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Abstract

This paper describes an efficient approach to record linkage. Given two lists of records, the
record-linkage problem consists of determining all pairs that are similar to each other, where
the overall similarity between two records is defined based on domain-specific similarities over
individual attributes constituting the record. The record-linkage problem arises naturally in the
context of data cleansing that usually precedes data analysis and mining. The scalability issue
of record linkage has previously been addressed in [15], where the authors proposed a sorted-
neighborhood approach to improve performance. Since that original work, the repertoire of
database techniques dealing with multidimensional data sets has significantly increased. Specif-
ically, many effective and efficient approaches for distance-preserving transforms and similarity
joins have been developed. Based on these advances, we explore a novel approach to record
linkage. For each attribute of records, we first map values to a multidimensional Euclidean
space that preserves domain-specific similarity. Many mapping algorithms can be applied, and
we use the Fastmap approach [12] as an example. Given the merging rule that defines when
two records are similar based on their attribute-level similarities, a set of attributes are chosen
along which the merge will proceed. A multidimensional similarity join (using the algorithm
proposed by Hjaltason and Samet [16]) over the chosen attributes is used to determine similar
pairs of records. Our extensive experiments using real data sets show that our solution has very
good efficiency and accuracy.

1 Introduction

The record-linkage problem – identifying and linking duplicate records – arises in the context of

data cleansing, which is a necessary pre-step to many database applications. Databases frequently

contain approximately duplicate fields and records that refer to the same real-world entity, but

are not identical. As the following example illustrates, variations in representation may arise from

typographical errors, misspellings, abbreviations, as well as other sources. This problem is especially

severe when data to be stored within databases is automatically extracted from unstructured or

semi-structured documents or web pages [4].
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EXAMPLE 1.1 A hospital of a medical school has a database with thousands of patient records.1

Every year it receives data from other sources, such as the government or local organizations. The

data includes all kinds of information about patients, such as whether a patient has moved to a new

place. It is important for the hospital to link the records in its own database with the data from

other sources, so that they can collect more information about patients. However, usually the same

information (e.g., name, SSN, address, telephone number) can be represented in different formats.

For instance, a patient name can be represented as “Tom Franz” or “Franz, T.” or other forms.

In addition, there could be typos in the data. For example, name “Franz” may be mistakenly

recorded as “Frans”. The main task here is to link records from different databases in the presence

of mismatched information. �

With the increasing importance of data linkage in a variety of data-analysis applications, de-

veloping effective and efficient techniques for record linkage has emerged as an important prob-

lem [26, 27]. It is further evidenced by the emergence of numerous organizations (e.g., Trillium,

FirstLogic, Vality, DataFlux) that are developing specialized domain-specific record-linkage and

data-cleansing tools.

Three primary challenges arise in the context of record linkage. First, it is important to de-

termine similarity functions that can be used to link two records as duplicates. Such a similarity

function consists of two levels. First, similarity metrics need to be defined at the level of each field

to determine similarity of different values of the same field. Next, field-level similarity metrics need

to be combined to determine overall similarity between two records. At the field level, a typical

choice is string edit distance, particularly if the primary source of errors are typographic. However,

as the example above illustrated, domain-specific similarity measures (e.g., a different function for

people’s names, addresses, paper references, etc.) are more relevant. At the record level, merg-

ing rules that combine field-level similarity measures into an overall record similarity need to be

developed. Approaches based on binary classifiers, expectation maximization (EM) methods and

support vector machines have been proposed in the literature [4, 7, 35].

The second challenge in record linkage is to provide user-friendly interactive tools for users to

specify different transformations, and use the feedback to improve the data quality. Recently a few

works [11, 13, 30] have been conducted to solve this problem. The third challenge is that of scale.

A simple solution is to use a nested-loop approach to generate the Cartesian product of records,

and then use the similarity function(s) to compute the distance between each pair of records. This

approach is computationally prohibitive as the two data sizes become large.

1For confidentiality reasons, we omit the real name of the hospital.
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The scalability issue of the record linkage has previously been studied in [15]. The proposed

approach first merges two given lists of records, then sorts records based on lexicographic ordering

for each attribute (or a “key” as defined in that paper). A fixed-size sliding window is applied, and

records within a window are checked to determine if they are duplicates using a merging rule for

determining similarity between records. Notice that, in general, records with similar values for a

given field might not appear close to each other in lexicographic ordering. For example, the string

edit distance of “Anderson” and “Zanderson” is 1, but their names can be very far from each other

in the sorted list. As a result, they might not appear in the same sliding window. The effectiveness

of the approach is based on the expectation that if two records are duplicates, they will appear

lexicographically close to each other in the sorted list based on at least one key. Even if we choose

multiple keys to do the search, the approach is still susceptible to deterministic data-entry errors,

e.g., the first character of a key attribute is always erroneous. It is also difficult to determine a

value of the window size that provides a “good” tradeoff between accuracy and performance. In

addition, it might not be easy to choose good keys to bring similar records close to each other.

Since the original work in [15], many new data-management techniques have a direct bearing

on the record-linkage problem. In particular, techniques to map arbitrary similarity spaces into

similarity/distance-preserving multidimensional Euclidean spaces have been developed. Further-

more, many efficient multidimensional similarity joins have been studied. In this paper, we develop

an efficient strategy to record linkage that exploits these advances. We first consider the situation

that a record consists of a single attribute. The record-linkage problem then reduces to linking

similar strings in two string collections based on a given similarity metric. We propose a two-step

solution for duplicate identification. In the first step, we combine the two sets of records, and map

them into a high-dimensional Euclidean space. (A similar strategy in a different context is proposed

in [29], where authors map sequences of events to a Euclidean space.) In general, many mapping

techniques can be used. As an example, in this paper we focus on the FastMap algorithm [12]

due to its simplicity and efficiency. We develop a linear algorithm called “StringMap” to do the

mapping, and the algorithm works independently of the specific distance metric.

