thereby potenttal Iy forcing the previously logged action’s
undo to necessitate a tree traversal at the time of a restart
undo. Figure 11 illustrates such a problem scenario during
the insert by T2 on P6 which follows the delete by T1 on P6,
T2 needs to take the precautionary step so that if TI’s delete
on P6 were to be rolled back later thereby T1 being forced
to perform a logical undo, then T1 will not encounter a struc-
turally inconsistent tree due to which it is unable to reach
the leaf level. The precautionary step is to first ensure that
a point of structural consistency (POSC) is reached by re-
questing the tree latch in the S mode, before performing
the action (i.e., T2 establishes a POSC before performing its
key insert on P6 which consumes the space released by T1 ).
This guarantees that if a system failure were to occur, then
by the time the undo pass reaches, if at all necessary, the
POSC, the tree would be structurally consistent. The undo
pass will access the portion of the log preceding the POSC
only if some transaction which started before the POSC had
to be rolled back.

Even if the leaf in which a key deiete/insert is being at-
tempted is not a participant in an incomplete SMO (i.e., the
SM_Bit on the leaf page is equal to ‘O’), such an operation
moy have to be delayed, if an SMO is going on elsewhere in
the tree, until that SMO completes (see Figure 11 for an
illustration of the problem). The delaying is necessary only
if a system failure which happens after the key insert/delete
operation finished but before the inserting or deleting trans-
action had committed could cause the retraversal of the
tree from the root to undo the key insert/delete. Under
those circumstances, it must be guaranteed that the tree
would be structurally consistent and fit for traversal, We
call as the region of structural hcomktency (ROSI) that
portion of the log from the point at which the first SMO re-
lated log record is written (indicated by the symbol [) to the
point at which the dummy CLR for that SMO is written (in-
dicated by the symbol ]). In that region, if another transac-
tion’s operation on that index is allowed to be logged then
we must be sure that that operation can be undone in a
page-oriented fashion. If we are not sure that a logical undo
would not be necessary in case the system were to fail right

after that action is performed and logged, then we must
delay that operation and wait for the ROSI to end and a
POSC to be established.

To take care of the situation described under the first of the
four reasons given above for tree traversal during restart
undo, ARIES/l M makes use of a bit, called the Delete Bit,
on every page. This bit is set to’1’ by the transaction d~ng
a key delete on a leaf page (see Figure 7). When a key
insert is being attempted on a leaf whose Delete_Bit is set
to ‘l’, ARIES/lM first ensures that no SMO is in progress
before it allows the insert to proceed (see Figure 6), In the
example of Figure 11, note that T2 would notice that the
Delete_Bit is equal to ‘1’ and hence it would establish a
POSC before resetting the Delete_Bit to ‘O’ and doing its
insert. Thus, T2 protects TI from encountering a structurally
inconsistent tree if a system failure were to happen soon
after T2’s commit of its insert action and T1 had to be rolled
back. An alternative to using something like the Delete Bit
to handle the above situation would have been to reqfire
that every delete be performed (and logged) only when no
SMO is in progress anywhere in the tree. We did not use
that option since it would cause too much unnecessary syn-
chronization and reduce concurrency. The cost of this un-
necessary synchronization will be even more pronounced
when the tree latch is converted to a lock, in order to allow
concurrent SMOS (see the section “5. Conclusions”). Ac-
quiring and releasing a latch costs tens of instructions com-
pared to the hundreds of instructions it costs to acquire and
reiease a lock, even when there is no conflict. The negative
concurrency and pathlength implications will become sig-
nificantly worse in the shared disks environment [MoNa91 ]
where the tree latch will become a global lock costing thou-
sands of instructions!

The situations described under the second reason for tree
traversai should not cause any problems. This is because
the fact that between tl and t2 an SMO (page spiit or delete)
must have happened for the logical undo to become neces-
sary ensures that, even if the action performed at tl was in
a ROSI, a POSC would have been subsequently established
before the logical-undo-causing SMO was allowed to hap-
pen. The establishment of the POSC is ensured due to the
serialization of all SMOS using the X tree latch.

