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Abstract

The problem of answering queries using views has been studied extensively, due to its relevance in
a wide variety of data-management applications. In these applications, we often need to select a
subset of views to maintain, due to limited resources. In this paper, we show that traditional query
containment is not a good basis for deciding whether or not a view should be selected. Instead, we
should minimize the view set without losing query-answering power. To formalize this notion, we
�rst introduce the concept of \p-containment." That is, a view set V is p-contained in another view
set W , if W can answer all the queries that can be answered by V. We show that p-containment
and the traditional query containment are not related; i.e., one does not imply the other. We then
discuss how to minimize a view set while retaining its query-answering power. We develop the idea
further by considering p-containment of two view sets with respect to a given set of queries, and
consider their relationship in terms of maximally-contained rewritings of queries using the views.

1 Introduction

The problem of answering queries using views [AGK99, Dus97, CGLV99, GT00, LMSS95, Qia96] has
been studied extensively, because of its relevance to a wide variety of data management problems, such
as information integration, data warehousing, and query optimization. The problem can be stated as
follows: given a query on a database schema and a set of views over the same schema, can we answer
the query using only the answers to the views? Recently, Levy compiled a good survey [Lev00] about
the di�erent approaches to this problem.

In the context of query optimization, computing a query using previously materialized views can
speed up query processing, because part of the computation necessary for the query may have been
done while computing the views. In a data warehouse, views can preclude costly access to the base
relations and help answer queries quickly. In web-site designs, precomputed views can be used to
improve the performance of web-sites [FLSY99]. Before choosing an optimal design, we must assure
that the chosen views can be used to answer the queries we expect to receive at the web-site. A system
that caches answers locally at the client can avoid accesses to base relations at the server. Cached
result of a query can be thought of as a materialized view, with the query as its view de�nition. The
client could use the cached answers from previous queries to answer future queries.

However, the bene�ts presented by views are not without costs. Materialized views often compete
for limited resources. Thus, it is critical to select views carefully. For instance, in an information-
integration system [Ull97], a view may represent a set of web pages at an autonomous source. The
mediator [Wie92] in these systems often needs to crawl these web pages periodically to refresh the
cached data in its local repository [CGM00]. In such a scenario, the cost manifests itself as the band-
width needed for such crawls and the e�orts in maintaining the cache up-to-date. Correspondingly,
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in a query-optimization and database-design scenario, the materialized views may have part of the
computation necessary for the query. When a user poses a query, we need to decide how to answer
the query using the materialized views. By selecting an optimal subset of views to materialize, we can
reduce the computation needed to decide how to answer typical queries. In a client-server architecture
with client-side caching, storing all answers to past queries may need a large storage space and will
add to the maintenance costs. Since the client needs to deal with an evolving set of queries, any of
these can be used to answer future queries. Thus, redundant views need not be cached.

The following example shows that views can have redundancy to make such a minimization possible,
and that traditional query containment is not a good basis for deciding whether a view should be
selected or not. Instead, we should consider the query-answering power of the views.

EXAMPLE 1.1 Suppose we have a client-server system with client-side caching for improving per-
formance, since server data accesses are expensive. The server has the following base relation about
books:

book(T itle; Author; Pub; Price)

For example, the tuple hdatabases; smith; prenhall; $60i in the relation means that a book titled
databases has an author smith, is published by Prentice Hall (prenhall), and has a current price
of $60. Assume that the client has seen the following three queries, the answers of which have been
cached locally. The cached data (or views), denoted by the view set V = fV1; V2; V3g, are:

V1: v1(T;A; P ) :- book(T;A;B; P )
V2: v2(T;A; P ) :- book(T;A; prenhall; P )
V3: v3(A1; A2) :- book(T;A1; prenhall; P1); book(T;A2; prenhall; P2)

The view V1 has author-title-price information about all books in the relation, while the view V2
includes this information only about books published by Prentice Hall. The view V3 has coauthor pairs
for books published by Prentice Hall. Since the view set has redundancy, we might want to eliminate
a view to save costs of its maintenance and storage. At the same time, we want to be assured that
such an elimination does not cause increased server accesses in response to future queries.

Clearly, view V2 is contained in V1, i.e., V1 includes all the tuples in V2, so we might be tempted to
select fV1; V3g, and eliminate V2 as a redundant view. However, with this selection, we cannot answer
the query:

Q1 : q1(T; P ) :- book(T; smith; prenhall; P )

which asks for titles and prices of books written by smith and published by prenhall. The reason is
that even though V1 includes author-title-price information about all books in the base relation, the
publisher attribute is projected out in the head of the view V1. Thus, using V1 only, we cannot tell
which books are published by prenhall. On the other hand, the query Q1 can be answered trivially
using V2:

q1(T; P ) :- v2(T; smith; P )

In other words, by dropping V2 we have lost some power to answer queries. In addition, note that
even though view V3 is not contained in V1 and V2, it can be eliminated from V without changing the
query-answering power of V. The reason is that V3 can be computed from V2 as follows:

P1 : v3(A1; A2) :- v2(T;A1; P1); v2(T;A2; P2)

To summarize, we should not select fV1; V3g but fV1; V2g, even though the former includes all the
tuples in V, while the latter does not. The rationale is that the latter is as \powerful" as V while the
former is not. (We will give a formal proof in Section 3.) Caution: One might hypothesize from this
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example that only projections in view de�nitions cause such a mis-match, since we do not lose any
\data" in the body of the view. We show in Section 3 that this hypothesis is wrong. 2

In this paper we discuss how to minimize a view set without losing its query-answering power. We
�rst introduce the concept of p-containment between two sets of views, where \p" stands for query-
answering power (Sections 2 and 3). A view set V is p-contained in another view set W, or W is at
least as powerful as V, if W can answer all the queries that can be answered using V . Two view sets
are called equipotent if they have the same power to answer queries. As shown in Example 1.1, two
view sets may have the same tuples, yet have di�erent query-answering power. That is, traditional
view containment [CM77, SY80] does not imply p-containment. The example further shows that the
reverse direction is also not implied.

