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Abstract Many database applications have the emerging
need to support approximate queries that ask for strings that
are similar to a given string, such as “name similar tosmith”
and “telephone number similar to 412-0964”. Query opti-
mization needs the selectivity of such an approximate predi-
cate, i.e., the fraction of records in the database that satisfy the
condition. In this paper, we study the problem of estimating
selectivities of approximate string predicates. We develop a
novel technique, called Sepia, to solve the problem. Given a
bag of strings, our technique groups the strings into clusters,
builds a histogram structure for each cluster, and constructs
a global histogram. It is based on the following intuition:
given a query string q, a preselected string p in a cluster, and
a string s in the cluster, based on the proximity between q
and p, and the proximity between p and s, we can obtain
a probability distribution from a global histogram about the
similarity between q and s. We give a full specification of the
technique using the edit distance metric. We study challenges
in adopting this technique, including how to construct the
histogram structures, how to use them to do selectivity esti-
mation, and how to alleviate the effect of non-uniform errors
in the estimation. We discuss how to extend the techniques
to other similarity functions. Our extensive experiments on
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real data sets show that this technique can accurately estimate
selectivities of approximate string predicates.
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1 Introduction

Optimizers in database systems need various types of infor-
mation to improve the performance of query executions. One
important type of information is selectivities of query pred-
icates. Consider a table in a database with a large number
of employee records, including information such as names,
telephone numbers, ages, and salaries. A query can ask for
records that satisfy two predicates “age≤40 and salary
≥55”. To decide an efficient execution plan, it is critical
for the database optimizer to estimate the selectivity of each
predicate, i.e., the fraction of records in the table that satisfy
the predicate. Such information helps the optimizer choose
an efficient plan to answer the query.

Textual information is prevalent in databases. Recent
applications see an emerging need to support queries with
fuzzy (approximate) predicates on string attributes, such as
“name similar_to Smith” and “telephone similar_to
472-0964”, where “similar_to” uses a predefined, domain-
specific function to specify the similarity between two strings.
Such functions include edit distance or Levenshtein distance
[28], cosine similarity [12], Jaccard coefficient distance [11],
and variants thereof [9,35]. They could classify Smith and
Smyth to be similar strings. There are many reasons to sup-
port queries with fuzzy string predicates. To name a few: (1)
the user might not remember exactly the name or the tele-
phone number when issuing the query. (2) There could be
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typos in the conditions of a query. (3) There could be errors
or inconsistencies even in the database, especially in appli-
cations such as data cleaning [2,13,15,22,27].

There are recent studies on how to process such a fuzzy
predicate efficiently in large databases [e.g., 2,4,13,20]. In
order to utilize these techniques to decide an efficient execu-
tion plan for a query with fuzzy string predicates (and possi-
bly other predicates), it is important for the query optimizer to
know the selectivity of a fuzzy predicate. For instance, con-
sider a query with two predicates “name similar_to Smith”
and “salary ≥85”. If there are many records that satisfy the
first predicate and only few satisfy the second, processing
the second predicate first might be a good choice. On the
other hand, if we replace the name Smith with a less pop-
ular name such as Schwarzenegger, then processing the
first predicate on the name attribute may produce a good plan
(assuming there is no index on the salary attribute).

In this paper, we study how to estimate selectivities of
fuzzy string predicates in large databases. Specifically, we are
given a string similarity function f , which returns f (s1, s2)

as the similarity value between two strings s1 and s2. Given
a bag of strings, a query string q, and a threshold value δ, we
want to estimate how many strings s in the bag satisfy the
condition f (q, s) ≤ δ. The bag of strings can be the values
of an attribute in a table in a relational database. In this paper,
we use bag of strings and data set interchangeably.

Assume we adopt edit distance for the function f . Our
goal thus becomes estimating how many strings in a bag of
strings have an edit distance to a given query string within a
given threshold. We develop a novel technique, called Sepia,
for solving this problem.1 Its main idea is to group strings
into clusters, and build a histogram for the strings in each
cluster. In particular, all the strings within the cluster that
have the same proximity from the pivot string are summa-
rized in the histogram. Given a query string q, we look at
the proximity v1 from the string q to the pivot string p in
each cluster. We also look at the proximity v2 from the pivot
to each of the strings in the cluster. We obtain a distribution
of the similarities between the query string and the strings in
the group G, based on this proximity pair (v1, v2). We obtain
this distribution by analyzing the given collection of strings,
and storing the information in a global histogram. This dis-
tribution helps us estimate how many strings in the group G
satisfy the condition in the query predicate.

In this work, we make the following contributions:

– We propose and fully specify Sepia as a solution to the
problem of estimating selectivities of fuzzy string predi-
cates. To the best of our knowledge, our work is the first
attempt to solve this important problem.

1 “Sepia” stands for “Selectivity Estimation of approximate PredI-
cAtes.”

– We study challenges in adopting Sepia, including how
to construct effective histogram structures, how to use
the structures to do estimation, and how to dynamically
maintain the structures in the presence of data changes.

– We study how to extend the technique developed using
edit distance to other string similarity functions, using
Jaccard coefficient distance as an example.

– We conduct a thorough experimental evaluation of our
technique. The results show that our technique can pro-
vide accurate selectivity estimations.

The rest of the paper is organized as follows. Section 2 formu-
lates the selectivity estimation problem. Section 3 describes
the histograms used in Sepia. Section 4 studies how to con-
struct and maintain the histogram structures. Section 5 dis-
cusses how to improve the estimation accuracy using an
error-correction step. Section 6 discusses how to extend the
technique to other similarity functions. Section 7 reports the
results of our experiments. We conclude the work in Sect. 8.

1.1 Related work

Many techniques have been developed to estimate selectivi-
ties of range conditions on single or multiple numeric attri-
butes, [e.g., 18,25,31,32,34]. Most of them are based on
summary structures in the form of histograms. They parti-
tion the domain of attribute(s) using certain measurement.
Based on different partitioning rules, we can have different
kinds of histograms, such as equi-width histograms and equi-
height histograms [34]. One could extend these histograms
and use their partitioning rules for strings based on some
order such as their lexicographic order. However, two sim-
ilar strings might not appear close to each other in such an
order. For example, the edit distance between two telephone
numbers 412-0964 and 472-0964 is only 1, but they can
appear arbitrarily far from each other in a lexicographic order.
Thus a histogram based on such an ordering does not provide
accurate selectivity estimation for a fuzzy string predicate.

