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-- Algorithmics and Data MiningAlgorithmics and Data Mining

-- Cloud Computing and Green ICTCloud Computing and Green ICT

-- InternetworkingInternetworking

-- Service ComputingService Computing

-- Distributed Computing ApplicationsDistributed Computing Applications
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Outline
› Cost Efficiency of the Cloud

- Cost reductions and profit increasesp

- Pay-as-you-go pricing

› Implications of multi tenancy

- Resource virtualization  Resource contention

- Current SLAs: only availability (performance?)

› Scheduling and resource allocation as a cost efficient 
solution

- Exploitation of application characteristics

- Explicit consideration of user experience/satisfaction
3

Definitions
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Definitions
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 Internet

Utility basis/pay as you go

Key Terms Ordered by Frequency

Utility basis/pay-as-you-go

Virtualization

 Services

Elasticity/Scalability/Flexibility

6
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Cloud Computing
› Two key enabling technologies:

- Resource virtualization

- Utility computing

- Pay-as-you-go

Service type Pricing

Amazon EC2 On-Demand Large $0.34 - $0.40 per hour

Data transfer in $0.10 per GB

Data transfer out $0.127 - $0.201 per GB

Amazon EBS Volumes $0.10 - $0.12 per GB-month of provisioned storage
$0.10 - $0.12 per 1 million I/O requests

7

Cloud Computing
› Motivation: Efficient resource use

- Utilization of typical data centers:  below 10-30%

- Typical enterprise DCs have a PUE of 2.0 or higher 

- DCs with best practices: 1.4 – 1.5

- Average lifetime of servers: approx. 3 years (CapEx)

- Excessive operating costs (OpEx)

- Staffing

Maintenance (HW & SW)

powerequipmentIT

powercenterdataTotal
PUE

__

___


- Maintenance (HW & SW)

- Energy (both for powering and cooling)

- Offering resources as a service much enabled by virtualization technology

8
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Cloud Adopters’ Perception

Source: B. Narasimhan and R. Nichols, State of  Cloud Applications and Platforms: The Cloud Adopters View, 
IEEE Computer, Mar. 2011
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Cost Efficiency: Provider’s Perspective

› Cost Reductions (TCO)

- Economies of scale prevails

- Cloud service providers can bring 75% - 80% cost reduction by 
bulk purchases

- Efficient resource management practices

- Utilization improvement (server consolidation)

- Automated processes (reduction in staffing cost)p ( g )

› Profit Increases

- Increase in market demand

- Quality of service (performance)

10
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Cost Efficiency: Provider’s Perspective

›Smoothing/flattening out workloads by effectively 
managing demand and capacityg g p y
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›Elasticity
- Utilization may often be bursty

Cost Efficiency: User’s Perspective

- Utilization may often be bursty

25,000 
“registered” users
Monday, 

50,000 users: 
400 instances 400 instances 
Tuesday, 
15/April/2008

250,000 users: 
3,500 instances 3,500 instances 
Friday, 
18/April/2008
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›Elasticity
- 1 machine for 1000 hours or 1000 machines for 1 hour

Cost Efficiency: User’s Perspective

1 machine for 1000 hours or 1000 machines for 1 hour

- In late 2007, the New York Times faced a challenge: making its entire archive of 
articles (11 million) available online

- 4TB of TIFF images: poorly suited to the web (multiple TIFFs for a single 
article)article)

- Solution: 24 hours of Amazon S3 and EC2 usage

- 100 EC2 instances and storage service from S3

- Cost: USD240 (i.e., 10¢ x 100 instances x 24 hours)

13

› Pay-as-you-go pricing

- Cloud services may cost more than on-premises data 

Cost Efficiency: User’s Perspective

C oud se v ces ay cost o e t a o p e ses data
centers

- A single server in a 50,000 node data center costs 
$112.42/month$112.42/month

- Amazon large EC2 instance costs 
$0 41/hour x 24 hrs x 30 days = $295 20/month$295 20/month$0.41/hour x 24 hrs x 30 days = $295.20/month$295.20/month

- However, usage may not be on the 24/7 basis

$0.41/hour x 8 x 20 = $65.60/month$65.60/month

14
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› Dynamic provisioning

Cost Efficiency: User’s Perspective
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Cost Efficiency: User’s Perspective

Cloud costs

Utilization

Total cost of 
ownership
(CapEx & 

OpEx)