Given a view set V on base relations, we show how to �nd a minimal subset of V that is equipotent
to V (Section 4). As one might suspect, a view set can have multiple equipotent minimal subsets.
However, it would be helpful to postulate the necessary properties of the set for the equipotent minimal
subset to be unique. We deduce the conditions for ensuring uniqueness and provide some heuristics
for speeding up the process for �nding a minimal, equipotent subset.

In some scenarios, users are restricted in the queries they can ask. In such cases, equipotence may
be determined relative to the expected (possibly in�nite) set of queries. In Section 5, we investigate
the above questions of equipotence testing given this extra constraint. In particular, we consider
in�nite query sets de�ned by parameterized queries, and develop algorithms for testing this relative
p-containment.

In information-integration systems, we often need to consider not only equivalent rewritings of a
query using views, but also maximally-contained rewritings (MCR's). Analogous to p-containment,
which requires equivalent rewritings, we introduce the concept of MCR-containment that is de�ned
using maximally-contained rewritings (Section 6). Surprisingly, we show that p-containment implies
MCR-containment, and vice-versa.1

The di�erent containments between two view sets that are discussed in this paper are summarized
in Table 1. We start our discussions with conjunctive queries, and generalize the results to more
general queries in Section 7.

Containment De�nition How to test

v-containment For any database, a tuple in a view in Check if each view in V is contained
V vv W V is in a view in W . in some view of W.

p-containment If a query is answerable by V, then it is Check if each view in V is
V �p W answerable by W . answerable by W .

relative p-containment For each query Q in a given set of Test by the de�nition if Q is �nite.
V �Q W queries Q, if Q is answerable by V , See Section 5.3 for in�nite queries

then Q is answerable by W . generated by parameterized queries.

MCR-containment For each query Q, for any maximally Same as testing if V �p W,
V �MCR W -contained rewriting MCR(Q;V) (resp. since V �p W , V �MCR W .

MCR(Q;W)) of Q using V (resp. W),
MCR(Q;V) vMCR(Q;W).

Table 1: Di�erent containments between two sets of conjunctive views: V and W.

1This result was suÆciently surprising to us to deserve an extra footnote.
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1.1 Related work

There has been a lot of work on the problem of selection of views to materialize in a data warehouse.
In [IK93, HGMW+95, Wid95, CW91], a data warehouse is modeled as a repository of integrated
information available for querying and analysis. The materialized views are stored with an intention
of making the frequent queries fast. The system accesses base relations for a query which cannot be
answered using the materialized views. Each of the materialized views can be huge, resulting in the
need for careful selection under the constraint of limited disk space [HRU96, GHRU97, RSS96, YKL97,
BPT97, TS97]. Moreover, base relations can change over time. The updates have to be propagated to
the materialized views resulting in a maintenance cost [GHRU97, GM99b]. The study in this setting
has, therefore, emphasised on modeling the view-selection problem as cost-bene�t analysis. Thus, for
a given set of queries, various sets of sub-queries are considered for materialization. Redundant views
in a set which increase cost are deduced using query containment, and an optimal subset is chosen.

Such a model is feasible when all queries can be answered in the worst case by accessing the base
relations, and not by views alone. This assumption is incorporated in the model by replicating base
relations at the warehouse, without taking the costs of such a step into account. Thus, the base
relations themselves are considered to be normalized, independent, and minimal. However, when real-
time access to base relations is prohibitive, such an approach can lead to wrong conclusions, as was
seen in Example 1.1. In such a scenario, it is essential to ensure the computability of queries using
only maintained views.

Our work is directed towards scenarios where the following assumptions hold. (1) Real-time access
to base relations is prohibitive, or possibly denied, and (2) cached views are expensive to maintain over
time, because of the high costs of propogating changes from base relations to views. Therefore, while
minimizing a view set, it is important to retain its query-answering power. We believe the power of
answering queries and the bene�t/costs of a view set are orthogonal issues, and their interplay would
make an interesting work in its own right.

Recently, [CG00] has proposed solutions to the following problem of database reformulation: given
a query on base relations, how can we materialize views to answer the query? The authors show that
there can be in�nite number of view sets that can answer the same query. Thus, their work starts with
a given query but no views. In our framework, we assume that a set of views are given, and queries
can be arbitrary. We would like to deduce a minimal subset of views that can answer all queries
answerable by the original set.

2 Background

In this section, we review some concepts about answering queries using views [LMSS95]. We assume
the reader is familiar with the survey [Lev00]. Let r1; : : : ; rm be m base relations in a database. We
�rst consider queries on the database in the following conjunctive form:2

h( �X) :- g1( �X1); : : : ; gk( �Xk)

In each subgoal gi( �Xi), predicate gi is a base relation, and every argument in the subgoal is either a
variable or a constant. We consider views de�ned on the base relations by safe conjunctive queries, i.e.,
every variable in a query's head appears in its body. Note that we take the closed-world assumption
[AD98], since the views are computed from existing database relations. We shall use names beginning

2In Section 7 we shall extend our results of conjunctive queries to more general queries.