There are studies on estimating selectivities of string pred-
icates with a substring and wildcards such as name LIKE
‘%Smith%’. [17,26] proposed techniques that use sum-
mary structures such as pruned suffix trees or Markov tables
to store the frequencies of carefully selected substrings. To
estimate the selectivity of a wildcard predicate, these tech-
niques divide the query string into disjoint or overlapping
substrings, and estimate the selectivity of each substring
using the summary structure. They combine these selectiv-
ities to compute the selectivity of the query string based on
different assumptions. Chaudhuri et al. [5] develop an esti-
mation technique based on a hypothesis called “shortest iden-
tifying substring”. Informally, it states that the selectivity of a
string is close to the selectivity of one of its substrings. Their

123



Estimating selectivities of approximate string predicates in large databases 1215

approach guesses a set of shortest identifying substrings,
and combines the selectivities of those substrings using a
regression tree model. [1,29] study how to estimate selectiv-
ities of XML path expressions. These techniques cannot be
directly adopted to solve our selectivity problem for fuzzy
string predicates. In particular, we cannot evaluate a predi-
catename similar_to ‘Smith’ using the SQLLIKE
operator because the latter only supports substring matching.

Some string similarity functions, such as edit distance and
Jaccard coefficient distance, are metrics. Traina et al. [23]
show that many diverse metric data sets follow a “power law”
distribution. That is, for a metric-space data set, the average
number of neighbors within a given distance r is propor-
tional to r D , where D is a constant. (A similar intuition was
used in [39] for multi-dimensional data sets.) They propose
a technique to estimate the D value by building an optimal
M-tree for the data set. This technique cannot be applied to
solve our problem because of two reasons. First, their tech-
nique estimates the average number of neighbors in a data
set given a distance, while the actual number of neighbors
for each individual string could be very different for different
strings. Second, our experiments on real string data sets show
that this power law property does not hold under similarity
functions such as edit distance due to the large number of
pairs of words within the same distance [23].

There have been studies on efficiently answering queries
with fuzzy string predicates, especially in the context of data
cleansing [27,36]. Gravano et al. [13] present a technique to
do similar string joins inside a relational database system. Jin
et al. [22] develop an efficient approach to approximate string
joins using mapping techniques. Chaudhuri et al. [4] propose
an indexing structure to support fuzzy queries efficiently. Jin
et al. [20] develop a novel indexing structure called “MAT-
tree” to support fuzzy predicates with mixed types. The solu-
tion in this paper compensates these studies since it can help
the query optimizer decide a good execution plan using one
of these techniques.

2 Problem formulation

In this section, we introduce basic definitions and formulate
the problem of estimating selectivities for approximate (or
“fuzzy”) string predicates. We focus on selectivity estima-
tion using edit distance. Section 6 discusses how to extend
our technique to other similarity functions.

The edit distance (a.k.a. Levenshtein distance) between
two strings s1 and s2, is the minimum number of edit opera-
tions of single characters that are needed to transform s1 to s2.
Edit operations include insertion, deletion, and substitution.
We denote the edit distance between two strings s1 and s2 as
ed(s1, s2). For example, ed(Michael Jordan, Michal
Jordon)=2. In particular, to convert the first string to the

second, the minimum number of edit operations are to delete
the first e (in the first string) and substitute the last a with
an o. The edit distance between two strings s1 and s2 can be
computed using a dynamic programming algorithm, with a
time complexity O(|s1| × |s2|), where |s1| and |s2| are the
length of s1 and s2, respectively [37]. If a distance thresh-
old is given, a linear time algorithm (assuming the threshold
is constant) has been proposed in [40] (also known as “the
early termination algorithm”). There has been a large amount
of work on improving the basic algorithm. See [33] for an
excellent survey.

Let B be a bag with |B| strings. These strings can be the
values of an attribute in a relational table, such as names in
an employee table. An approximate string predicate P is a
triplet 〈ed, q, δ〉, where ed is the edit distance function, q is
a query string, and δ is a distance threshold. A string s in the
bag B satisfies this predicate if ed(q, s) ≤ δ. The frequency
f (P) of the predicate is the number of strings in B that satisfy
the predicate. The selectivity of the predicate is f (P)/|B|.
We assume the size |B| is known. Thus our problem becomes
the following.

Problem Statement: Given an approximate string
predicate P = 〈ed, q, δ〉 on a bag of strings, esti-
mate how many strings s in the bag satisfy the
predicate, i.e., ed(q, s) ≤ δ.

3 Selectivity estimation Using SEPIA

This section presents our novel approach to the problem
above. Its main idea is to group the given bag of strings into
disjoint clusters, and construct histogram structures to sup-
port estimation. Figure 1 illustrates the intuition behind our
technique. Given an approximate predicate P = 〈ed, q, δ〉,
consider a pivot string p in a cluster of strings. Let v1 be a
measure of the proximity between q and p. (We will discuss
how to choose the pivot string and measure the proximity
shortly.) For each string s in the cluster, let v2 be a measure
of the proximity between p and s. If we have a probability

Cluster

Pivot: p

String s

Query 
String: q

v1

v2ed(p,s)
1 2 3

10%

44%
28%

Probability 100%

4

Fig. 1 Intuition of Sepia
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distribution of the edit distance between q and s, then we can
utilize this distribution to compute the expected number of
strings in the cluster with this proximity v2 that satisfy the
query predicate. This distribution depends on the proximity
v1 and the proximity v2. We can analyze the strings in the
data set to obtain such a distribution.

3.1 Measuring string proximity

A simple, natural way to represent the proximity between
two strings is to use their edit distance. However, this num-
ber is imprecise in terms of differentiating strings with the
same edit distance to a pivot string. For instance, Fig. 2a
shows a cluster with a pivot string p = lucia. Two strings
in the cluster, lucas and luciano, have the same edit dis-
tance 2 to p. Consider an approximate query predicate P =
〈ed,lukas, 3〉. String lucas is closer to the query string
(with an edit distance 1) than luciano (with an edit dis-
tance 4), but we cannot differentiate these two strings based
on their edit distance to the pivot string p. In other words,
we need a more discriminative representation of the edit dis-
tance in order to differentiate strings in a cluster based on
their proximities to the pivot.

To more precisely describe the proximity between two
strings, we introduce a new representation, called edit vector,
to keep track of the edit operations during the computation
of the edit distance between the strings.

Definition 1 Edit Vector Let s1 and s2 be two strings. An
edit vector from s1 to s2 is a three-number vector in the form
〈I, D, S〉, in which I , D, and S are the number of insertions,
deletions, and substitutions, respectively, in a sequence of
edit operations of single characters that transforms s1 to s2

with the minimum number of edit operations. Let v be such an
edit vector. Clearly the edit distance between the two strings
is |v| = I + D + S.

For instance, an edit vector from string lucia to
luciano is 〈2, 0, 0〉, since two character insertions are
needed to transform the former to the latter. An edit vec-
tor from string lucia to lucas is 〈1, 1, 0〉, since we need
an insertion and a deletion of single characters to transform
the former to the latter. Figure 2b shows the edit vectors for

lukas

luciano

lucia

lucas
2

Edit distances

3Query 
String

Pivot

lukas

luciano

lucia

lucas
[1,1,0]

[1,1,1]

2
[2,0,0]

Edit vectors

(a) (b)
Cluster Cluster

Fig. 2 Using edit vectors to better describe string proximity than edit
distances

some of the string pairs. The advantage of using edit vectors
over edit distances is that edit vectors are more discriminative
for string pairs with the same edit distance, while it can still
maintain the edit distance information between the strings.