In the second step, we find similar object pairs in the Euclidean space whose distance is no

greater than a new threshold. This new threshold is closely related to the old threshold of string

distances. Again, many similarity-join algorithms can be used in this step. In this paper we use

the algorithm proposed by Hjaltason and Samet [16] as an example. For each object pair in the

result of the second step, we check their corresponding strings to see if their original distance is

within the original threshold, and find those similar-record pairs. Our approach has the following

advantages. (1) It is “open,” since many mapping functions can be applied in the first step, and
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many high-dimensional similarity-join algorithms can be used in the second step. (2) It does not

depend on a specific similarity function of strings. (3) Our extensive experiments using real large

data sets show that this approach has very good efficiency and accuracy (greater than 99%).

We next study mechanisms for record linkage when many attributes are used to determine

overall record similarity. Specifically, we consider merging rules expressed as logical expressions over

similarity predicates based on individual attributes. Such rules would be generated, for example, if

a classifier such as a decision tree was used to train an overall similarity function between records

using a labeled training set. Given a merging rule, we choose a set of attributes over which the

similarity join is performed (as discussed in the single-attribute case), such that similar pairs can

be identified with minimal cost.

The rest of the paper is organized as follows. Section 2 gives the formulation of the problem.

Section 3 presents the first step of our solution, which maps strings to objects in a Euclidean space.

Section 4 presents the second step that conducts a similarity join in the high-dimensional space.

Section 5 studies how to solve the record-linkage problem if we have a merging rule over multiple

attributes. In Section 6 we give the results of our extensive experiments. We conclude the paper

in Section 7.

2 Problem Formulation

2.1 Distance Metrics of Attributes

Consider two relations R and S that share a set of attributes A1, . . . , Ap. Each attribute Aj has a

metric Mj that defines the difference a value of R.Aj and a value of S.Aj .2 There are many ways

to define the similarity metric at the attribute level, and domain-specific similarity measures are

critical. We take two commonly-used metrics as examples: edit distance and q-gram distance.

Edit distance, a.k.a. Levenshtein distance [25], is a common measure of textual similarity. For-

mally, given two strings s1 and s2, their edit distance, denoted ∆e(s1, s2), is the minimum number

of edit operations (insertions, deletions, and substitutions) of single characters that are needed to

transform s1 to s2. For instance,

∆e(“Harrison Ford”, “Harison Fort”) = 2.

2In [15], “keys” constructed from multiple fields are used to represent the similarity between records. These keys
can be viewed as attributes in our setting.
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In particular, we can remove the third character “r” in the first string, and substitute the last

character “d” with “t” to transform it to the second string. Similarly, ∆e(“Jack Lemmon”,“Jack

Lemon”) = 1, and ∆e(“Anderson”,“Zandersson”) = 2. It is known that the complexity of computing

the edit distance between strings s1 and s2 is O(|s1| × |s2|), where |s1| and |s2| are the lengths of

s1 and s2, respectively [36].

Given a string s and an integer q, the set of q-grams of s, denoted G(s), is obtained by sliding

a window of length q over the characters of string s. For instance:

G(“Harrison Ford”)={’Ha’, ’ar’, ’rr’, ’ri’, ’is’, ’so’, ’on’, ’n ’, ’ F’, ’Fo’, ’or’, ’rd’}.
G(“Harison Fort”)={’Ha’, ’ar’, ’ri’, ’is’, ’so’, ’on’, ’n ’, ’ F’, ’Fo’, ’or’, ’rt’}.

The relative q-gram distance between two strings s1 and s2, denoted ∆q(s1, s2), is defined as:

∆q(s1, s2) = 1 − |G(s1) ∩ G(s2)|
|G(s1) ∪ G(s2)|

For example, ∆q(“Harrison Ford”, “Harison Fort”) = 1 - 10
13 ≈ 0.23. Clearly the smaller the

relative q-gram distance between two strings is, the more similar they are.

2.2 Similarity Merging Rule

Given distance metrics for attributes A1, A2, . . . , Ap, there is an overall function that determines

whether or not two records are to be considered as duplicates. Such a function may either be

supplied manually by a human (e.g., an analyst in the data analysis), or alternatively, learned

automatically using a classification technique. While the specifics of the method used to learn such

a function are not of interest to us in this paper, we do make an assumption that the function is

captured in the form of a rule discussed below. The form of rules considered include those that

could be learned using inductive rule-based techniques such as decision trees. Furthermore, this

form of merging rules are consistent with the merging functions considered in [15].

Let r and s be two records whose similarity is being determined. A merging rule for records r

and s is of the the following disjunctive format.

M1(A1) ≤ δ1,1 ∧ . . . ∧ Mp(Ap) ≤ δ1,p

∨ M1(A1) ≤ δ2,1 ∧ . . . ∧ Mp(Ap) ≤ δ2,p
...