4



with lower-case letters for constants and relations, and names beginning with upper-case letters for
variables.

De�nition 2.1 (query containment and equivalence) A query Q1 is contained in a query Q2,
denoted by Q1 v Q2, if for any database D of the base relations, the set of tuples computed for Q1 is
a subset of those computed for Q2, i.e., Q1(D) � Q2(D). The two queries are equivalent if Q1 v Q2

and Q2 v Q1. 2

De�nition 2.2 (expansion of a query using views) The expansion of a query P on a set of views
V, denoted by P exp, is obtained from P by replacing all the views in P with their corresponding base
relations. Existentially quanti�ed variables in a view are replaced by fresh variables in P exp. 2

De�nition 2.3 (rewritings and equivalent rewritings) Given a query Q and a view set V , a
query P is a rewriting of query Q using V if P uses only the views in V, and P exp v Q. P is an
equivalent rewriting of Q using V if P exp and Q are equivalent. We say a query Q is answerable by V
if there exists an equivalent rewriting of Q using V. 2

In Example 1.1, P1 is an equivalent rewriting of the query Q1 using view V2, because the expansion
of P1:

P
exp
1 : q1(T;R) :- book(T; smith; P;R)

is equivalent to Q1. Thus, query Q1 is answerable by V2, but it is not answerable by fV1; V3g.

Several algorithms have been developed for answering queries using views, such as the bucket
algorithm [LRO96, GM99a], the inverse-rule algorithm [Qia96, DG97], and the algorithms in [Mit99,
PL00]. See [LMSS95, AD98] for a study of the complexity of answering queries using views. In
particular, it has been shown that the problem of rewriting a query using views is NP-hard. Our goal
is to minimize a view set without losing its power to answer queries.

3 Comparing the query-answering power of view sets

Before discussing how to minimize a view set without losing its query-answering power, we �rst
introduce the concept of p-containment. It captures the fact that one view set may be more powerful
than another view set, in terms of the possible queries they can answer. We also compare p-containment
with traditional query containment.

3.1 p-containment

De�nition 3.1 (p-containment and equipotence) A view set V is p-contained in another view
set W , or \W is at least as powerful as V," denoted by V �p W, if any query answerable by V is also
answerable by W. Two view sets are equipotent, denoted by V �p W , if V �p W, and W �p V . 2

In Example 1.1, the two view sets fV1; V2g and fV1; V2; V3g are equipotent, since the latter can
answer all the queries that can be answered by the former, and vice-versa. (We will give a formal proof
shortly.) However, the two view sets, fV1; V3g and fV1; V2; V3g, are not equipotent, since the latter
can answer the query Q1, which cannot be answered by the former. The following theorem suggests
an algorithm for testing p-containment.
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Theorem 3.1 Let V and W be two view sets. V �p W i� for every view V 2 V, if treated as a query,
V is answerable by W.3 2

The importance of this theorem is that given two view sets V and W, we can test V �p W simply
by checking if every view in V is answerable by W. That is, we can just consider a �nite set of
queries, even though V �p W means that W can answer all the in�nite number of queries that can be
answered by V . We can use the algorithms in [DG97, GM99a, LRO96, Qia96] to do the checking. It
can be shown that the problem of checking p-containment is NP-hard. It is also easy to see that the
relationship \�p" is re
exive, antisymmetric, and transitive.

EXAMPLE 3.1 As we saw in Example 1.1, view V3 is answerable by the view V2. By Theorem 3.1,
we have fV1; V2; V3g �p fV1; V2g. Clearly the other direction is also true, so fV1; V2g �p fV1; V2; V3g.
On the other hand, V2 cannot be answered using fV1; V3g, which means fV1; V2; V3g 6�p fV1; V3g. 2

We are interested in the relationship between p-containment and the traditional concept of query
containment. Before making the comparisons, we �rst generalize the latter to a concept called v-

containment.

3.2 v-containment

We use v-containment to capture the fact that one view set may store more tuples than another view
set. The motivation for introducing v-containment, rather than using the traditional concept of query
containment (as in De�nition 2.1), is to cover the cases where the views in a set have di�erent schemas.

De�nition 3.2 (v-containment and v-equivalence) A view set V is v-contained in another view
set W, denoted by V vv W, if the following holds. For any database D of the base relations, if tuple
t is in V (D) for a view V 2 V, then there exists a view W 2 W , such that t 2 W (D). The two sets
are v-equivalent, if V vv W, and W vv V. 2

In Example 1.1, the two view sets fV1; V2; V3g and fV1; V3g are v-equivalent, while their views
have di�erent schemas. The de�nition of v-containment allows the views in the sets to have di�erent
schemas as well, unlike conventional query containment. Given two view sets V and W, we want to
test V vv W. The following theorem shows that this test can be done easily for conjunctive views.

Theorem 3.2 Let V and W be two sets of conjunctive views. Then V vv W i� for every view V 2 V,
there is a view W 2 W, such that V vW . 2

For more complicated queries, such as conjunctive queries with arithmetic comparisons, unions
of conjunctive queries, and datalog queries, it becomes more challenging to test v-containment. For
example, [Gup94] shows that if conjunctive views with arithmetic comparisons are considered, two
views can \team up" to contain one view, while neither of them contains the view by itself.

3Due to space limitations, we do not provide all the proofs of the lemmas and theorems. Some proofs are given in the

appendix.
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3.3 Comparison between p-containment and v-containment

Example 1.1 shows that v-containment does not imply p-containment, and vice-versa. One might
guess that if we do not allow projections in the view de�nitions (i.e., all the variables in the body of
a view appear in the head), then v-containment could imply p-containment. However, the following
example shows that this guess is incorrect.