There can be different edit vectors from a string s1 and
a string s2, since there can be different sequences with the
minimum number of edit operations. We can choose any of
them as a representation of their proximity. Our experiments
with real data strings showed that there tends to be a unique
edit vector from a string to a similar string. In our experi-
ments, more than 91% of string pairs with an edit distance
within three have a unique edit vector. We can compute an
edit vector from s1 to s2 by slightly modifying the dynamic
programming algorithm that computes their edit distance.
Notice that an edit vector from s1 to s2 might not be the
same as an edit vector from s2 to s1, i.e., edit vectors are not
symmetric.

3.2 Histogram structures

Figure 3 illustrates the histogram structures used in our
approach. We group the strings into clusters. Let C1, . . . , Ck

be the clusters. For each of them Ci , we choose one of its
strings as the pivot for the cluster. This pivot, denoted as pi , is
a representative of the strings in Ci . In Sect. 4.1, we describe
the details of this step. For the purpose of easy dynamic
maintenance, the decided pivot, even though corresponds to
a string s in the cluster, is maintained separately from the
cluster. That is, this pivot string is never deleted even if the
original string s is deleted. (The idea of selecting a pivot for
a cluster is also adopted in [3,6,10,16,19,41].) This string is
selected in such a way that it is close to the strings in Ci . We
also keep the radius ri of this cluster, which is the maximum
edit distance between pi and any string in the cluster.

Frequency tables: for each cluster, we compute an edit
vector from its pivot to each string in the cluster. We group
these strings based on their edit vector from the pivot. We
summarize these strings by storing the number of strings for
each group. These numbers are stored in a structure, called
“frequency table”, for this cluster. Each entry in the table
has an edit vector and the number of strings that have this
edit vector from the pivot. For instance, the frequency table
for cluster 1 shows that 4 strings in this cluster have an edit
vector 〈0, 0, 0〉 from the pivot string (i.e., there are 4 iden-
tical strings), 12 strings with the edit vector 〈0, 0, 1〉 from
the pivot, and 7 strings with 〈0, 1, 0〉. Intuitively, this table
summarizes the distribution of the strings in the cluster in
terms of their proximity from the pivot.

PPD table: We also construct a histogram, called “prox-
imity-pair-distribution table” (“PPD table” for short), to store
global statistical information about the strings in the data set.
As illustrated in Fig. 1, the goal of having this histogram is to
store information about the edit-distance distribution given a
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Fig. 3 Histograms used in
Sepia

pair (v1, v2) of edit vectors. Each entry in the table is in the
format of:

(Edit Vector, Edit Vector, EditDist, Count, Percentage).

Each entry (v1, v2, e, c, f ) means that, for a query string that
has an edit vector v1 to the pivot of a cluster, among all the
strings in the cluster that have an edit vector v2 from the pivot,
statistically, on the average f (percentage) of these strings
have an edit distance within e to the query string. The count c
is the number of generated triplets (v1, v2, e′) (where e′ ≤ e)
in the construction of this table (discussed in Sect. 4.2). We
keep this count in order to support incremental maintenance
of this table.

For instance, consider the PPD table in Fig. 3. The first
three entries mean the following. If a query string has an edit
vector 〈1, 0, 1〉 to the pivot of a cluster, for all the strings in
the cluster that have an edit vector 〈0, 0, 0〉 from the pivot, on
the average (over all the clusters) 14, 57, and 100% of these
strings have an edit distance within 1, 2, and 3, respectively,
to the query string. In addition, during the construction of
this table, there are 1, 4, and 7 triplets (v1, v2, e′) for all the
clusters, where e′ is within 1, 2, and 3, respectively. To sup-
port efficient lookups, the PPD table can be implemented as
a hash table using the first three values of each entry as the
hash key.

3.3 Frequency estimation

In this subsection we present our frequency estimation algo-
rithm. The intuition is the following. Given an approximate
string predicate that contains the similarity function, a query
string, and a distance threshold, we go over each of the clus-
ters. For each cluster, using its frequency table we select the
candidate edit vectors. For each edit vector, we do a look-up
in the PPD table and retrieve the corresponding percentage
value. Using the frequencies from the frequency tables and
the percentages from the PPD table, we can compute the
estimated selectivity of the predicate.

Fig. 4 Estimation algorithm

Figure 4 shows the pseudo code of our estimation algo-
rithm. To estimate the frequency of an approximate string
predicate P = 〈ed, q, δ〉, we scan through the pivots of the
clusters. For the pivot pi of cluster Ci with a radius ri , we
compute an edit vector v1 from q to pi and their edit distance
ed(q, pi ). If |v1| > ri +δ, based on the triangular inequality,
we can ignore this cluster since no string in this cluster can
satisfy the predicate.

For each remaining cluster with a pivot pi , we go through
the entries in its frequency table. Recall that each entry (v2, n)

in the frequency table means that there are n strings in this
cluster with an edit vector v2 from the pivot pi . If |v1| +
|v2| ≤ δ, by the triangular inequality, all these n strings sat-
isfy the predicate, so we add n to the total estimation. If
||v1| − |v2|| > δ, then we can ignore this entry based on the
triangular inequality. Otherwise, we use the triplet (v1, v2, δ)

to look up the PPD table, and find the corresponding percent-
age f . The product of f and n gives us an estimation about
how many in these n strings have an edit distance within δ

to the query string q. We take the sum of these products for
different v2 vectors in this cluster, and for all the clusters.
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Complexity analysis: The outer loop is executed k times,
where k is the number of clusters. For each cluster Ci , the
inner loop is executed s(Ci ) times, where s(Ci ) is the number
of entries in the frequency table of Ci . The worst case of the
complexity is when no clusters can be pruned, and no entries
in the frequency tables can be pruned. In our experiments we
will analyze the performance of this estimation algorithm.

4 Construction and maintenance

In this section, we study how to construct and maintain the
histograms in Sepia.

4.1 Clustering strings

Clustering has been studied in the literature due to its impor-
tance in many applications. Clustering algorithms developed
for Euclidean spaces (e.g., the k-means algorithm [14]) are
not directly applicable in our case, since edit distance does
not form a Euclidean space.

We need to consider two factors when generating clusters
of strings. The first one is the quality of each cluster. We want
to group similar strings into one cluster. The pivot we choose
for a cluster is a representative of the strings in the cluster.
The more similar the strings are to this pivot, when we use
a pair of edit vectors to look up the global PPD table during
an estimation, the more accurate the distribution information
we can get from the PPD table. We can measure the quality
of a cluster as the average edit distance from the strings in
the cluster to its pivot. The smaller the average edit distance
is, the better the cluster is.