Cost efficiency solutions
16
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Implications of Multi Tenancy 

› Limitations of resource virtualization

- No complete resource isolation (performance interference)p (p )

- Currently, some resources must be shared (e.g., network bandwidth, 
disk and last level cache)

› Resource contention is natural

- ‘Noisy neighbors’

› Current SLAs only support “availability”› Current SLAs only support availability
at least 
99.95%

17

Implications of Multi Tenancy 

› Performance variability
- A factor of 200 higher 200 higher than that in a non-virtualized and dedicated system*gg y

- Sending a packet of data between two internal nodes within Amazon may vary 
from 0.3ms to 7241ms (7 secs7 secs)**

* Schad, J. et al. “Runtime measurements in the cloud: observing, analyzing, and reducing variance,” VLDB, 3(1–2), 2010.
** Has Amazon EC2 become over subscribed?, http://alan.blog-city.com/has_amazon_ec2_become_over_subscribed.htm

18
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Cost Efficiency: Profit Maximization

Profit‐driven scheduling
& resource allocation 

19

Profit-driven Scheduling & Resource 
Allocation

Exploiting application 

To solve the above problem comprehensively.To solve the above problem comprehensively.

p g pp
characteristics

Incorporating user satisfaction 
into resource allocation

Application profiling

20
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Proposed Approach

Exploiting 
li tiapplication 

characteristics

Cost/profit 
efficiency

Considering 
user 

experience

21

The Cloud Computing Milieu

22
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Service Provider

Net 
profitRevenue Rental 

costs
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Profit-driven Scheduling & Resource 
Allocation

Exploiting application p g pp
characteristics

24
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Consumer 0Consumer 0
Cloud infrastructure providerCloud infrastructure provider

when to 

Profit Driven Scheduling

s2

s4

s0

s1 s3

profitable?

where to 
assign?

create new 
instances?

Consumer 1Consumer 1

SLA contains
- V: max value for an application
- α: decay rate (penalty)
- λ: request/incoming rate

s2
Service providerService provider

Lee, Y.-C., Wang, C., Zomaya A.Y., and Zhou, B.B., 
2010, “Profit–Driven  Service Request Scheduling in 
Clouds,” 10th IEEE/ACM International Conference on  
Cluster, Cloud and Grid Computing (CCGrid’2010), May 
17–20, pp. 15–24, Melbourne, Australia
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SLA Parameters

› Key SLA parameters of an application Ai are:

- V: maximum value
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Profitability

› Value (profit) v is inversely related to processing time t
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Conflicting Objectives
› Service providers: maximize profit (return on investment)

- Maximize revenue: 


N

v- #applications

- performance

› Minimize resource rental costs: 

- service instance utilization

- #service instances

 
 
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i

L

j
ji

net cvp
1 1
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1
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› Consumers: minimize expenses and meet response time requirements

28
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Exploiting Application Characteristics

› A pricing model based on processor-sharing
- Each of n requests receives 1/n of the service’s capacity

- Queuing delay is embedded in processing time

s0

s1

A1

A0 AA0,10,1
AA1,11,1
AA0,10,1

AA1,01,0

› Allowable delay metrics
- service-wise 

- application-wise
A1

s0

s1

s2

s3

DeadlineDeadline

29

Exploiting Application Characteristics

› Application-wise AD (AADAAD): determined by consumer specified 
extra time allowed

› Service-wise AD (SADSAD): determined by dependencies of services

- Aggregative SAD (ASADASAD) = SADSAD + portion of AADAAD

- Cumulative SAD (CSADCSAD) = ASADASAD + ASADs of predecessors

DeadlineDeadline

s2

s1

s4s6

s3

s5

s0

30
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Proposed Algorithms

› Maximum profit algorithm (MaxProfitMaxProfit)

- focuses explicitly on net profitocuses e p c t y o et p o t

- takes into account not only the profit achievable from 
the current service, but also the profit from other 
services being processed on the same service instance

› Maximum utilization algorithm (MaxUtilMaxUtil)

f ili i- focuses more on utilization

- an indirect way of reducing costs to rent resources

31

› Time complexity: O(Ijs)

- Ij: # service instances for service sj

- s: # services being processed on the instance sj

MaxProfit

g p j

› Calculation of profit increase

› Identification of an instance with 
largest profit increase

› Create a new service instance

› Service assignment
32
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› Time complexity: O(Ijs)