EXAMPLE 3.2 Let e(X1;X2) be a base relation, where a tuple e(x; y) means that there is an edge
from vertex x to vertex y in a graph. Consider the following two view sets:

V = fV1g, V1: v1(A;B;C) :- e(A;B); e(B;C); e(A;C)
W = fW1g, W1: w1(A;B;C) :- e(A;B); e(B;C)

As illustrated by Figure 1, view V1 stores all the subgraphs shown in Figure 1(a), while view W1

stores all the subgraphs shown in Figure 1(b). Although, the two views do not have projections in
their de�nitions, V vv W, and V 6�p W, since V1 cannot be answered using W1. 2

A B C

(a) View V1

Subgraph 1

A B C

(b) View W1

Subgraph 2

Figure 1: Diagram for the two views in Example 3.2

The following example shows that p-containment does not imply v-containment, even if the views
in the sets have the same schemas.

EXAMPLE 3.3 Let r(X1;X2) and s(Y1; Y2) be two base relations on which two view sets are de�ned:

V = fV1g, V1: v1(A;C) :- r(A;B); s(B;C)
W = fW1;W2g, W1: w1(A;B) :- r(A;B)

W2: w2(B;C) :- s(B;C)

Clearly V 6vv W, but V �p W, since there is a rewriting of V1 usingW: v1(A;C) :- w1(A;B); w2(B;C).
2

4 Minimizing a view set without losing power

In this section, we discuss how to minimize a view set without losing its power to answer queries.
We show that a view set can have multiple equipotent minimal subsets, and give a condition that
guarantees the uniqueness of the minimum. We also provide heuristics for speeding up the process for
�nding an equipotent minimal subset.

4.1 Equipotent minimal subsets of views

De�nition 4.1 (equipotent minimal subsets) A subsetM of a view set V is an equipotent minimal
subset (EMS for short) of V if M �p V, and for any V 2M :M � fV g 6�p V . 2
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Informally, an equipotent minimal subset of a view set V is a minimal subset that is as powerful
as V. For instance, in Example 1.1, the view set fV1; V2g is an EMS of fV1; V2; V3g. We can compute
an EMS of V using the following Shrinking algorithm.

Algorithm Shrinking initially setsM = V. For each view V 2M , it checks if V is answerable
by the views M � fV g. If so, it removes V from M . It repeats this process until no more
views can be removed from M , and returns the resulting M as an EMS of V.

It can be shown that the problem of �nding an EMS is NP-hard. The following example shows
that, as suspected, a view set may have multiple EMS's.

EXAMPLE 4.1 Suppose r(A;B) is a base relation, on which the following three views are de�ned:

V1: v1(A) :- r(A;B)
V2: v2(B) :- r(A;B)
V3: v3(A;B) :- r(A;X); r(Y;B)

Let V = fV1; V2; V3g. As shown by the following rewritings, V has two EMS's: fV1; V2g, and fV3g.

rewrite V1 using V3: P1: v1(A) :- v3(A;B)
rewrite V2 using V3: P2: v2(B) :- v3(A;B)
rewrite V3 using fV1; V2g: P3: v3(A;B) :- v1(A); v2(B)

For instance, P3 is an equivalent rewriting of V3 because its expansion, v3(A;B) :- r(A;B
0); r(A0; B),

can be shown equivalent to V3. 2

4.2 Uniqueness guarantee for EMS

In many applications, each view is associated with a cost, such as its storage space or the number
of web pages that need to be crawled for the view [CGM00]. We often need to �nd an EMS that is
optimal, i.e., the total cost of selected views is minimum. However, since views may have multiple
EMS's, we want to know in which cases the algorithm Shrinking will not be stuck at a local minima.
The following theorem shows a property of a view set that can guarantee the uniqueness of EMS.

Theorem 4.1 A view set V has a unique EMS if and only if the following property holds. For any

subset X of V, for any two views V1 and V2 in X, if X�fV1g �p X�fV2g �p V, then X�fV1; V2g �p V.
Intuitively, uniqueness of EMS holds i� for any subset of V, we can remove two views if each of them

is redundant. 2

The proof of the theorem is in the appendix. In cases where a view set V has multiple EMS's, the
following heuristics can help us �nd its EMS's eÆciently.

1. If there is a view V 2 V such that query V cannot be answered by other views in V, then V must
be in all the EMS's of V . In particular, if a view V uses a relation that is not used by any other
views, then V cannot be answered by other views in V. Thus, V is in all the EMS's of V.

2. Let F be a family of views that has the following property: each view in F involves only one
subgoal, and no variables in the body of the view are projected out in the head. That is, only
selections are allowed in the views of F . For two view sets V and W of F , we can show that
V vv W implies V �p W, and vice-versa. Therefore, given a view set V � F , it must have a unique
EMS, which can be computed by minimizing V using the traditional minimization techniques in
[SY80].
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5 Testing p-containment relative to a query set

Till now, we have considered p-containment between two view sets with respect to a \universal" set
of queries, i.e., users can ask any query on the base relations. However, in some scenarios, users are
restricted in the queries they can ask. In this section, we consider the relationship between two view
sets with respect to a given set of queries. In particular, we consider in�nite query sets de�ned by
�nite, parameterized queries.