The second factor is the number of clusters. As the number
of clusters increases, we will have a better chance to improve
the quality of each cluster. On the other hand, increasing this
number can also increase other costs: (1) the number of fre-
quency tables will increase. This increase of clusters might
decrease the size of each table. Our experiments showed that
the overall size of the index structure tends to increase. (2)
When estimating the frequency of a fuzzy predicate, the esti-
mation time can also increase since we need to scan through
the pivots. In particular, we need to compute an edit vector
from the query string to each pivot. Our experiments showed
that the total estimation time is mainly dominated by this
computation. Thus, in order to reduce the estimation time
and histogram space, we need to restrict the number of clus-
ters in our histogram structures. We present two algorithms
for clustering strings, which are experimentally evaluated.

Clustering based on lexicographic order: one naive
clustering method is to group strings based on their
lexicographic order. We could adopt the idea in equi-height
histograms [34] by partitioning the range into k segments
(clusters) with the same number of strings in each segment.

Within each cluster, we can choose a string in the “middle”
as the pivot. This approach is based on the assumption that
strings close in their lexicographic order tend to have a small
edit distance, such as university and universal.

Clustering using k-Medoids methods: We can cluster
strings using the k-Medoids algorithm [24] based on the idea
of “Partitioning Around Medoids”, or “PAM”. The medoid
concept used in these algorithms is the same as our pivot
concept. Using the k-medoids algorithm, we proceed in two
steps. In the first step (called “BUILD”), we select an arbi-
trary collection of k strings from the data set as initial piv-
ots, and assign each remaining object to the closest pivot
according to their edit distances. We define an objective func-
tion as the total distance between each string in a cluster
and its pivot. In the second step (called “SWAP”), we try
to reduce the value of the objective function by swapping
a selected pivot with an unselected string. We pick the pair
that can best improve the objective function, swap the pair,
and re-distribute the remaining strings to the new pivots. We
repeat this step till the value of the objective function can no
longer be decreased.

We can further improve the efficiency of the basic algo-
rithm by adopting the idea in [24]. We sample the data set
several times (e.g., five times). For each sample, we do the
BUILD step described above, and calculate the value of the
objective function. The pivots of the sample with the min-
imum objective function value are chosen as the final piv-
ots of the entire data set. Each remaining object is assigned
to the closest pivot to form clusters. We call this method
k-Medoids [24].

Another way to improve the efficiency of the basic algo-
rithm is to choose a subset of the objects as a sample, and get
the best set of pivots for the sample. In order to get the best
set of pivots, we select a random set of pivots and we apply
the SWAP step described above until the clusters cannot be
improved. We call this method k-Medoids*.

4.2 Constructing histogram structures

Frequency tables: For each cluster, we calculate the edit vec-
tor from the pivot string to every string inside the cluster. We
construct the frequency table by counting how many strings
exist in the cluster for each unique edit vector.

PPD Table: To populate the PPD table, we need to gather
enough samples of string triplets (q, p, s), where q is a string
in a fuzzy predicate, p is the pivot in a cluster, and s is a string
in the cluster. Once we have enough such string triplets, we
calculate an edit vector v1 (from q to p) and an edit vector v2

from p to s. We also compute the edit distance e = ed(q, s).
After generating enough such triplets T , for each unique trip-
let (v1, v2, e) in T , we insert a record (v1, v2, e, c, c/A) into
the PPD table, where c is the total number of occurrences
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of triplets (v1, v2, e′) in T , where e′ ≤ e, and A is the total
number of occurrences of the pair (v1, v2) in T .

There are different ways to generate samples of string trip-
lets (q, p, s). Recall in Fig. 4, when we look up the PPD table
during an estimation, if a pair (v1, v2) does not appear in the
table, we assume no string with an edit vector v2 from the
pivot string can satisfy the fuzzy predicate. Thus we want to
generate sample triplets to cover as many (v1, v2) pairs as
possible to avoid possible miss hits during an estimation. On
the other hand, we also need to consider the running time
when generating sample string triplets, due to the cost of
computing edit vectors. We present the following methods
for generating sample string triplets, which are experimen-
tally evaluated (Sect. 7).

– ALL_RAND: The method randomly samples a small
number of strings in the data set as query strings in
fuzzy predicates. It generates a collection of string trip-
lets (q, p, s) by considering each of the query strings,
the pivot of each cluster, and each string in the cluster.

– CLOSE_RAND: The method is similar to ALL_RAND
except that, for each query string, it only considers, say,
10 closest pivots to the query string based on edit dis-
tances.

– CLOSE_LEX: This method is different from CLOSE_
RAND in the way they generate query strings. CLOSE_
LEX sorts the strings in the data lexicographically, and
uniformly selects sample strings in the order.

– CLOSE_UNIQUE: This method is different from
CLOSE_RAND in the way they generate query strings. In
the process of generating random query strings,CLOSE_
UNIQUE keeps a sample string only if the string can gen-
erate at least a certain number, say 10, of new v1 edit vec-
tors. The objective of CLOSE_UNIQUE is to generate as
many unique edit-vector pairs as possible.

4.3 Dynamic maintenance

The frequency tables for the clusters can be easily maintained
in the presence of data updates. If a new string snew is inserted
into the data set, we add it to its closest cluster C . We compute
an edit vector v2 from the pivot of C to snew, and increment
the count of this vector v2 in the frequency table of C . We
can modify the radius of this cluster if needed. The case of
deleting a string can be dealt with in a similar manner.

In order to incrementally maintain the global PPD table
when the bag of strings is updated, we need to consider the
effect of insertions and deletions on the table. In Sect. 4.2
we discussed how to populate the PPD table by generating
samples of string triplets (q, p, s), in which q is from a small
number of strings in a workload of fuzzy predicates. Let S
denote the set of these query strings. To support incremental

maintenance of the PPD table, we keep these query strings
in S. For each pivot string pi , we also store the precomputed
edit vectors from these strings to the pivot pi .

Consider a new string snew inserted into the data set. Let
C be the cluster whose pivot p is closest to snew among all
the pivots, and we modify the frequency table of this cluster
(as described above). We compute an edit vector v2 from p
to the new string. For each string q in S, we compute the edit
distance ed(q, snew). We use the (precomputed) edit vector
v1 from q to p to form a new proximity pair (v1, v2). We use
this pair to look up the PPD table and locate entries with this
pair. For each entry (v1, v2, e, c, f ), we increase the count
c by one if e ≥ ed(q, snew). Accordingly we modify the
f percentage values for these entries. Since the number of
strings in S is small, the cost of this incremental maintenance
is small, as shown in our experiments. The PPD table can be
maintained in a similar manner when existing strings are
deleted. Notice that the pivots are not part of the data set. As
many other histogram structures proposed in the literature,
if there are enough insertions/deletions in the bag of strings,
we may need to reconstruct the histogram structures in order
to support accurate estimations.