∨ M1(A1) ≤ δk,1 ∧ . . . ∧ Mp(Ap) ≤ δk,p

(Merging Rule)

For each conjunct Mj(Aj) ≤ δi,j (i = 1, . . . , k, and j = 1, . . . , p), the value δ(i, j) is a threshold

using the metric function Mj on attribute Aj . The conjunct means that two records r and s from

the two relations should satisfy the condition Mj(r.Aj , s.Aj) ≤ δi,j .
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For instance, given three attributes about papers, title, author, and year, suppose we use the

edit distance ∆e as a metric for attributes author and year, and the relative q-gram function ∆q as

a metric for attribute title. Then we could have the following rule:

∆q(title) ≤ 0.10 ∧ ∆e(name) ≤ 4 ∧ ∆e(year) ≤ 1
∨ ∆q(title) ≤ 0.15 ∧ ∆e(name) ≤ 2 ∧ ∆e(year) ≤ 2

(Query Q1)

The record-linkage problem studied in this paper is to find pairs of records (r, s) from relations

R and S, such that each pair satisfies the merging rule defined above. The quadratic nested-

loop solution is not desirable, since as the size of the data set increases, this solution becomes

computationally prohibitive. For instance, in our experiments, it took more than 6 hours to use

this approach on two single-attribute relations, each with just 10K names, assuming the edit-

distance function is used (see Section 6 for our experimental setting). Since by definition, the

record-linkage problem is based on approximate matching of those individual metrics for different

attributes, an efficient solution that might miss some pairs (but with a high accuracy) might be

more preferable.

In this paper, we first consider the case of a single attribute in Sections 3 and 4, then study the

case of multiple attributes in Section 5. Table 1 summarizes some symbols used in this paper.

Symbol Meaning
R, S two relations for record linkage
M metric function in the original space
∆e edit distance
∆q relative qgram distance
δ threshold in the original string metric space
δ′ new threshold in the mapped Euclidean space
d dimensionality of the Euclidean space

Table 1: Symbols.

3 Step 1: Mapping Strings to Euclidean Space

We first consider the single-attribute case, where R and S share one attribute A. Thus the record-

linkage problem reduces to linking similar strings in R and S based on a given similarity metric.

Formally, given a predefined threshold value δ, we want to find pairs of strings (r, s) from R and S

respectively, such that according to the metric M of attribute A, the distance of r and s is within

δ, i.e.,

M(r.A, s.A) ≤ δ.
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Such a string pair is called a similar-string pair; otherwise, it is called a dissimilar-string pair. Our

proposed approach has two steps. In the first step, we map strings to objects in a multidimensional

Euclidean space, such that the mapped space preserves the original string distances. In the second

step, a multi-dimensional similarity join is conducted in the Euclidean space. In this section we

discuss the first step.

3.1 StringMap: Mapping Strings to Objects

In the first step, we combine the strings from the two relations into one set, and embed them into

a Euclidean space. Formally, the process is the following.

Given N objects O1, . . . , ON and their distances (e.g., an N ×N distance matrix), find

N points P1, . . . , PN in a d-dimensional Euclidean space, such that the distances are

maintained as well as possible.

Many mapping/embedding functions can be used, such as multidimensional scaling [23, 37],

FastMap [12], Lipschitz [5], SparseMap [18], and MetricMap [34]. These algorithms have different

properties in terms of their efficiency, contractiveness, and stress. (See [17] for a good survey.) In

this paper we use the FastMap algorithm because of its efficiency and distance-preserving capability.

Due to space limitation, here we briefly review the algorithm. (See [12] for the details of FastMap.)

Its main idea is to find d mutually-orthogonal axes. It iteratively chooses two objects (called “pivot

objects”) to form an axis. For each axis, FastMap projects all objects onto this axis by computing

their coordinates using their distance matrix. It also computes the remaining distance matrix after

the projections.

We modify the FastMap slightly and propose an algorithm called “StringMap,” as shown in

Figure 1 (a).3 StringMap iterates to find pivot strings to form d orthogonal directions, and computes

the coordinates of the N strings on the d axes. The function ChooseP ivot(int h, Metric M) selects

two strings to form an axis for the d-th dimension. These two strings should be as far from each

other as possible, and the function iterates m times to find the seeds. A typical m value could be

5 (as in [12]). The algorithm assumes the dimensionality d of the target space, and we will discuss

how to choose a good d value shortly.

One important function is

GetDistance(int a, int b, int h, Metric M)

3Notice that the algorithm does not require the complete distance matrix to be given, since it only computes those
distances when necessary.
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Figure 1: Algorithm StringMap.

which computes the distance between strings (indexed by a and b) after they are mapped to the first

h−1 axes. As shown in Figure 1 (b), it iterates over the h−1 dimensions, and does the computation

using only the two strings and their already-computed coordinates on the h − 1 dimensions.

There are a few observations about the algorithm.

1. The StringMap algorithm removes the recursion in FastMap.

2. In the last line of the algorithm, the computation of coord[i, h] is not symmetric with respect

to values x and y.

3. In function GetDistance(), it is known that dist ∗ dist − w ∗ w can be negative [34] . In

StringMap, we take the square root of the absolute value to compute the new distance. In our

experiments we tried other ways to deal with this case, as described in [17]. Our experimental

results indicated that the approach of taking the absolute value can keep the distance well.
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All the steps in the StringMap algorithm are linear on the number of strings N . It can be shown

that the complexity of the StringMap algorithm is:

O(d2 × m × N)

assuming it takes O(1) time to compute M(a, b). Notice that a major cost in the algorithm is spent

in function ChooseP ivot(). We can reduce the cost in the function as follows. At each step in the

function, we want to find a new string that is as far from a string (e.g., sa) as possible. Instead

of scanning the whole N strings, we can just do sampling to find a string that is very far from sa.