5.1 Relative p-containment

De�nition 5.1 (relative p-containment) Given a (possibly in�nite) set of queries Q, a view set V
is p-contained in a view set W w.r.t. Q, denoted by V �Q W, if and only if for any query Q 2 Q that
is answerable by V, Q is also answerable by W . The two view sets are equipotent w.r.t. Q, denoted
by V �Q W, if V �Q W and W �Q V. 2

EXAMPLE 5.1 Assume we have two relations car(Make;Dealer) and loc(Dealer; City) that store
information about cars, their dealers, and the cities where the dealers are located. Consider the
following two queries and three views:

Queries: Q1: q1(D;C) :- car(toyota;D); loc(D;C)
Q2: q2(D;C) :- car(honda;D); loc(D;C)

Views: W1: w1(D;C) :- car(toyota;D); loc(D;C)
W2: w2(D;C) :- car(honda;D); loc(D;C)
W3: w3(M;D;C) :- car(M;D); loc(D;C)

Let Q = fQ1; Q2g, V = fW1;W2g, and W = fW3g. Then V and W are equipotent w.r.t. Q, since
the following equivalent rewritings show that both Q1 and Q2 can be answered by V as well as W ,
respectively.

Rewritings using V: Q1: q1(D;C) :- w1(D;C)
Q2: q2(D;C) :- w2(D;C)

Rewritings using W: Q1: q1(D;C) :- w3(toyota;D;C)
Q2: q2(D;C) :- w3(honda;D;C)

Note that V and W are not equipotent in general. 2

Given a view set V and a query set Q, we de�ne an equipotent minimal subset (EMS) of V w.r.t. Q
as follows. A subsetM of V is an EMS of V w.r.t. Q ifM �Q V, and for any V 2M : M�fV g 6�Q V.
We can compute an EMS of V w.r.t. Q in the same way as in Section 4.1, if we have a method to
test relative p-containment. This testing is straightforward when Q is �nite. By de�nition, we can
check for each query Qi 2 Q that is answerable by V, whether Qi is also answerable by W. However,
if Q is in�nite, testing relative p-containment becomes more challenging, since we cannot use this
enumerate-and-test paradigm for all the queries in Q. In the rest of this section we consider ways to
test relative p-containment w.r.t. in�nite query sets generated by �nite parameterized queries.

5.2 Parameterized queries

A parameterized query is a conjunctive query that contains placeholders in the argument positions
of its body, in addition to constants and variables. A placeholder is denoted by an argument name
beginning with a \$" sign. The following is an example.
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EXAMPLE 5.2 Consider the following parameterized query Q on the two relations in Example 5.1:

Q : q(D) :- car($M;D); loc(D; $C)

This query represents all the following queries: a user gives a car make m for the placeholder $M , and
a city c for the placeholder $C, and asks for the dealers of the make m in the city c. For instance, the
following are two instances of Q:

I1: q(D) :- car(toyota;D); loc(D; sf)
I2: q(D) :- car(honda;D); loc(D; sf)

which respectively ask for the dealers of Toyota and Honda in San Francisco. 2

In general, each instance of a parameterized query Q is obtained by assigning a constant from the
corresponding domain to each placeholder. If a placeholder appears in di�erent argument positions,
then the same constant must be used in these positions. Let IS(Q) denote the set of all instances of
the query Q. We assume that the domains of placeholders are in�nite (independent of an instance of
the base relations), causing IS(Q) to be in�nite. Thus we can represent an in�nite set of queries using
a �nite set of parameterized queries.

EXAMPLE 5.3 Consider the following three views:

V1: v1(M;D;C) :- car(M;D); loc(D;C)
V2: v2(M;D) :- car(M;D); loc(D; sf)
V3: v3(M) :- car(M;D); loc(D; sf)

Clearly, view V1 can answer all instances of Q, since it includes information for cars and dealers in
all cities. View V2 cannot answer all instances, since it has only the information about dealers in San
Francisco. But it can answer instances of the following more restrictive parameterized query, which
replaces the placeholder $C by sf :

Q0 : q(D) :- car($M;D); loc(D; sf)

That is, the user can only ask for information about dealers in San Francisco. Finally, view V3 cannot
answer any instance of Q, since it does not have the Dealer attribute in its head. 2

Given a �nite set of parameterized queries Q and two view sets V andW , we want to test V �Q W .
The example above suggests the following test strategy:

1. Deduce all instances of Q that can be answered by V.
2. Test if W can answer all such instances.

In the next two subsections we show how to perform each of these steps. We show that all
answerable instances of a parameterized queries for a given view set can be represented by a �nite
set of parameterized queries. We give an algorithm for deducing this set, and an algorithm for the
second step. Although our discussion is based on one parameterized query, the results can be easily
generalized to a �nite set of parameterized queries.

5.3 Complete answerability of a parameterized query

We �rst consider the problem of testing whether all instances of a parameterized query can be answered
by a view set. If all instances of a parameterized query Q can be answered by a view set V, we say
that Q is completely answerable by V.
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De�nition 5.2 (canonical instance) Let Q be a parameterized query and V be a view set. A
canonical instance of Q (given V) is an instance of Q, in which each placeholder is replaced by a new
distinct constant that does not appear in Q and V. 2

Theorem 5.1 Let Q be a parameterized query, and V be a view set. Q is completely answerable by V
if and only if V can answer a canonical instance of Q (given V). 2

The proof is in the appendix. The theorem also suggests an algorithm TestComp for testing whether
all instances of a parameterized query Q can be answered by a view set V.

Algorithm TestComp �rst constructs a canonical instance Qc of Q (given V). Then it tests
if Qc can be answered using V by calling an algorithm of answering queries using views,
such as those in [LRO96, GM99a, Qia96, DG97]. It outputs \yes" if V can answer Qc;
otherwise, it outputs \no."