5 Improving estimation accuracy

Estimated frequencies using the histograms in Sepia could
be different from the real frequencies mainly due to two rea-
sons. The first one is that the percentage entries in the PPD
table may not be accurate. The second one is due to miss
hits of the PPD table, i.e., a proximity pair during an esti-
mation does not exist in the PPD table. In this section we
address these problems, and develop an approach for further
improving the accuracy.

5.1 Choosing string-proximity metric

One way to improve the representativeness of the entries in
the PPD table is to choose a good string-proximity metric,
based on which the histograms are constructed. The intuition
behind using a histogram is to show the number of strings in
the data set that share the same value over a chosen metric.

Let us revisit the edit vector proximity metric presented
in Sect. 3.1. We started from the edit distance metric, and
showed why this metric is too general to be used for some
strings. That is, different strings could have the same edit dis-
tance to a given string. Then, we introduced the edit vector
metric. The main difference is that an edit distance is a single
value, while an edit vector is a 3-D vector. Figure 2 showed
why edit vector could be more appropriate than edit distance
to differentiate different strings based on their similarity to a
given string.
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Fig. 5 Difference between using a three-number edit vector 〈I, D, S〉,
and a two-number edit vector 〈I + D, S〉

Each entry in the PPD table can be viewed as a point in a
7-D space, since it has three values for the first edit vector,
three values for the second, and one value for the edit dis-
tance. The edit vector metric might lead to a very sparse 7-D
space. To address this concern, instead of having a three-
number edit vector (insertion, deletion, and substitution), we
can build a two-number edit vector, by grouping two of the
three numbers into one. We can group insertion and deletion,
and the form of the edit vector will be 〈I + D, S〉. Simi-
larly we can also group insertion and substitution, or deletion
and substitution. By doing this, we decrease the dimension-
ality of the edit vector from 3 to 2. Correspondingly, each
entry in the PPD table can be viewed as a point in a 5-D
space.

We use an example (Fig. 5) to show a case where a two-
value proximity metric can be better than the three-value
edit vector metric. For illustration purposes, let us assume
we have a single cluster with a pivot lucia, and a string
luca. A sample string used in constructing the PPD table
is lucas, and a query string (for selectivity estimation) is
luc with an edit distance threshold 2. Figure 5a shows the
case where we use the 3-value edit vector as the proximity
metric. The only entry in the PPD table has two edit vec-
tors, 〈1, 1, 0〉 and 〈0, 1, 0〉. During the selectivity estimation
for the query string, we use the combination of 〈2, 0, 0〉 and
〈0, 1, 0〉 to lookup the PPD table, which does not have such
an entry. Thus our estimated selectivity is 0, even though the
real selectivity is 1, since ed(luc,luca) = 1, which is less
than 2. Figure 5b shows the case where we use 〈I + D, S〉
as the proximity metric. The only entry in the PPD table will
have two edit vectors, 〈2, 0〉 and 〈1, 0〉. When estimating the
selectivity for the query predicate, we use the combination
of 〈2, 0〉 and 〈1, 0〉 to lookup the PPD table, which does have
such an entry. Our estimated selectivity is 1, which is equal
to the real selectivity. What proximity metric is the best for
selectivity estimation depends on the data set, such as its
number of entries and their distribution. In the experiments
we have compared different proximity metrics (Sect. 7).

5.2 Increasing lookup hit rate

During the frequency estimation described in Sect. 3.3, if a
pair of edit vectors does not exist in the PPD table, we assume
the selectivity is 0 for this pair of edit vectors. This can cause
an underestimation of the selectivity.

One way to increase the PPD lookup hit rate during esti-
mation is to increase the number of samples in the construc-
tion of the PPD table. As the number of samples increases,
there are more entries in the PPD table. As a result, the num-
ber of successful edit vector lookups in the table during an
estimation also increases. This can alleviate the underestima-
tion problem. On the other hand, as the number of samples
increases, the percentages in the PPD table will also change,
which will affect the estimation accuracy. Our experiments
show that these percentages tend to give us an overestima-
tion. So the overall effect on the estimation accuracy is the
combined result of this underestimation due to the missing
entries in the PPD table and the overestimation of the per-
centages. In Sect. 7 we will show the effect of the number of
samples on the estimation accuracy.

Another way to increase the lookup hit rate is the follow-
ing. During the construction of the PPD table, for each query
string, we can increase the number of pivots that we consider
for generating the sample triplets. (Notice thatCLOSE_RAND
considers only the 10 closest pivots.) In this way, we will have
a better chance to produce more triplets in the PPD table.

5.3 Reducing size of PPD table

In order to do selectivity estimation efficiently, it is important
to keep the histograms in memory. Since the PPD table takes
the largest amount of space to store, it is critical to reduce
the size of this table. We present the following methods to
reduce this size. In all of the following methods we store the
PPD table in binary format, as opposed to the original text
format.

The first method relies on pruning. As we described in
Sect. 3.2, an entry in the PPD table is in the following for-
mat:

(Edit Vector, Edit Vector, EditDist, Count, Percentage),

When the PPD table is used to estimate the selectivity of
a predicate, a lookup in the PPD table is done for entries
with corresponding “Edit Vectors” and “EditDist” within the
threshold specified in the query. If the threshold tends to be
small (e.g., within 5), we can delete from the PPD table those
entries that have an “EditDist” greater than 5. The reason is
that we will never look up the PPD table for entries with an
“EditDist” greater than 5.

The second method is to store the “Edit Vectors” and the
“EditDist” values efficiently. Since these values tend to be
small, we can represent each of them using a short integer
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or even a byte. Similarly, we can store the floating point
“Percentage” value, as a fixed-size integer. In order to do
this, we truncate the value and consider only its first four
digits after 0. We also apply the pruning step from the first
method.

Using the third method, we could even remove the “Per-
centage” field completely and compute it on the fly whenever
it is needed. That is, we compute this value in the selectivity
estimation step. In order to compute it, we have to keep in the
PPD table the entry that contains the maximum count value
for each of the “Edit Vector” pairs. Because of this, we can
only partially apply the first method. We apply the second
method in its full extent.

5.4 Improving estimation accuracy by error correction

In addition to considering the previous factors that can affect
the estimation accuracy, we also propose the following
approach to further improve the accuracy of the initial esti-
mation using the PPD table. The main idea is to use a small
number of query strings, and use their estimated frequencies
and real selectivities to build a model. Given the initial esti-
mation for a query string, we apply this model to the initial
estimation to get a new, more accurate estimation. (A similar
idea is used in [30].)