- Ij: # service instances for service sj

- s: # services being processed on the instance sj

MaxUtil

g p j

› Calculation of profit

Id ifi i f i i h› Identification of an instance with 
lowest utilization

› Create a new service instance

› Service assignment

33

Experimental Settings

› 105,000 (21,000 for each algorithm) simulations

- 6 different maximum widths (2 to 64)( )

- 5 different numbers of services per app.U(10, 80)

- 7 different simulation durations 
(between 2,000 and 30,000)

› Performance metrics› Performance metrics

- Net profit rate

- Utilization

- Response rate

34
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The Experiments

› EFTprofit

- Greedy algorithm without using processor-sharing

- Create a new instance whenever no service instance is readily available

› MaxProfit and MaxUtil
- Profit calculation using ASAD (i.e. Aggregative SAD (ASADASAD) = SADSAD + portion of 

AAD)AAD)

- Profit conservative

› MaxProfitcsad and MaxUtilcsad

- Profit calculation using CSAD (i.e. Cumulative SAD (CSADCSAD) = ASADASAD + ASADs 
of predecessors)

- Utilization conscious

35

›Overall comparative results

Performance Evaluation

algorithm net profit Utilization response rate

EFTprofit 31% 29% 100%

MaxUtil 34% 51% 70%

MaxUtilcsad 37% 54% 64%

MaxProfit 52%52% 50% 87%MaxProfit 52%52% 50% 87%

MaxProfitcsad 40% 56%56% 79%

Dynamic instance creation captures the trade-off  
between utilization and profit

36
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Profit-driven Scheduling & Resource 
Allocation

Incorporating user satisfaction 
into resource allocation

37

The Cloud Computing Milieu



27/05/2011

20

Problem Description
› The service provisioning problem of the business service provider

- How to rent VMs to build an appropriate resource set and schedule 
iservice requests

- Business objectives

- Maximize service profit

- Maintain customer satisfaction

- Constraints

J. Chen, C. Wang, B.B. Zhou, L. Sun, Y.C. 
Lee, A.Y. Zomaya, “Tradeoffs between 
profit and customer satisfaction for service 
provisioning in the cloud,” 20th ACM 
HPDC, San Jose, June 8-11, 2011.

- Constraints of downstream customers

- different customer preferences

- Constraints of upstream infrastructure service providers

- various types of VM instances that differ in capacity and prices

- price fluctuations
39

Modeling Customer Satisfaction

› Based on Utility Theory in economics, we model a customer’s 
satisfaction (or utility) of using a service as a function of the service

tpUtpU  0),(

satisfaction (or utility) of  using a service as a function of  the service 
price p and the response time t

› U0: the maximum utility that the service delivers to the customer.

› α/β (or β/α): known as marginal rate of substitutionmarginal rate of substitution in economics› α/β (or β/α): known as marginal rate of  substitution marginal rate of  substitution in economics, 
denoting the rate at which the customer is willing to give up 
response time (or service price) in exchange for service price (or 
response time) without any satisfaction change
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Indifference Map
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› IC1, IC2 and IC3 are three indifference curves with satisfaction level 
U1, U2 and U3 respectively (U1<U2<U3<U0).

› A, B and C are points on the indifference curves, representing 
different combinations of  service price and response time.

Using the Utility Model

› It provides an explicit way to compare customer satisfaction levels as 
long as the price and response time of  the request processing are known.

› When fixing the satisfaction to a certain level UC (UC < U0), given a 
response time t, the service price p that the customer would like to pay 
for processing her request can be calculated as below


 tUU

p
c 


0

› It further enables us to define utility-based Service Level Agreements 
(SLAs) between a service provider and its customers.

- The SLA in this case is in the form of  a tuple (U0, α, β), which 
constrains how the service performance is satisfactory to a customer.
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Efficient Resource Use with Utility-
based SLAs - 1

ICer
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e

response time

IC1

IC3

IC2

A (pA,tA)

C (pC,tC)

B (pB,tB)

se

› While maintaining a certain level of  customer satisfaction, the service 
provider is enabled to optimize profit by reducing the response time 
and charging a higher service price, which means moving the point 
(p,t) up left along the indifference curve.

response time

Efficient Resource Use with Utility-
based SLAs - 2
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› While keeping a profit target, the service provider can improve 
customer satisfaction by reducing the response time, which means 
moving point (p,t) left horizontally from an indifference curve to 
another indifference curve with higher satisfaction level.

response time
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Efficient Resource Use with Utility-
based SLAs - 3
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› For delayed services caused by performance variation of  VM 
instances, the service provider can maintain the customer satisfaction 
by charging a lower service price, which means moving the point (p,t) 
down right along the indifference curve.