EXAMPLE 5.4 Consider the parameterized query Q in Example 5.3. To test whether view V1 can
answer all instances of Q, we use two new distinct constants m0 and c0 to replace the two placeholders
$M and $C, and obtain the following canonical instance:

Qc : q(D) :- car(m0;D); loc(D; c0)

Clearly Qc can be answered by view V1, because of the following equivalent rewriting of Qc:

Pc : q(D) :- v1(m0;D; c0)

By Theorem 5.1, view V1 can answer all instances of Q. In addition, since V2 cannot answer Qc (which
is also a canonical instance of Q given V2), it cannot answer some instances of Q. The same argument
holds for V3. 2

5.4 Partial answerability of a parameterized query

As shown by the view V2 and the query Q in Example 5.3, even if a view set cannot answer all instances
of a parameterized query, it can still answer some of its instances. In general, we want to know what
instances can be answered by the view set, and whether these instances can also be represented
as a set of more \restrictive" parameterized queries. A parameterized query Q1 is more restrictive

than a parameterized query Q if every instance of Q1 is also an instance of Q. For example, query
q(D) :- car($M;D); loc(D; sf) is more restrictive than query q(D) :- car($M;D); loc(D; $C), since the
former requires the second argument of the loc subgoal to be sf , while the latter allows any constant for
its corresponding placeholder $C. For another example, query q(M;C) :- car(M; $D1); loc($D1; C) is
more restrictive than query q(M;C) :- car(M; $D1); loc($D2; C), since the former has one placeholder
in two argument positions, while the latter allows two di�erent constants to be assigned to its two
placeholders.

Clearly all the parameterized queries that are more restrictive than Q can be generated by adding
the following two types of restrictions:

1. Type I: Some placeholders must be assigned the same constant. Formally, let f$A1; : : : ; $Akg be
some placeholders in Q. We can put a restriction $A1 = � � � = $Ak on the query Q. That is, we
can replace all these k placeholders with one placeholder.

2. Type II: For a placeholder $Ai in Q and a constant c in Q or V, we put a restriction $Ai = c on
Q. That is, the user can only assign constant c to this placeholder in an instance.

11



Consider all the possible (�nite) combinations of these two types of restrictions. For example,
suppose Q has two placeholders, f$A1; $A2g, and Q and V have one constant c. Then we consider the
following restriction combinations: fg, f$A1 = $A2g, f$A1 = cg, f$A2 = cg, and f$A1 = $A2 = cg.
Note that we allow a combination to have restrictions of only one type. In addition, each restriction
combination is consistent, in the sense that it does not have a restriction $A1 = $A2 and two restrictions
$A1 = c1 and $A2 = c2, while c1 and c2 are two di�erent constants in Q and V. For each restriction
combination RCi, let Q(RCi) be the parameterized query that is derived by adding the restrictions
in RCi to Q. Clearly Q(RCi) is a parameterized query that is more restrictive than Q. Let �(Q;V)
denote all these parameterized queries that are more restrictive than Q.

Suppose I is an instance of Q that can be answered by V. We can show that there exists a
parameterized query Qi 2 �(Q;V), such that I is a canonical instance of Qi. By Theorem 5.1, Qi is
completely answerable by V. Therefore, we have proved the following theorem:

Theorem 5.2 All instances of a parameterized query Q that are answerable by a view set V can be

generated by a �nite set of parameterized queries that are more restrictive than Q, such that all these

parameterized queries are completely answerable by V. 2

We propose the following algorithm GenPartial. Given a parameterized query Q and a view set V,
the algorithm generates all the parameterized queries that are more restrictive than Q, such that they
are completely answerable by V, and they generate all the instances of Q that are answerable by V.

Algorithm GenPartial �rst generates all the restriction combinations, and creates a param-
eterized query for each combination. Then it calls the algorithm TestComp to check if
this parameterized query is completely answerable by V. It outputs all the parameterized
queries that are completely answerable by V.

5.5 Testing p-containment relative to �nite parameterized queries

Now we give an algorithm for testing p-containment relative to parameterized queries. Let Q be a
query set with only one parameterized query Q. Let V and W be two view sets. The algorithm tests
V �Q W as follows. First call the algorithm GenPartial to �nd all the more restrictive parameterized
queries of Q that are completely answerable by V. For each of them, call the algorithm TestComp to
check if it is also completely answerable by W . By de�nition, V �Q W i� all these parameterized
queries that are completely answerable by V are also completely answerable byW . The algorithm can
be easily generalized to the case where Q is a �nite set of parameterized queries.

6 MCR-containment

So far we have considered the query-answering power of views with respect to equivalent rewritings of
queries. In information-integration systems, we often need to consider maximally-contained rewritings
of a query using views. In this section, we introduce the concept of MCR-containment, which de-
scribes the relative power of two view sets in terms of their maximally-contained rewritings of queries.
Surprisingly, MCR-containment is essentially the same as p-containment.

De�nition 6.1 (maximally-contained rewritings) P is amaximally-contained rewriting of a query
Q using a set of views V if the following hold: (1) P is a �nite union of conjunctive queries using only

12



the views in V ; (2) For any database, the answer computed by P is a subset of the answer to Q; and
(3) No other unions of conjunctive queries that satisfy the two conditions above can properly contain
P . 2

Intuitively, a maximally-contained rewriting (henceforth called MCR for short) is a plan that uses
only the views in V and computes the maximal answer to the query Q. If Q has two MCR's, by
de�nition, they must be equivalent. It is known [Li99] that when arbitrary datalog programs are
considered to compute the maximal answer to a conjunctive query, we can deduce a �nite union of
conjunctive queries as an MCR. That is, we do not need to consider datalog rewritings. Clearly if Q
is answerable by V, then an equivalent rewriting of Q using V is also an MCR of Q.