We select a small number of strings to generate a work-
load of fuzzy string predicates. The threshold of a predicate
is chosen randomly within an edit distance range. We esti-
mate the frequencies of these predicates using the PPD table.
We also compute their real frequencies by computing how
many strings satisfy each query predicate. We analyze the rel-
ative error for each estimation, defined as ( fest − freal)/ freal,
where fest is the estimated frequency, and freal is the real fre-
quency. Figure 6 shows a simple example of such errors for
the frequency estimations of four predicates P1, . . . , P4. For
instance, the estimated frequency for predicate P1 is 750,
while the real frequency is 500. The relative error for this
estimation is +50%, which is an overestimation.

Based on the relative errors of the four queries, we obtain
an error distribution model, in which probabilistically 25% of
the predicates have an estimation with a relative error −40%;
50% of the predicates have an estimation with a relative error
+50%; and 25% of the predicates will produce an accurate

Predicates Real

P4(david, 2)
P3(jordan, 2)
P2(james,3)
P1(tommy,2)

500
600
400
500

Estimate

600
300

600
750

Relative 
Error
+50%

-40%
0%

+50%

-40% 0% +50%

25%

50%

25%

Relative 
Error

Probability

Fig. 6 Relative errors of predicates

estimation. The average relative error is +15%. Given an ini-
tial estimation for a query predicate, we can use this average
error to adjust the initial estimation, so that probabilistically
we can bring it closer to the real frequency.

The relative error for each estimation is related to fac-
tors such as the initial estimation, the length of the query
string, and the threshold in the predicate. Our experiments
show the following. The initial estimation tends to be an
overestimation for longer query strings, and large initial esti-
mations are usually an underestimation. One reason is the
following. With the same edit distance threshold, the longer
the query string is, the more likely it has a small frequency.
The percentage values in the PPD table are average values.
Therefore, longer strings tend to suffer from overestimations,
and shorter strings can suffer from underestimations. These
observations suggest that we cannot build a universal error
distribution model for all predicates.

We use a decision tree to compute the expected relative
error for the initial estimation of a fuzzy predicate based
on its string length, threshold, and initial estimation. We
use a workload of fuzzy predicates to produce this decision
tree. Figure 7 shows such a decision tree. In each interme-
diate node, we use the three factors as the conditions on the
branches. Each leaf node has an average relative error for
those predicates that satisfy the conditions on the path from
the root to this leaf node. Take the leftmost leaf node as an
example. It means that for all fuzzy predicates with a thresh-
old δ = 1, a query string with length between 1 and 5, whose
initial estimated frequency is within 40, the average relative
error is −15%.

Given a fuzzy string predicate P(q, δ), we traverse the tree
and identify a leaf node based on its δ value, the length L of
q, and the initial estimate IE using the PPD table. We use
the average relative error r at the leaf node to compute a new
estimated frequency. That is, we return I E

r+1 as the final esti-
mated frequency based on the definition ( fest − freal)/ freal

of relative error. In our experiments we will show that this
step can effectively improve the accuracy of estimations.

6 Extensions to other functions

Our Sepia approach provides a general framework for fre-
quency estimation of fuzzy string predicates. It can be
extended to other similarity functions. Let F be such a func-
tion. When we group strings to clusters, we should use F
as a distance function to measure the similarity between two
strings. One important issue in the extension is how to mea-
sure the proximity between two strings. In the edit distance
case, we use the concept of edit vector to represent such a
proximity. For a new function F , we need to develop such
a measure as a good representation for the string proxim-
ity. We need to consider the tradeoff between the specificity
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Fig. 7 Decision tree to
compute average relative error
of initial estimation

δ: threshold;
L: query string length;
IE: Initial estimate

0<=IE<=40
0<=IE<=40

0<=IE<=40

IE>=41

1<=L<=5
1<=L<=5

L>=6

...

δ = 1

δ = 2

δ = 3

-15% -20% +17% -8% 1%

IE>=41

+12% -23% +25%

IE>=41 IE>=41

L>=6

0<=IE<=40

and generality of such a measure. On one hand, this measure
should be specific enough so that it can differentiate strings
within a cluster, based on their proximity from the pivot of the
cluster (See, for example, Fig. 2). On the other hand, the mea-
sure cannot be too specific either, since otherwise we cannot
have enough samples in each proximity pair in the PPD table
to obtain a meaningful probability distribution. The reason is
that it becomes more likely that different strings in a cluster
have different proximities from the pivot string.

We use the Jaccard coefficient distance function as an
example to show how to extend Sepia to a new similarity
function. Let us first revisit its definition. Let n be an integer.
Given a string s, the set of n-grams of s, denoted G(s, n), is
obtained by sliding a window of length n over the characters
of string s. For instance, if n = 3:

G(“Michael Jordon”)={’Mic’, ’ich’, ’cha’, ’hae’, ’ael’, ’el ’,
’l J’, ’ Jo’, ’Jor’, ’ord’, ’rdo’, ’don’}.

G(“Michal Jordan”)={’Mic’, ’ich’, ’cha’, ’hal’, ’al ’, ’l J’,
’ Jo ’, ’Jor’, ’ord’, ’rda’, ’dan’}.

The Jaccard Coefficient Distance [9] between two strings
s1 and s2 for an integer n, denoted jcd(s1, s2, n), is defined
as:

jcd(s1, s2, n) = 1 − |G(s1, n) ∩ G(s2, n)|
|G(s1, n) ∪ G(s2, n)| .

For example, jcd(“Michael Jordon”, “Michal Jordan”, 3) =
1 − 7

16 ≈ 0.56. The smaller the Jaccard coefficient distance
between two strings is, the more similar they are.

To adopt Sepia to estimate frequencies of fuzzy predicates
using Jaccard coefficient distance, instead of using edit vec-
tor, we need a new measure that is discriminative enough,
and retains the semantics of proximity between strings as
well. Following this principle, we use the following vector
between two strings, s1 and s2, as a proximity representation:

〈|G(s1, n) ∩ G(s2, n)|, |G(s1, n) ∪ G(s2, n)|, ed(s1, s2)〉.
Instead of using edit vector, we use this new proximity

vector to construct the frequency tables of different clusters,
and the global PPD table. Our experiments show that this
proximity measure works comparably well for Jaccard coef-
ficient distance.

7 Experiments

This section presents the results of our extensive experiments.

7.1 Experimental setting

We ran our experiments on two data sets of 100,000 collected
from the Internet Movie Database (IMDB)2. The first data set
consisted of actor last names. The length of each name varied
from 2 to 51, and the average length was around 7. The data
set had around 55,000 unique names. The number of dupli-
cates was between 1 and 279. The second data set consisted
of movie titles. The length of each title varied between 1 and
162, and the average length was around 19. The data set had
around 30,000 unique names.

We evaluated the accuracy of Sepia using a workload
of query predicates. The predicates were randomly selected
from the data set. The edit distance threshold of each predi-
cate was a random integer between 1 and 4.