Or we can just stop once we find a string that is “far enough” from sa, i.e., their distance is above

certain value. See [20] for an approximation algorithm for finding this pair efficiently.

3.2 Choosing Dimensionality d

A good dimensionality value d used in algorithm StringMap should have the property that after

the mapping, similar strings can be differentiated from those dissimilar ones. On the one hand, the

dimensionality d cannot be too small, since otherwise those dissimilar pairs will not “fall apart” from

each other. In particular, the distances of similar-string pairs are too close to those of dissimilar

ones. On the other hand, d cannot be too high either. There are mainly two reasons. First, the

complexity of the StringMap algorithm (see above) is linear to d2. Second, since we need to do a

similarity join in the second step, we want to avoid the curse of dimensionality [3, 10]. In particular,

as d increases, it becomes more time-consuming to find object pairs whose distance is within a new

threshold. We choose a dimensionality d as follows.

1. Randomly select a small number (say, 1K) of strings from the data sets R and S. Use the

nested-loop approach to find all similar-string pairs within threshold δ in the selected strings.

2. Run StringMap using different d values. (Typically d is between 5 and 30.) For each d,

compute the new distances of the similar-string pairs. Find their largest new distance w.

3. Find a dimensionality d with a low cost:

cost =
# of object pairs within distance w

# of similar-string pairs
(1)

Intuitively, the cost is the average number of object pairs we need to retrieve in step 2 for

each similar-string pair, if w is used as the new threshold δ′ for selecting similar-object pairs

in the mapped space.

Notice that we only use the pairs of selected strings to compute the cost. This value measures

how well a new threshold δ′ = w differentiates the similar-string pairs from those dissimilar pairs.
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In particular, the string pairs whose new distance is within δ′ will be retrieved in step 2. Thus

the lower the cost is, relatively the fewer object pairs need to be retrieved in step 2 whose original

distance is more than δ. Figure 5 in Section 6.1 shows that typically a good dimensionality value

is between 15 and 25.

4 Step 2: Finding Similar-Object Pairs in Euclidean Space

In the second step, we find object pairs whose Euclidean distance is within a new threshold δ′. For

each candidate pair, we check the distance of their original strings to see it is within the original

threshold δ. In this section we study how to select the new threshold and how to do the similarity

join.

4.1 Choosing New Threshold δ′

The selection of the new threshold δ′ depends on the mapping function. For instance, we can set

δ′ = δ if the mapping function is contractive. That is, for any two strings r and s, we have

M(r, s) ≤ M ′(r′, s′)

where M(r, s) is their distance in the original metric space, and M ′(r′, s′) is the new Euclidean

distance of the corresponding objects r′ and s′ in the new space. In general, suppose there are two

constants c1, c2 ≥ 1, such that for any two strings r and s, we have:4

1
c1

· M(r, s) ≤ M ′(r′, s′) ≤ c2 · M(r, s)

Then we can just set δ′ = c2 · δ. Properties of different mapping functions are studied in [17].

Ideally, the threshold δ′ should be set to a maximal value of the new distance between any

two similar-string pairs in the original space. Then it will guarantee no false dismissals. However,

this maximal value could be either too expensive to find (we do not want to have a nested-loop

procedure), or the theoretical upper bound could be too large. Since it is acceptable to miss a few

pairs, we would like to choose a threshold such that for most of the similar-string pairs, their new

distances are within this threshold. As shown in our experimental results, even though a theoretical

upper bound could be large, most of the new distances could be within a much smaller threshold.

In our approach to selecting the dimensionality d, the threshold w can be used to identify similar

pairs in the mapped space. Therefore, here is how we choose the threshold δ′. We randomly select

4This equation measures the distortion of the mapping [17].
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a small number (say, 1K) of strings from data sets R and S. (Notice these selected strings might

be different from those used to decide the dimensionality d in Section 3.2.) We find all the similar-

string pairs in these selected strings, and compute their new Euclidean distances after StringMap.

We choose their maximal new distance as the new threshold δ′. We may do this sampling multiple

times (on different sets of selected strings), and choose δ′ as the maximal new distance of those

similar-string pairs. In Section 6.2 we will give experimental results on choosing δ′.

4.2 Finding Object Pairs within δ′

We want to find all those object pairs whose new distance is within this new threshold δ′. Similarity

joins over multidimensional spaces have been studied in [1, 6, 9, 21, 22, 24, 28, 33, 32]. Many

algorithms can be used in this step. In this paper we use a simplified version of the algorithm

in [16] as an example. We could instead have chosen any of those algorithms for our purpose. We

chose the algorithm in [16] due to its simplicity and availability of the code. This approach suffices

for our purpose, since our intent is to establish a base line for our approach of mapping record

linkage into a similarity-join problem.
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Figure 2: Finding similar-object pairs using R-trees.

Due to space limitation, we briefly explain the main idea of the algorithm. (See [16] for details.)

We first build two R-trees for the mapped objects of the two string sets, respectively. We traverse

the two trees from the roots to the leaf nodes to find those pairs of objects within distance δ′. As

we do the traversal, a queue is used to store pairs of nodes (internal nodes or leaf nodes) from the

two trees.5 We only insert those node pairs that can potentially yield object pairs that satisfy the

condition. Those node pairs that cannot produce results are pruned in the traversal, i.e., they are

never inserted into the queue.