EXAMPLE 6.1 Consider the following query Q and view V on the two relations in Example 5.1:

Q: q(M;D;C) :- car(M;D); loc(D;C)
V : v(M;D; sf) :- car(M;D); loc(D; sf)

Suppose we have the access to view V only. Then q(M;D; sf) :- v(M;D; sf) is an MCR of the query
Q using the view V . That is, we can give the user only the information about car dealers in San
Francisco as an answer to the query, but not anything more. 2

De�nition 6.2 (MCR-containment) A view set V is MCR-contained in another view set W, de-
noted by V �MCR W, if for any query Q, we have MCR(Q;V) v MCR(Q;W), where MCR(Q;V)
and MCR(Q;W) are MCR's of Q using V and W, respectively.4 The two sets are MCR-equipotent,
denoted by V �MCR W, if V �MCR W, and W �MCR V . 2

The following theorem shows that MCR-containment is essentially the same as p-containment.

Theorem 6.1 For two view sets V and W, V �p W if and only if V �MCR W. 2

Proof: \If": Suppose V �MCR W. Consider each view V 2 V . Clearly V itself is an MCR of
the query V using V , since it is an equivalent rewriting of V . Let MCR(V;W) be an MCR of V
using W . Since V �MCR W, we have V v MCR(V;W). On the other hand, by the de�nition of
MCR's, MCR(V;W) v V . ThusMCR(V;W) and V are equivalent, andMCR(V;W) is an equivalent
rewriting of V using W . By Theorem 3.1, V �p W.

\Only if": Suppose V �p W. By Theorem 3.1, every view has an equivalent rewriting using W .
For any query Q, let MCR(Q;V) and MCR(Q;W) be MCR's of Q using V and W, respectively. We
replace each view inMCR(Q;V) with its corresponding rewriting usingW, and obtain a new rewriting
MCR0 of query Q using W, which is equivalent to MCR(Q;V). By the de�nition of MCR's, we have
MCR0 vMCR(Q;W). Thus MCR(Q;V) vMCR(Q;W), and V �MCR W.

7 Minimizing view sets of general queries

Until now, we have discussed minimizations of conjunctive views using the concept of p-containment.
In this section we extend the earlier results to more general queries, and propose a framework for
minimizing view sets without losing their query-answering power.

4We extend the query-containment notation \v" in De�nition 2.1 to unions of conjunctive queries in the obvious way.
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Let F be one of the following three families of queries: conjunctive queries with arithmetic compar-
isons, unions of conjunctive queries, and datalog queries. Suppose Q 2 F is a query on base relations,
and V is a set of views in F on the same base relations.

De�nition 7.1 (general answerability) We say Q is answerable by V if there is a query P 2 F that
uses only the views in V , such that for any database D of the base relations, the answer computed by
P on the instance of the views V(D) is equivalent to the answer computed by Q on the base relations.
2

De�nition 7.2 (general p-containment and equipotence) Let V and W be two sets of views in
F . We say V is p-contained in W , denoted by V �p W, if any query in F that is answerable by V
is also answerable by W. The two view sets are equipotent, denoted by V �p W , if V �p W , and
W �p V. 2

7.1 Testing general p-containment

Theorem 7.1 Under the de�nition of general p-containment, Theorem 3.1 holds. That is, for two

sets of views V and W, V �p W if and only if for every view V 2 V, V is answerable by W. 2

query Q Yes: answerable

No: not answerable

a set of views V

CheckF

Figure 2: The algorithm CheckF for a family F of queries.

Suppose we have an algorithm CheckF that can test the answerability of a query with respect to
a set of views in the family F . That is, given a query Q and a view set V, as shown in Figure 2, the
algorithm CheckF tests if Q is answerable by V. By Theorem 7.1, we can test V �p W as follows: for
each view V 2 V, call the algorithm CheckF to test whether V is answerable by W . V �p W is true
i� all the views in V pass the test. It should be observed here, that algorithm CheckF does not exist
for the family of datalog queries [Dus97].

7.2 Minimizing view sets using general equipotence

Given a view set V , similarly to De�nition 4.1, an equipotent minimal subset (EMS) of V is a minimal
subset of V that is equipotent to V. To compute an EMS of V, we check for each view V 2 V if V is
answerable by V � fV g by calling the algorithm CheckF . If so, remove V from V . We keep shrinking
the view set until no views can be removed without changing the query-answering power, and the �nal
set is an EMS of V. As shown in Example 4.1, a view set can have multiple EMS's.

In some scenarios we need to answer queries using views in the presence of constraints (e.g.,
functional dependencies [Cod70], multivalued dependencies [Fag77, Del78]) and binding limitations on
views [RSU95, DL97, Ull89, LC00, LYV+98, YLUGM99]. We can generalize our results by requiring
that the algorithm CheckF take constraints and binding limitations into consideration. [RSU95, Gry99]
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give algorithms for answering conjunctive queries using conjunctive views in these scenarios; [Dus97]
provides answers for rewriting datalog queries using conjunctive views.