Infrastructure Service Provider Model

› Infrastructure service providers offer a variety of  VM instances
The configurations of  three types of  spot instances on Amazon EC2

› Deploying service capacity on different types of  instances produces 
great performance differences

Instance type CPU (core) Memory (GB) Storage (GB)

Small 1 1.7 160

Large 2 7.5 850

Extra Large 4 15 1690

great performance differences
Results of  encoding 512-frame 1080p video streams using x264 on Amazon EC2

Instance type Mean (sec) Standard deviation (sec)

Small 402.9 4.9

Large 101.2 1.6

Extra Large 56.6 1.0
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Price Fluctuations of  VM Instances

› Prices of  VM instances are 
d i d d h ddetermined and changed 
periodically according to a 
certain market-based 
mechanism, e.g., an auction

› Price history of  three y
instance types on Amazon 
EC2 (Linux, California, US, 
Jan 1 – Jan 15, 2011).

The Semi-Online Scheduling Process

response time
delay
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Measuring Performance Difference

› We normalize the request processing capacity of  various instance types 
i h f d d i d ll h li d iagainst that of  a standard instance, and we call the normalized capacity 

Performance Index (PI)

› Let w0 and wk denote the workload that a standard instance and a type 
ik instance can process in a time interval respectively, the performance 
index of  instance type ik is defined as

wk

› Suppose a standard instance uses time t0 to process a request, a type ik
instance shall normally need time t0/PIk to process the same request.

0w

w
PI k

k 

Portfolio Strategies for Renting 
Resources

› We use I = {i1, . . . , im} to denote the set of  instance types and R = 
{r1, . . . , rn} to denote the requests in the waiting queue attached to the { 1, , n} q g q
service provider.

› For each request rj ∈ R, the following variables are defined to describe 
its state

- costj: the accumulated cost of  instance renting for processing rj . costj is updated 
every time interval because the cost of  instance renting is charged per time interval 
by the infrastructure service provider.y p

- revenuej: the revenue that a service provider expects to generate by serving rj . The 
revenue is realized only when rj is finished processing, i.e., the service provider 
charges the customer only when her request is finished.

- rptj: the remaining processing time (on a standard instance) of  rj . It is also updated 
every time interval. The initial value of  rptj equals the request size sizej.
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Portfolio Strategies for Renting 
Resources

› Based on the utility model and performance indexes of  various 
instance types, we develop portfolio strategies for a service provider to 
rent an appropriate set of VM instances to serve its customersrent an appropriate set of  VM instances to serve its customers.

- At the end of  each time interval, the service provider makes 
decisions on what types of  instances and how many instances to bid 
for.

- When deciding which type of  instance to choose for processing a 
request in an auction session, our strategies calculate expected profit 
(or satisfaction) for all types of  VM instances, and then choose the 
type with maximum expected profit (or satisfaction).

Note: Due to the price fluctuations, the instance type chosen for 
processing the same request may be different in different auction 
sessions.

Profit Optimization under a 
Satisfaction Target

Suppose the service provider aims to maintain a minimal satisfaction 
l l U (U U )level Umin (Umin < U0).

In an auction session, for each request rj in the queue, if  it is scheduled 
to an instance of  type ik ∈ I,

the expected remaining processing time

k

j
jk PI

rpt
rpt 

the expected accumulated cost

the expected response time

kjkjjk prpttt  coscos

jkjjk rpttimearrivaltimecurrenttimeresp  ___



27/05/2011

27

Profit Optimization under a 
Satisfaction Target

With the expected response time and Umin, the expected revenue is

Then the expected profit is


 jk

jk

timerespUU
revenue

_min0 


jkjkjk trevenueprofit cos

Finally, among all instance types, the instance type that produces the 
maximum expected profit is selected for processing rj

Indifference Map

rv
ic

e 
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› IC1, IC2 and IC3 are three indifference curves with satisfaction level 
U1, U2 and U3 respectively (U1<U2<U3<U0).