Take Figure 2 as an example. Initially, a pair of the root nodes (R0, S0) is inserted into the

5Since we just want to find those object pairs whose distance is within δ′, we do not need a priority queue. A
priority queue based on object-pair distances is necessary in [16], since they want to find the “top-k” object pairs
with the smallest distances.
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queue. At each step, we dequeue the head pair (Ri, Sj). If both nodes are internal nodes (i.e.,

hyper-rectangle regions), we consider all the pairs of their children. For each pair (Ra, Sb), we

compute their “distance,” which is a lower bound of all the distances of their child objects. (The

case of a node-object pair is handled similarly.) For instance, we can use the MINDIST function

[31] to compute the distance between two nodes. Then we can prune node pairs as follows: if the

distance of a node pair is greater than δ′, we do not insert this pair into the queue. The reason is

that the lower-bound property guarantees that these two nodes cannot generate object pairs whose

distance is within δ′. On the other hand, if the distance of two nodes is within δ′, we insert this

pair into the queue.

For instance, when we consider the two child nodes of each of the two root nodes in the figure,

we have four pairs:

(R1, S1), (R1, S2), (R2, S1), (R2, S2)

Suppose each of them has a MINDIST distance within δ′, then we insert them into the queue. We

remove the pair (R1, S1) from the queue, and consider pairs of their child nodes:

(R3, S3), (R3, S4), (R3, S5), (R4, S3), (R4, S4), (R4, S5)

For each pair, we compute their MINDIST. If, for example, the distance between R3 and S4 is

greater than δ′, we will not consider this pair, since they cannot generate object pairs that have a

distance within δ′. In other words, all the pairs of their descendants are greater than δ′.

Suppose only the following pairs have a MINDIST distance within δ′:

(R3, S3), (R3, S5), (R4, S4), (R4, S5)

Then we insert these four pairs into the queue. The status of the queue is shown in the figure.

Eventually we have a pair of objects from the queue. Then we compute their Euclidean distance to

check if it is within δ′. If so, we compute the original metric distance of their original strings. We

output this pair of strings if their original metric distance is within the original threshold δ.

Different strategies can be used to traverse the two R-trees, such as depth first and breadth

first. Our experiments show that the depth-first traversal strategy has several advantages.

1. It can effectively reduce the queue size, since pairs of objects in the leaf nodes can be processed

early, and they can be dequeued from the queue. Thus the memory requirement of the

algorithm tends to be small. In our experiments, when each data set had about 27K strings,

the breadth-first strategy required about 1.2GB memory, while the depth-first strategy only

requested about 30MB memory.
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2. It also reduces the time that the first pair is output, since it can reach the leaf nodes more

quickly than the breadth-first strategy. If we use the breadth-first traversal strategy, we need

to generate a very large number of pairs before processing some pairs of leaf nodes.

4.3 Comparison with the Approach in [14]

Steps 1 and 2 discussed so far can be viewed as a mechanism for computing similarity join over

strings where any arbitrary distance function can be used to determine the similarity between

strings. If we were to constrain our problem to only consider edit distance as a distance metric, we

could instead use the qgram-based approach described in [14].

In [14], the authors first pad each string on both sides by a set of special characters, and then use

a sliding window of size q over the augmented string to compute substrings of size q (referred to as

q-grams). The number of resulting q-grams depends upon the length of the string and the number

q. An additional column is added to the relation scheme to store the q-grams corresponding to the

string. Thus, a tuple is replicated as many times as there are q-grams for the string contained in

the tuple. While the relation size increases by a factor of number of q-grams for a given string, the

advantage of the approach is that, instead of computing an expensive predicate (i.e., edit distance

between strings) in a nested-loop join, by using q-grams, the original string-join query can be

rewritten as an equi-join query over q-grams with a suitable aggregation over the string identifier.

This way a cheaper equi-join (possibly using hash join or sort-merge approach) can be evaluated

on the q-grams, and the expensive edit distance is computed only on strings that satisfy the filter

imposed by q-grams. The effectiveness of the approach is predicated on the hope that the penalty

in terms of increase in size of the database is offset by the savings due to pruning the number of

expensive edit-distance computations and the benefit of hash-join over the nested-loop approach.

While the approach described in [14] is attractive, our approach has several advantages in the

context of the record-linkage problem. First, the distance metrics used at individual attributes

might not be edit distance. As argued earlier, domain-specific methods work better in identifying

similar records. Furthermore, the algorithm in [14] is geared towards finding all the string pairs

that are within a fixed edit-distance threshold. Since the record-linkage problem, by definition,

is based on approximate matching, solutions that might miss some such pairs (say those that

obtain around 99% accuracy) but result in significant time savings might be more preferable. As

we will see in Section 6.3, our algorithm works very efficiently, while still achieving a very high

accuracy. In addition, the implementation of the qgram-based approach inside a database might

be less efficient than a direct implementation using other languages (e.g., the C language). Finally,

in the record-linkage context, catalogs to be merged rarely have a single string attribute – rather
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records may consist of multiple string attributes. The data-size increase will grow multiplicatively

with the number of string attributes in the relation, thus the efficiency of the q-gram approach

can deteriorate. In contrast, the string-join approach proposed in this paper (as shown in the next

section) can be easily combined with an appropriate multi-attribute merging algorithm without

much overhead.

5 Combining Multiple Attributes

In this section we discuss how to join over multiple attributes efficiently where the merging rule is

of the disjunctive normal form (DNF) discussed in Section 2.2. We first study how a single disjunct

(in the form of a conjunctive clause) can be evaluated, then describe the more general case when

the merging rule consists of multiple conjunctive clauses.