To evaluate the accuracy of an estimation for a fuzzy predi-
cate, we used its relative error, defined as ( fest − freal)/ freal,
where fest is the estimated frequency, freal is the real fre-
quency of this predicate. Correspondingly, we define its abso-
lute relative error as | fest − freal|/ freal. Compared to related
studies [5,7,29] that use measures that favor large selectivi-
ties, the results using this measure show that Sepia can pro-
vide accurate estimates for both small and large selectivities.

We implemented Sepia using C++ and the STL library
[38]. All the experiments were run on a PC, with Dual AMD
Opteron 1.4 GHz (64 bit) processors and 1,024MB memory.
The operating system was Redhat Linux 8.0.

7.2 Clustering algorithms

We implemented the lexicographic-based clustering algo-
rithm, the k-Medoids clustering algorithm, and the
k-Medoids* clustering algorithm, as discussed in Sect. 4.1.
We fixed the number of clusters to 1,000.

Measuring quality of clusters: One way to measure the
overall quality of the clusters is to use a histogram that shows

2 http://www.imdb.com/interfaces#plain.
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Fig. 8 Histograms of the edit distances between a pivot and the strings
in the same cluster
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Fig. 9 Quality of clusters generated by three clustering algorithms

the number of strings within an edit distance from the pivot
of a cluster, for all the clusters. Intuitively, a set of clus-
ters has a good quality if most of its strings are within a
small edit distance from the corresponding pivot. Figure 8
shows the histograms of the edit distances for the clusters
generated by the three clustering algorithms. Compared to
the lexicographic-based algorithm, the two k-Medoids vari-
ants have more strings that have a small edit distance to their
pivot (within 3), and fewer strings with a large edit distance
(greater than 3). That is, the clusters generated by the two k-
Medoids variants had similar quality, which was better than
the clusters created by the lexicographic-based method.

Another way to measure the overall quality of the clusters
is the following. For each cluster we compute the average
edit distance between its pivot and its strings. We then take
the average of these distances for all the clusters. Similarly,
we compute the maximum edit distance (radius) between the
pivot and its strings for each cluster, and take the average of
these radii for all the clusters. A set of clusters with a smaller
average edit distance and radius has a good quality. Figure 9
shows the average edit distance and the average radius for
the 1,000 clusters generated by the three clustering meth-
ods. Again, it shows that the k-Medoids and k-Medoids*

Average absolute
relative error (%)

Estimation
time (ms)

Clustering time
(min)

0.01

13.5

2.7

36.3

18.0
18.4

53.4
44.2

40.0

Lexicographic
k-Medoids

k-Medoids*

Fig. 10 Performances of three clustering algorithms

algorithms generated better clusters than the lexicographic-
based algorithm.

Estimation accuracy: After running each clustering algo-
rithm, we applied theCLOSE_RAND heuristic to populate the
PPD table. We ran our estimation algorithm using the testing
query load to calculate the average absolute relative error. In
these experiments we did not apply the error-correction step
discussed in Sect. 5.4.

Figure 10 shows the results of the three clustering algo-
rithms. The k-Medoids algorithm took the most time
(13.5 min) to finish the clustering step and the lexicographic-
based algorithm was the fastest (0.01 min). The k-Medoids*
algorithm had a much shorter time (2.7 min) that the
k-Medoids algorithm. The estimation times for the k-Medoids
(18.0 ms) and k-Medoids* (18.4 ms) were similar. The esti-
mation time for the lexicographic-based algorithm took twice
the amount of time needed for the k-Medoids variants. For the
average absolute relative error, k-Medoids* (40.0%) was the
best, followed by k-Medoids (44.2%), and the lexicographic-
based algorithm (53.4%). Thus we chose the k-Medoids*
algorithm to cluster strings in all the remaining experiments.

7.3 Populating PPD table

We experimentally evaluated the four different heuristics for
constructing the PPD table, namely, ALL_RAND, CLOSE_
RAND, CLOSE_LEX, and CLOSE_UNIQUE, as discussed in
Sect. 4.2. We first generated 1,000 clusters using
k-Medoids*. For each heuristic, we sampled 20% of the
strings as strings in a workload of fuzzy predicates. We col-
lected the average absolute relative error for each heuristic.
Figure 11 shows the details of the sampling time, number of
entries, and error comparisons.

The running time for the CLOSE_RAND was the largest
(20.9 min), because its closeness condition is based on edit
distance which is expensive to compute. CLOSE_UNIQUE
was the fastest (5.4 min), since the number of unique v1 edit
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Average absolute
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Fig. 11 Different heuristics for populating the PPD table

vectors was small. The number of entries for ALL_RAND
was the most (125,400), since it constructed string triplets
for all the clusters for each query string. CLOSE_RAND and
CLOSE_LEX had a similar number of entries (about 30,000),
since they only constructed samples for the 10 closest clus-
ters for each query string. There was no big difference in the
estimation errors for the heuristics. In the remaining experi-
ments we used CLOSE_RAND.

Number of workload predicates: when populating the
PPD table, we generated a workload of predicates, the strings
of which were sampled from the data set. This number affects
the quality of the PPD table. A very small number of samples
will not be able to generate an accurate PPD table. However,
the cost of sampling more string triplets also becomes larger.
We generated 1,000 clusters using k-Medoids* algorithm.
We used CLOSE_RAND to sample 0.01 to 40% of the strings
as the strings in a workload of predicates. The results are in
Fig. 12.

Figure 12a shows the sampling time for different sam-
pling ratios. For instance, it took 14 min to sample 20% of
the data set as query strings to generate triplets to populate
the PPD table. For a 40% sample, the time was about 28 min.
The average absolute relative error did not change much.

We also evaluated how the sampling ratio affected the hit
rate during a lookup in the PPD table. The results are shown
in Fig. 13. As the sampling ratio increased, there were more
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Fig. 13 Effect of sampling ratio on the hit rate of the PPD table

entries in the PPD table, and the hit rate increased, alleviating
the underestimation problem. On the other hand, the overall
estimation accuracy did not increase significantly. The main
reason is that the percentages in the PPD table tend to give
us overestimations, which were compensated by the under-
estimations. As we had more samples, these overestimations
tend to be more accurate. The combined effect of the over-
estimation and the underestimation did not change much as
the sampling ratio increased.

Number of closest clusters: we evaluated the number of
closest clusters for each sample query string used by
CLOSE_RAND. Figure 14 shows how this number affected
the overall estimation accuracy. Increasing this number did
help reduce the estimation error. The reduction was more
significant for the data set of movie titles.

7.4 Effect of number of clusters

We evaluated the effect of the number of clusters. The more
clusters we have, the closer the strings inside a cluster are
to its pivot. As a result, the pivots can better represent the
strings and the histograms are more accurate. On the other
hand, more clusters require more time for online estimation.