8 Conclusion

In this paper we showed that when minimizing a set of views, we should consider the query-answering
power of the views, rather than using the traditional query-containment concept for selection of views.
We developed the concept of p-containment, and showed that it is not related to the traditional query
containment. We discussed how to minimize a view set without losing its query-answering power.
We also considered p-containment of two view sets with respect to a given (possibly in�nite) set of
queries, and with respect to maximally-contained rewritings of queries using the views. We developed
algorithms for testing these containments, and discussed their relationships. Currently we are working
on some open problems in our framework, including ways to �nd an EMS of a view set eÆciently, to
�nd a v-equivalent minimal subset of a view set eÆciently, and to �nd cases where v-containment can
imply p-containment, and vice-versa.

Acknowledgments: We thank Arvind Arasu for his valuable comments on this material.
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A Appendix

A.1 The proof of Theorem 3.1

Theorem A.1 Let V and W be two view sets. V �p W i� for every view V 2 V, if treated as a query,

V is answerable by W. 2

Proof: \If": Clearly, each view V 2 V, if treated as a query, can be answered using the view V

itself. By the de�nition of V �p W , view V is also answerable by W . \Only If": For any query Q

that is answerable using V, assume Q can be written as

ans( �X) :- vi1(
�X1) & � � � & vik(

�Xk)

where each vij is the head of a view Vij in V, which is equivalent to some conjunctive query using
the views in W. Unify vij (Xj) with the head of that conjunctive query to get a body that replaces
vij (Xj). Then Q is equivalent to the resulting conjunctive query using the views in W.

A.2 The proof of Theorem 4.1

Theorem A.2 A view set V has a unique EMS if and only if the following property holds. For any

subset X of V, for any two views V1 and V2 in X, if X�fV1g �p X�fV2g �p V, then X�fV1; V2g �p V.
Intuitively, uniqueness of EMS holds i� for any subset of V, we can remove two views if each of them

is redundant. 2

Proof: \If": Assume V has a unique EMS M . For any X � V, any view V 2 X, if X � fV g �p V,
then M � X � fV g. Otherwise, we can \shrink" the set of views X � fV g to obtain another EMS,
which is di�erent fromM . Therefore, for any two views V1 and V2 in X, if X�fV1g �p X�fV2g �p V,
then M � X � fV1g and M � X � fV2g. Thus M � X � fV1; V2g, and we have X � fV1; V2g �p V.

v2

M1 M2

v1

X =M1 [M2

Figure 3: Diagram for the proof of Theorem 4.1.

\Only If": Suppose X �fV1g �p X �fV2g �p V implies X �fV1; V2g �p V for any subset X of V.
Assume V has two di�erent EMS's M1 and M2. Since both are minimal, as shown in Figure 3, there
exists a view V1 2M1�M2. Let X =M1[M2. Since M1 6=M2, and M2 6�M1 (since M1 is minimal),
there exists V2 2 X �M1. We can show that X � fV1g �p X � fV2g �p V, so X � fV1; V2g �p V.
Remove V2 from X. We repeat this process by removing redundant views in M2 �M1 from X, and
then prove that M1 � fV1g is also an EMS of V. Then M1 cannot be minimal.
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A.3 The proof of Theorem 5.1

Theorem A.3 Let Q be a parameterized query Q and V be a view set. Q is completely answerable by

V if and only if V can answer a canonical instance of Q given V. 2

Proof: Let Qc be a canonical instance of Q given V. The \Only if" part is obvious, since Qc is
an instance of Q. To prove the \If" part, we need to show that if there exists a rewriting Pc of the
instance Qc using V, then for any instance I of query Q, there exists a rewriting PI of I using V. As
shown in Figure 4, the rewriting PI is constructed as follows. For each placeholder $Ai in Q, suppose
it is replaced by ai in Qc, and by bi in the instance I. Replace each ai in the rewriting Pc with bi, and
we do this replacement for every placeholder in Q. Let PI be the new rewriting after the replacements.

��

Canonical instance Qc:

Rewriting Pc:

Expansion P exp
c :

Any instance I :

Rewriting PI :

Expansion P
exp
I :

�0

Parameterized query Q: ans() :- r1(); : : : ; rl(: : : ; $Ai; : : :); : : : ; rn()

ans() :- rj1(); : : : ; rjq (: : : ; ai; : : :); : : : ; rjk ()

ans() :- r1(); : : : ; rl(: : : ; ai; : : :); : : : ; rn()

ans() :- v1(); : : : ; vp(: : : ; ai; : : :); : : : ; vm()

ans() :- rj1(); : : : ; rjq (: : : ; bi; : : :); : : : ; rjk ()

ans() :- r1(); : : : ; rl(: : : ; bi; : : :); : : : ; rn()

�0ans() :- v1(); : : : ; vp(: : : ; bi; : : :); : : : ; vm()

Figure 4: Diagram for the proof of Theorem 5.1.

Now we prove that PI is an equivalent rewriting of I using V. Consider the expansion P exp
c of

the rewriting Pc. Since P exp
c is equivalent to Qc, there exist a containment mapping � from Qc to

P exp
c , and a containment mapping � of the other direction. Note that a containment mapping must

map a constant to the same constant, and map a variable to either a constant, or another variable.
In addition, the expansion P

exp
I of PI can be obtained from P exp

c by replacing every occurrence of ai
with bi.

We can construct a new mapping � 0 from I to P exp
I as follows. � 0 is the same as � except that for

each constant bi in I that replaces a placeholder $Ai of Q, we let �
0(bi) = bi. By the construction of

Pc and PI , we can show that � 0 is a containment mapping from I to P
exp
I . Similarly we can derive

from � a containment mapping �0 from P
exp
I to I. Thus PI is an equivalent rewriting of I using V.
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