5.1 Single Conjunctive Clause

For a single conjunctive clause, we can process the most “selective” attribute to find the candidate

pairs that satisfy this conjunct condition, and then check other conjunct conditions. For instance,

consider the following clause.

∆q(title) ≤ 0.15 ∧ ∆e(name) ≤ 3 ∧ ∆e(year) ≤ 1 (Query Q2)

We could first do a similarity search to find all the record pairs that satisfy the first condition,

∆q(title) ≤ 0.15. For each of the returned candidate pairs, we check if it satisfies the other two

conditions on the name and year attributes. Alternatively, we can choose either name or year to do

the similarity join. Our experiments show that the step of testing other attributes takes relatively

much less time than the step of finding the candidate record pairs, thus we mainly focus on the

time of doing the similarity join that finds the candidate pairs. We can use existing techniques

on estimating the performance of spatial joins (e.g., [2, 19]), and choose the attribute that takes

the least time to do the corresponding similarity join. (This attribute is called the most selective

attribute for this conjunctive clause.) Notice that similar to [15], we could also search along multiple

attributes of the conjunction to improve accuracy. Since the mapping in Step 1 does not guarantee

that all the relevant string pairs will be found, using multiple attributes may improve accuracy.

However, as will be shown in the experimental section, since our strategy for single attributes is

able to identify matching string pairs at a very high accuracy (over 99%), traversals along multiple

attribute is not necessary. In contrast, since string lexicographic ordering may not preserve domain-

specific similarity as well, to get the same degree of accuracy, the approach in [15] requires traversals

along multiple keys.
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5.2 Disjunctive Clauses

The problem becomes more challenging in the case of multiple conjunctive clauses. Take query Q1

in Section 2.2 as an example. We have at least the following different approaches to answering this

query.

1. Approach A: Find all record pairs that satisfy the first conjunctive clause by doing a simi-

larity search using the conjunct ∆q(title) ≤ 0.10. Find all record pairs satisfying the second

conjunctive clause by doing a similarity search using the conjunct ∆e(name) ≤ 2. Take the

union of these two sets of results.

2. Approach B: Do a similarity search to find record pairs that satisfy ∆q(title) ≤ 0.15 in the

second conjunctive clause. These pairs also include all the pairs satisfying the first conjunctive

clause, since ∆q(title) ≤ 0.10 implies ∆q(title) ≤ 0.15. Among all these pairs, find those

satisfying the merging rule.

Approach A needs to do two similarity searches, while approach B requires only one. However,

both similarity searches in approach A could be more selective than the single similarity search in

approach B. Which approach is better depends on the data set.

The example shows that to answer a conjunctive clause, we can choose at most one conjunct in

it to do a similarity join. In addition, once we choose a conjunct Mj(Aj) ≤ δ(i, j) to do a similarity

join, we do not need to do a similarity join for any other conjunctive clause that has a conjunct

Mj(Aj) ≤ δ(k, j), where δ(k, j) ≤ δ(i, j). The reason is that a superset of the results for the

conjunct Mj(Aj) ≤ δ(k, j) has been returned by the similarity search. As the number of attributes

and the number of conjunctive clauses increase, there could be an exponential number of possible

ways to answer the query. In fact, assuming the time of doing a similarity search for each conjunct

is given, we can show that the problem of finding an optimal solution (with a minimal total time)

to answer the query is NP-complete. (The NP-hardness can be proven by reducing the problem to

the NP-complete set-cover problem [8].)

Since it could be too time-consuming to find an optimal solution, we propose two heuristic-based

algorithms for finding a good one.

• Algorithm 1: Treat all the conjunctive clauses separately. For each of them, choose the most

selective attribute to do the corresponding similarity join. If we choose the same attribute Aj

in two conjunctive clauses, and their corresponding thresholds δi,j ≤ δk,j , then we only choose
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the threshold δk,j to do the similarity search for the second clause, saving one similarity search

for the first clause. Take the union of results of all conjunctive clauses.

• Algorithm 2: For each attribute, choose the largest threshold among all its conjuncts. Among

all the largest thresholds of different attributes, choose the most selective one to do a similarity

join. Among the results, find the record pairs that satisfy the merging rule.

For instance, consider the query Q1 in Section 2.2. Suppose Algorithm 1 chooses ∆q(title) ≤
0.10 as the most selective condition for the first clause, and ∆e(name) ≤ 2 for the second one.

Thus it will produce the approach A above. For Algorithm 2, the largest thresholds of the three

attributes title, name, and year are 0.15, 4, and 2, respectively. Suppose ∆q(title) ≤ 0.15 is the

most selective one. This algorithm will produce approach B as the solution. In general, Algorithm

1 works better than Algorithm 2 if doing multiple similarity searches with small thresholds is more

efficient than one with a large threshold.

6 Experiments

In this section we present our extensive experimental results to evaluate our solution. The following

are three main sources we used.

1. Source 1 consists of 54,000 movie star names collected from The Internet Movie Database.6

The length of each name varies from 5 to 20, and their average length is about 12. Figure 3(a)

shows the distribution of the string lengths.

2. Source 2 is from the Die Vorfahren Database, a database of mostly Pomeranian surnames

and geographic locations.7 This 2001 DV database experiment contains of 133,101 full names

that have appeared in the Die Pommerschen Leute Newsletter, Die Vorfahren section over the

19.5 years of its publication. The lengths of names are less than 40, and their mean length is

around 15. Figure 3(b) shows the distribution of the string lengths.