We used the k-Medoids* algorithm to generate clusters,
and CLOSE_RAND to populate the corresponding PPD table.
We applied the error-correction step. We let the number of
clusters vary from 500 to 2,000. Figure 15 shows the

Fig. 12 Effect of number of
predicates in populating PPD
table
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Fig. 14 Effect of the number
of closest clusters in
CLOSE_RAND sampling
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Fig. 15 Clustering time
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clustering time for the two data sets. The clustering time
increased linearly with the number of clusters. The clustering
time for the data set of movie titles was larger due to its larger
average string length. Figure 16 shows the average size (in
number of entries) of the frequency tables. As the number of
clusters increased, the size of the frequency tables decreased.

Figure 17 shows how the number of clusters affected the
percentage of clusters pruned using the triangle inequality
during an estimation. As we can see, as the number of clus-
ters increased, more clusters can be pruned. For the data set
of actor names, when there were 1,000 clusters, about 35%
of the clusters were pruned. This result shows that if we want
to further reduce the estimation time of scanning the clusters,
we could adopt some indexing structure such as M-tree [8].

Figure 18 shows how the number of clusters affected the
total amount of estimation time. It also shows how much
estimation time was spent on scanning the entries in the fre-
quency tables. The difference between the two time values is
the time spent on scanning the clusters. These results show

that about half of the estimation time was spent on scanning
the clusters. Therefore, adopting indexing structures such as
M-tree to reduce the number of scanned clusters may achieve
a slight improvement on the overall estimation time.

Figure 19 shows the average absolute relative error for
different numbers of clusters on both data sets. As expected,
this error decreased as the number of clusters increased.

7.5 Size of data set

We created data sets of different sizes by randomly generat-
ing subsets of the records in the original data set. We used
the same number of clusters 1,000, for these subsets. Fig-
ure 20a shows the average absolute relative errors for dif-
ferent data sizes, for different edit distance thresholds. The
relative error stayed stable for those subsets with different
sizes. For instance, when the threshold was 4, the average
absolute relative error of a subset with 10,000 records was
21%, while it was 22% for a subset with 100,000 records.

Fig. 16 Average number of
entries in frequency tables
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Fig. 17 Pruned clusters during
estimation
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Fig. 18 Estimation time
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Fig. 19 Average absolute
relative error
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Fig. 20 Relative error
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(b) Relative error versus data
set size (number of clusters

was 1% of data set size)

clusters

If we want to reduce the average estimation error as the
data size increases, we need to use more clusters. We did
a new set of experiments, in which for different subsets of
the records, the number of clusters was 1% of the number
of strings in each subset. Figure 20b shows the results for
different subsets. As the data set became larger, the error
decreased from 53% to 20,000 records (δ = 3) to 39% for
100,000 records.

7.6 PPD table size

We used the k-Medoids* clustering algorithm to generate
1,000 clusters, sampled 20% of the data set and used the
CLOSE_RAND heuristic to populate the PPD table. Figure 21
shows the size of the PPD table (in KB) for the three methods
discussed in Sect. 5.3. Method 1 reduced the space by 63.6%.
Method 2 reduced the space by 69.7%. Method 3 reduced the
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Fig. 21 PPD table size
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Fig. 22 Comparison of different proximity metrics

space by 46.7%. For Method 3, the additional time during the
online computation of the percentage was less than 0.01ms.

7.7 Different proximity metrics

We evaluated the accuracy of different proximity variants of
edit vector. We used k-Medoids* to generate 1,000 clusters,
the CLOSE_RAND heuristic for populating the PPD table,
sampled 20% of the data set, and applied the error correction
step. Figure 22 shows the average absolute error for differ-
ent proximity metrics. The best accuracy is obtained by the

〈I, D, S〉 metric, followed by the 〈I + S, D〉 and 〈D + S, I 〉
metrics.

7.8 Effectiveness of error correction

After an initial estimation using the PPD table, we applied the
error-correction step to further improve the estimation accu-
racy. We used the k-Medoids* algorithm to generate 1,000
clusters. We use the CLOSE_RAND heuristic to sample 20%
of the data set to populate its PPD table. We learned a decision
tree as described in Sect. 5.4. We ran the estimation for the
testing query load with and without the error correction. The
difference of their running times was negligible (less than
1 ms). We mainly evaluated the effect of the error-correction
step on the relative estimation error.

Figure 23 shows that for the data set of actor names, the
error decreased after the error-reduction step. For example,
the average absolute relative error was 36.0% without the
error correction, and it reduced to 29.4% after the error-
correction step. These results show that the error-correction
step is effective in improving the quality of our selectivity
estimation. However, for the data set of movie titles, the
error did not improve. This result shows that whether the
step should be used depends on the data set.

To see the details of estimation errors, we also calculated
the quartile distribution of the relative errors. The quartile
distribution bucketizes the relative errors into the following
buckets: [−100%,−75%), [−75%,−50%), [−50%,

−25%), [−25%, 0%), [0%, 25%), [25%, 50%), [50%, 75%),
[75%, 100%), [100%,∞). Estimates that are negative indi-
cate underestimation, and positives mean overestimation.
Figure 24 shows the quartile distributions of the relative
errors for our data sets. The results show that estimation
using our Sepia technique was very accurate for relatively
short strings, while the error increased for longer strings.

7.9 Jaccard coefficient distance

We also evaluated the applicability of our approach to other
distance metrics by using Jaccard coefficient distance as an
example. First, we repeated the same set of experiments and

Fig. 23 Effectiveness of error
correction models a Actor
names. b Movie titles
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Fig. 24 Quartile distribution of
relative errors
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Fig. 25 Jaccard coefficient
distance

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100A
ve

ra
ge

 A
bs

ol
ut

e 
R

el
at

iv
e 

E
rr

or
 (

%
)

Size of dataset (in thousands)

δ = 0.80
δ = 0.85
δ = 0.90
δ = 0.95

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500  750  1000  1250  1500  1750  2000A
ve

ra
ge

 a
bs

ol
ut

e 
re

la
tiv

e 
er

ro
r 

(%
)

Number of clusters

(b)

replaced the edit distance function with the Jaccard coeffi-
cient function. Figure 25a shows that the estimation accuracy
using Sepia was also very high for this new similarity func-
tion.

We also repeated the experiments in Sect. 7.4 using the
new function to see how the average absolute relative error
changes with different numbers of clusters. Figure 25b shows
a similar trend as Fig. 19c.

Acknowledgements Supported by NSF CAREER Award No. IIS-
0238586.

8 Conclusions

We proposed a novel technique, called Sepia, to support
accurate selectivity estimation of fuzzy string predicates.
It groups strings into clusters, and builds a histogram for
the strings in each cluster. It also constructs a global his-
togram to keep distributions of similarity values based on
string proximities. The histograms can be efficiently con-
structed and maintained. Our extensive experiments showed
that Sepia can support accurate estimation efficiently.
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