
Cloud Computing and Open Source: 
Watching Hype meet Reality 

Rich Wolski 
UCSB Computer Science 
Eucalyptus Systems Inc. 
May 26, 2011 



Exciting Weather Forecasts 

99 M 

167 M 

6.5 M 



What is a cloud? 

SLAs 

Web Services 

Virtualization 



eCommerce + Infrastructure 

•  Self-service and “zero touch.” 
–  Scalable automatic rental of resource intensive goods 

•  Transactional and asynchronous 
–  Interaction with the site is transactional 
–  Delivery is asynchronous 

•  Site integrity and site availability are critical 
–  Individual transactions can fail but the site cannot 

•  Customer requests must be isolated 
–  Service venue must manage competing needs 

•  Scale out for request volume, scale up for request 
weight 



Open-source Cloud Infrastructure 

•  Idea: Develop an open-source, freely available cloud 
platform for commodity hardware and software 
environments 
–  Stimulate interest and build community knowledge 
–  Quickly identify useful innovations 
–  Act to dampen the “hype” 

•  First-principles cloud implementation 
–  Not a refactorization of previously developed technology 

•  Build from mature open source technologies 
–  J2EE, MySQL, Web Services are high quality and scalable as 

open source 



What’s in a name? 

•  Elastic Utility Computing Architecture Linking Your Programs 
To Useful Systems 

•  Web services based implementation of elastic/utility/cloud 
computing infrastructure 
–  Linux image hosting ala Amazon  

•  How do we know if it is a cloud? 
–  Try and emulate an existing cloud: Amazon AWS 

•  Functions as a software overlay 
–  Existing installation should not be violated (too much) 

•  Focus on installation and maintenance 
–  “System Administrators are people too.” 



Goals for Eucalyptus 

•  Foster greater understanding and uptake of cloud computing  
–  Provide a vehicle for extending what is known about the utility 

model of computing 
•  Experimentation vehicle prior to buying commercial services 

–  Provide development, debugging, and “tech preview” platform for 
Public Clouds 

•  Homogenize local IT environment with Public Clouds 
–  AWS functionality locally makes moving using Amazon AWS 

easier, cheaper, and more sustainable 
•  Provide a basic software development platform for the open 

source community 
–  E.g. the “Linux Experience” 

•  Not designed as a replacement technology for AWS or any 
other Public Cloud service 



Requirements 

•  Implement cloud abstractions and semantics 
•  Must be a cloud (inarguably) 

•  Simple  
–  Must be transparent and easy to understand 

•  Scalable  
–  Interesting effects are observed at scale (e.g. not an SDK) 

•  Extensible  
–  Must promote experimentation 

•  Non-invasive  
–  Must not violate local control policies 

•  System Portable 
–  Must not mandate a system software stack change 

•  Configurable 
–  Must be able to run in the maximal number of settings 

•  Easy 
–  To distribute, install, secure, and maintain 



Architecture 

Client-side API 
Translator 

Cloud Controller 

Cluster Controller Node Controller 

Database Walrus (S3) 

Storage Controller 

vSphere 

ESX 
ESXi 

ESX 

ESXi 

ESX 

ESX 

RHEV-M 



The Elements of Cloud Style 

•  The terms SaaS, PaaS, and IaaS are often viewed as 
creating a pain in the… 

•  SaaS (Software as a Service) 
–  Applications exporting network-facing user interfaces 
–  User transfers data to the cloud 

•  PaaS (Platform as a Service) 
–  Program or scripting runtime exports network-facing interfaces 
–  Internal platform services available 
–  User transfers program code and data to the cloud 

•  IaaS (Infrastructure as a Service) 
–  Resource provisioning services export network-facing interfaces 
–  Internal platform services available 
–  User transfers code, data, and environment to the cloud 



Why IaaS? 

•  Applications are often multi-technology 
–  System “images” for different technologies can be combined 
–  Multiple language technologies at different revision levels 

•  Legacy support 
–  System images that mimic bare metal deployments can be used 
–  Legacies are archived with the environment necessary to run 

them 

•  Transparency 
–  Debugging and performance tuning can go down to the 

hypervisor 

•  QoS containers 
–  QoS is implemented in the infrastructure today => familiar 

•  Anti-lock in 
–  If clouds fail, a return path to bare metal is available 



Why not IaaS? 