3. Source 3 is from the publications in DBLP.8 We randomly selected 20,000 papers in pro-

ceedings. We use this data source to show how to do data linkage in multiple-attribute cases.

Figure 4 shows the distributions of the three attributes. (The distribution of the title lengths

6http://www.imdb.com/

7http://feefhs.org/dpl/dv/indexdv.html

8http://www.informatik.uni-trier.de/ ley/db/index.html
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is not “smooth,” and we believe the reason is that titles consist of words, whose lengths are

not “smoothly” distributed.)

0 5 10 15 20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

String Length

Nu
m

be
r o

f S
tri

ng
s

Distribution of String Length for Dataset1

(a) Source 1 (IMDB)

0 5 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

String Length

Nu
m

be
r o

f S
tri

ng
s

Distribution of String Length for Dataset2

(b) Source 2 (Die Vorfahren)

Figure 3: String-length distribution of sources 1 and 2.
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Figure 4: Distributions of source 3 (DBLP).

All the experiments were run on a PC, with a 1.5GHz Athlon CPU and 512MB memory. The

operating system is Windows 2000, and the complier is gnu C++ running in cygwin. This setting

shows that our approach does not have specific hardware and software requirements. We used 8192

as the page size to build R-trees. Most of our experimental results are similar for three sources.

Due to space limitation, we mainly report the results on data source 1.

6.1 Choosing Dimensionality d

As discussed in Section 3.2, we need to choose a good dimensionality d for the StringMap algorithm.

To select a d value, we randomly selected 2K strings from Source 1 to form two data sets with the

same size, and ran StringMap using different dimensionalities. For edit distance, we considered the
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case where δ = 1, 2, and 3. For the q-gram metric, we considered δ = 0.1 and 0.15.
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Figure 5: Costs of different dimensionalities.

Figures 5 (a) and (b) show costs for different dimensionalities for edit distance and q-gram

distance, respectively. (See Section 3.2 for the definition of “cost.”) It is shown that the cost

decreased with the increase of dimensionality. That is, the larger the dimensionality, the fewer

extra object pairs we need to retrieve in step 2 for each similar-string pair, while the original

strings of these objects have a distance greater than δ. On the other hand, due to the complexity of

StringMap and the curse of dimensionality, d cannot be high either. The results show that d = 20

is a good dimensionality for both metrics.
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Figure 6: Histograms of new Euclidean distances: edit distance, δ = 2, d = 20.

Figures 6 (a) and (b) show the distributions of the object-pair distances after StringMap, for

the edit-distance metric. We randomly sampled 2K from Source 1 to form two data sets with the

same size. We chose δ = 2 for similar-string pairs, and set d = 20. The figures show that after

StringMap, there is a new threshold to differentiate similar pairs from most dissimilar pairs. In
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particular, all the sampled similar-string pairs had new object-pair distances within 5.5, while most

of dissimilar-string pairs had their object-pair distances larger than 5.5.
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Figure 7: Histograms of new Euclidean distances: q-gram distance, δ = 0.2, d = 20.

Figures 7 (a) and (b) show the distributions of the object-pair distances after StringMap, for

the q-gram distance metric. We chose δ = 0.2 for similar-string pairs, and set d = 20. We have

the similar observations as for the edit-distance metric. In particular, the new distances of all the

similar-string pairs are within 0.2.

6.2 Choosing Threshold δ′

As discussed in Section 4.1, we selected new threshold δ′ for the second step as follows. For each

source, we randomly selected 2K strings, and partitioned the strings into two data sets equally.

We used the nested-loop approach to find all the similar-string pairs in the selected strings. We

ran StringMap with d = 20, and traced the new Euclidean distances of these sample similar-string

pairs. We did this sampling 10 times, and chose δ′ as the largest new object-pair distance of the

sampled similar-string pairs.

edit distance δ = 1 edit distance δ = 2 edit distance δ = 3 q-gram distance δ = 0.2
Source 1 4.5 5.9 7.735 0.2
Source 2 5.36 7.0 10 0.2

Table 2: Threshold δ′ used in step 2 (d = 20).

Table 2 shows the δ′ values used in step 2 for two different metrics. Notice that when using the

edit-distance metric, since the two sources have different strings with different length distributions,

it is not surprising that we need to choose different δ′ values by sampling. For the q-gram metric,

we set δ′ = 0.2 for both data sources 1 and 2.
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6.3 Running Time

In order to measure the performance of our approach, we ran our algorithm on different data sizes.

In each case, we chose the same number of strings in both data sets. We chose dimensionality

d = 20, and let the total size of strings vary from 2K, 4K, 8K, 16K, to 54K from Source 1. We

measured the corresponding running time.

Figure 8(a) shows the time of the complete algorithm (including two steps), and the time of

the StringMap step, assuming we use the edit-distance metric. Their gap is the time of the second

step that did the R-tree similarity join. The figure shows that as the data sizes increased, both the

StringMap time and the total time grew. Our approach is shown to be very efficient and scalable.

For instance, when the total number of strings is 54K, it took the approach only 41 minutes to

find the similar-string pairs. (It look almost one week for the nested-loop approach to finish.) The

figures also indicate that other similarity-join techniques may be used in the second step to improve

its performance. Figure 8(b) shows the times if we used the q-gram distance. The times are similar

to those of edit distance.
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Figure 8: Running time (d=20).