Because of the situation described under the third reason
for tree traversal, ARIES/lM has to make sure, before allow-
ing the (logging of a) delete of a boundary key (i.e., smallest
or largest key on a page), that there is no ongoing SMO
higher up in the tree which could make the leaf page inac-
cessible from the root if a failure were to occur. It does this
conservative y by establishing a POSC before performing
the delete of a boundary key (see Figure 7). Further, it
avoids the logging of such a delete during a ROSI by not
reieasing the S tree iatch untii the delete operation is com-
pleted.

The situation described under the fourth reason for tree tra-
versal should not cause any problems since, as mentioned
before, between tl and t2 the deletion of a boundary key
must have taken piace, That boundary key deletion, due to
the above logic, would have ensured that a POSC was es-
tablished between t 1 and t2.

It is important to note that, in generai, the holder of the tree
latch will not do any l/Os while holding the tree latch and
hence the time interval for which the latch is held should be
very smail.

379



4. Deadlocks

The protocols that are followed in acquiring latches guaran-
tee that there will not be any deadlock involving latches.
Even though most of the time a latch on an index page is
held when a latch on another index page is requested un-
condt ttonal ly, no deadlocks are possible because there is
a hierarchical ordering amongst the latches (hold parent’s
latch and request child’s latch, or hold lea~s latch and re-
quest the next leaf’s latch). Even when a leaf-level operation
(page split or delete) has to be propagated up the tree, the
nonleaf page’s latch is requested only after the leaf-level
latches have been released. No lock is requested uncondi-
tionally when one or more latches are held. So, there will
not be any lock waits when a latch is held.

It turns out even the tree latch will not be involved in a
deadlock. This is so because the holder of a tree latch waits,
if at all, only for acquiring latches for propagating the con-
sequences of the leaf-level actions up the tree. No locks are
requested uncondi t tonal ly while holding the tree latch. The
holders of those latches that delay the holder of the tree
latch themselves will not wait for any locks or the tree latch,
while holding those latches. A rolling back transaction will
not be involved in a deadlock since (1) no locks would be
requested and (2) only latches on accessed pages will be
requested. The exception is that the tree latch may need to
be reacquired, in addition to the latches of accessed pages,
if a logical undo needs to be performed. Since these latches
never get involved in deadlocks, a rolling back transaction
will never get into deadlocks.

5. Conclusions

Compared to the System R protocols, ARIES/lM gains a sig-
nificant amount of concurrency and performance by doing
the following: (1) locking individual keys rather than key val-
ues, and (2) acquiring latches on pages rather than locks,
and holding those latches for much shorter durations and
avoiding deadlocks involving them. ARIES/l M reduces the
number of locks for single-record operations by performing
data-only locking rather than index-specific locking. The
0S/2 Extended Edition Database Manager implements a
subset of ARIEWIM. Some of the features of ARIES/lM have
also been incorporated in SQUDS V2R2 and V2R3, and in
VM’S Shared File System which originally used the System
R protocols. ARI ES/1M supports page-oriented media recov-
ery for indexes - i.e., dumps of indexes can be taken and
when there is a problem in reading a page (because, e.g., a
crash had occurred when that page was being written), the
page can be loaded from the last dump and then, by rolling
forward using the log, the page can be brought up-to-date,
Details concerning media recovery, deferred restart, etc.
are presented in [M HLPS92].

Serialization of SMOs via X latches on the tree was specified
earlier only to make the presentation simple. Concurrent
SMOS can be easily permitted by changing the tree latch
into a lock. This change to a lock is needed since deadlocks
may occur if multiple SMOS are permitted concurrently and
since latch deadlocks cannot be allowed to occur as they
will not be detected. With this change, while leaf- leve t
SMOS are being performed, transactions will acquire the
tree lock in the 1X mode. If a non leaf- level SMO is required,
then they will upgrade the IX lock to an X lock (it is due to
this upgrading that deadlocks may then be possible since
two transactions may attempt upgrading concurrently). In
order to avoid rolling back transactions from ever getting

involved in deadlocks, such transactions will be made to
obtain the tree lock in the X mode even as they perform
leaf- level SMOS.
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