•  Self-service pushes system administration tasks to 
the end-user 
–  Users must understand dynamic resource provisioning 

•  QoS hard to optimize at a fine-grained level 
–  A machine is a pretty big QoS bundle 

•  Heterogeneity is powerful but hard to manage 
–  Multi-technology development and maintenance is a tough 

software engineering problem 

•  Tenancy density and cloud platform optimization 
–  Less optimization potential at the VM level 



Three Research Questions for 
IaaS 

•  How can a cloud resolve the tension between 
elasticity and specialization? 

•  What is the best development model for hybrid 
clouds? 

•  How should cloud software be organized within an 
application? 



Elasticity and Specialization 

•  Elasticity measures the ability of the cloud to map a 
single user request to different resources. 
–  AWS VM can be implemented on a wide variety of infrastructure 

configurations 
–  Simple device model is necessary for OS elasticity 

•  Most data centers use specialization to encode 
“process” 
–  Technology lifecycle 
–  User priority 
–  Workload priority 
–  QoS 

•  The more elastic, the less specialized, but the less 
specialized, the less customized 



Hybrid Clouds 

•  Public Cloud 
–  Flat ID Management system and “limitless” scale 
–  “roll forward” development 

•  Craft a new VM when a run time exception occurs 
•  Garbage collect asynchronously 

•  Private Cloud 
–  Complex access controls and limited resources/quotas 
–  Resource management throughout the stack is critical 

•  How can one application live comfortably in both 
worlds? 



Cloud Software Architecture 

•  Software stacks are losing their “polarity” in clouds 
–  File system on top of NoSQL on top of Put/Get on top of File 

system on top of… 
–  “The Stack is Lost.” 

•  New Model: The Service Ensemble 
–  Applications are composed of service graphs not layered stacks 

•  What software engineering principles make sense? 
–  Communication is asynchronous 
–  Failures are common 
–  Whole “machines” can be composed dynamically 



Three Questions we have 
Answered 

•  How is Cloud Computing Different from other 
Approaches? 

•  Why use a private cloud? 
•  Can the “cloudification” of applications be 

automated? 



It is and It isn’t 

•  Cloud: Elastic eCommerce-style service venue for 
resource access and automatic configuration 

•  Not Cloud: 
–  Data Center Virtualization 

•  synchronous 
•  Not user scalable 

–  Grid 
•  Policy federated 
•  Inelastic 
•  One user, many resources 

–  Peer2Peer 
•  Lack of administratable abstractions 



Why Private Clouds? 

•  Technology Lifecycle Independence 
–  Lost of OS, Communication, Hardware, Data, Virtualization in 

the data center 
–  One platform to remain stable as these technologies age and roll 

forward 

•  Separation of support concerns 
–  “Below” the cloud platform managed by administrators 
–  “Above” the cloud platform managed by users 
–  Infrastructure support externalized toward the users 

•  On-boarding Ecosystem 
–  Isolation properties imply the “Linux Distro of the Future.” 



“Cloudification” of Applications 

•  Step 1: Configuration must be discovered 
–  Metadata service 
–  Templating 

•  Step 2: SLA is in the abstraction and not in the 
configuration 
–  Examples: 

•  Network interface and not IP address carries QoS 
•  Block device and not the specific volume carries the DB QoS 

•  It is not, at present, possible to map arbitrary Data 
Center semantics onto an elastic cloud model 
–  Requires some human intervention 



The Case for Open Source 

•  Linux is the operating system platform of choice for 
machines because… 
–  Hardware portable 

•  Separates software lifecycle from hardware lifecycle 
•  Prevents lock-in 

–  Vast ecosystem of software 
•  Linux distros provide QA (free or paid) 

–  Transparent 
•  Possible to own the source code for everything 

–  Fast to remediate 
•  Open source web community is often faster than paid 

support 
–  Cost effective 

•  Possible to mix free and paid offerings fluidly  



OSS and The Next Data Center 

•  If… 
–  the most mature eCommerce technologies are open source 

•  And… 
–  Enterprise IT prefers open source platforms for deployment at 

scale 

•  And… 
–  Private Clouds are the next platform for IT 

•  Then… 
–  The On-premise Private Cloud will be built from Open Source 



Happening Already? 

Eucalyptus -- confidential 



Thanks! 

•  Thanks to our original research sponsors… 

•  …and to our new commercial friends 

www.eucalyptus.com 
805-845-8000 
rich@eucalyptus.com 