In the case where the edit-distance metric is used, the approach in [14] can be used to find all

the string pairs whose edit distance is within a given threshold. We implemented this approach

using Oracle 8.1.7 on the same PC, and let the database use indexes to run the query. We selected

subsets of strings from Source 1, and let both sets have the same number of strings. In our approach

we chose threshold δ = 2, dimensionality d = 20, and new threshold δ′ = 5.9. Figure 9 shows the

performance difference between these two approaches. The figure shows that our approach can

substantially reduce the time of finding similar-string pairs. Notice that even though our approach

cannot guarantee to find all such pairs, as we will see shortly, it can still achieve a very high
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accuracy. In the context of record linkage, an efficient approximate-search algorithm with a very

high accuracy might be more preferable.
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Figure 9: Our approach (approximate search) versus the qgram approach in [14] (exact search).

6.4 Accuracy

We want to know how well our approach can find all the similar-string pairs. (Ideally we want to

find all of them!) In particular, we are interested in the accuracy, i.e., ratio of similar-string pairs

found among all similar-string pairs.
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Figure 10: Accuracy versus threshold δ′ (d=20).

Figure 10 (a) shows the accuracy of data source 1, with different threshold δ′ values in the

second step, using the edit-distance metric. As the δ′ value increased, the accuracy also increased,

and it quickly got very close to 100%. For instance, in the case where δ = 2, the accuracy reached

99% when δ′ = 5.6. When we further increased the threshold, the accuracy continued to grow close

to 100%. Figures 10 (b) shows similar accuracy results when we used the q-gram distance on data

source 1.
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We also implemented the sliding-window approach in [15]. Without loss of generality, we used

attributes as keys in the sliding-window approach, and the condition is ∆e(name) ≤ 2 for data

source 1. We chose different window sizes, and for each of them, the time and accuracy were

measured.
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Figure 11: Our approach versus the sliding-window approach in [15].

Figure 11 shows the accuracy and time for these two approaches. It shows that our approach

can achieve a very high accuracy given a time limit. The primary reason is that our mapping

function provides very good distance/similarity preservation. Since lexicographic ordering does not

preserve edit distances as well, the approach discussed in [15] needs to consider a very large window

size (and hence cost) to obtain competitive degree of accuracy.

6.5 Results on Multiple Attributes

Now we report our experimental results for the multiple-attribute case on data source 3.

Single Conjunctive Clause

We evaluated the single conjunctive query Q2 in Section 5.1. There are three attributes to perform

a similarity join: title, name, and year. Our experimental results showed that the attribute year is

not a good one to do a similarity join, since too many candidate pairs were generated. Thus we

answered the query by conducting a similarity join using attributes title and name, respectively.

Similarity-join Attribute Time (sec) Final Result Size
name 1140 700
title 1540 702

Table 3: Results of similarity join using different attributes.

Table 3 gives the results. It is shown that for the thresholds in the query, doing a similarity join

on name is more efficient than on title. Notice that the result size is different for these two similarity
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searches, since both of them are approximate. The small difference (only two pairs) between them

again shows that our approach has a very high accuracy (more than 99%).

Disjunctive Clause

We used the query Q1 in Section 2.2 as an example of disjunctive clauses. We implemented the

two approaches in Section 5.2. For algorithm 1 that produces approach A, we chose the conjunct

∆q(title) ≤ 0.10 to do the similarity search for the first clause, and conjunct ∆e(name) ≤ 2 for

the second one. After getting the result pairs for each clause, we took a union of the two sets

and produced the final result. Table 4 shows the results. The total time for approach A was 1820

seconds, and the size of the final result set was 619. Notice that the results of the two clauses had

overlapped record pairs. The accuracy of taking this approach is more than 99%.

Selected Condition Time (sec) Number of Record Pairs
Clause 1, ∆q(title) ≤ 0.10 1060 406
Clause 2, ∆e(name) ≤ 2 760 518

Total 1820 619 (pairs above overlap)

Table 4: Result of approach A for disjunctive clause.

For algorithm 2 that produces approach B, we found that ∆q(title) ≤ 0.15 was the most selective

conjunct, using which we performed the similarity join. Table 5 shows the results. In particular,

the total time for approach B was 1743 seconds, and the size of the final result set was also 619.

Selected Condition Time (sec) Number of Record Pairs
Clause 2, ∆q(title) ≤ 0.15 1743 619

Table 5: Result of approach B for disjunctive clause.

For this example, approach B was better than approach A. In general, algorithm 1 produces a

solution that tries to minimize the time of each individual similarity join, which tends to produce

a small candidate set. Algorithm 2 produces a solution that needs to perform a similarity join only

once for all the clauses. It may need more time for the single similarity join, since the threshold

could be large. To fix this problem of Algorithm 2, we can set an upper bound on the threshold

of each attribute, and we will never consider those conjuncts on this attribute whose threshold is

above this bound. One observation is that if the thresholds for the attributes vary a lot, it could

be better to take Algorithm 1. Otherwise, Algorithm 2 could be preferable.
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7 Conclusion

In this paper we developed a novel approach to the record-linkage problem: given two lists of

records, we want to find similar record pairs, where the overall similarity between two records

is defined based on domain-specific similarities over individual attributes. For each attribute of

records, we first map records to a multidimensional Euclidean space that preserves domain-specific

similarity. Given the merging rule that defines when two records are similar, a set of attributes

are chosen along which the merge will proceed. A multidimensional similarity join over the chosen

attributes is used to determine similar pairs of records. Our extensive experiments using real data

sets showed that our solution has very good efficiency and accuracy. In addition, our approach is

very extendable, since many existing techniques can be used. It can also be generalized to other

similarity functions between strings.
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