› A, B and C are points on the indifference curves, representing 
different combinations of  service price and response time.
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The FirstFit-profit Algorithm

Satisfaction Optimization with a 
Profit Bound

Suppose the service provider aims to keep a minimal unit profit 
fi f h ( i fi i d fi d fi / i )profitmin for each request (unit profit is defined as profit/size).

In an auction session, for each request rj in the queue, if  it is scheduled 
to an instance of  type ik ∈ I,

the expected remaining processing time

k

j
jk PI

rpt
rpt 

the expected accumulated cost

the expected response time

kjkjjk prpttt  coscos

jkjjk rpttimearrivaltimecurrenttimeresp  ___
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Satisfaction Optimization with a 
Profit Bound

With the accumulated cost and profitmin, the expected revenue 
iss

Then the satisfaction is

jkjjk tsizeprofitrevenue cosmin 

jkjkjk timeresprevenueUonsatisfacti 0  

Finally, among all instance types, the instance type that 
produces the maximum satisfaction is selected for 
processing rj

jkjkjk timeresprevenueUonsatisfacti _0 

The FirstFit-satisfaction Algorithm
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Performance Evaluation

› We evaluate our algorithms through simulation based on the 
performance data of  different types of  Amazon EC2 instances and 
h i i hitheir price history.

Parameter Value

Number of runs 10

Number of requests 10,000

Request arrival rate λ 15 per time interval

Minimum request size 2 time intervals

M i t i 50 ti i t lMaximum request size 50 time intervals

Maximum utility U0 equals request size

α/β 9, 3, 2, 1, 1/2, 1/4, 1/8

Instance types small, large, extra large

Instance prices Amazon spot instances price history

Performance Metrics

› The following performance metrics are used to evaluate our algorithms:

- Average unit profit

- Profit loss rate

- Average satisfaction

n

size

trevenue

profit

n

j j

jj




 1

cos

onsatisfacti
n

j

- Satisfaction loss rate

- Number of  instances

- Utilization rate

n
onsatisfacti j 1
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Experiment 1

› We first evaluate the effectiveness of  using VM instances of  
different types for service request processing.

- Compare with four baseline algorithms that use 
homogeneous instances, BL-small, BL-large, BL-xlarge and 
BL-random.

- Marginal rate of  substitution α/β is randomly selected g /β y
from 9, 3, 2, 1, 1/2, 1/4 and 1/8 for each request.

Experiment 1 - results
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Experiment 2

› We then evaluate the results of  our scheduling algorithms on 
handling different customer types defined by different α/β 
ratios.

- Marginal rate of  substitution α/β is set to 9, 3, 1 for each 
request respectively.

Experiment 2 - results



27/05/2011

33

Experiment 2 - results

As α/β reduces, our FirstFit-profit algorithm rents more large and 
extra large instances in exchange for shorter response time. Baseline 
algorithms, which always bid for homogeneous instances, cannot 
dynamically handle different customer preferences.

Experiment 3

› We show the performance of  our algorithms under different 
satisfaction targets and profit bounds to examine the 
relationship of  service profit and customer satisfaction.

- Marginal rate of  substitution α/β is randomly selected 
from 9, 3, 2, 1, 1/2, 1/4 and 1/8 for each request.
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Experiment 3 - results

It can be concluded that service profit and customer satisfaction have 
a negative correlation. The service provider needs to pay the cost of  
profit reduction for the improvement of  customer satisfaction, and 
vice versa.

Profit-driven Scheduling & Resource 
Allocation

Application profiling

68
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Objectives

› Correlation between resource usage & performance

› Pattern detectionPatte detect o

› Prediction model

› Eventually, better VM placement/server consolidation

A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. . V. Do, J. Chen, C. Wang, Y. C. Lee, . Y.
Zomaya, and B. B. Zhou. Profiling Applications 
for Virtual Machine Placement in Clouds. In 
Proceedings of  the 4th International Conference on Cloud 
Computing (IEEE CLOUD), July 4-9, Washington, 
DC, 2011.

69

The Approach

›Environment: Xen Hypervisor 3.4

›Benchmark applications: Postmark (I/O) Stream›Benchmark applications: Postmark (I/O), Stream 
(memory), Scimark (CPU)

›Input (feature metrics): No. of transactions, no. of 
VMs…

›Output (performance metrics): I/O speed, CPU›Output (performance metrics): I/O speed, CPU 
speed, power consumed…

70
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› Canonical Correlation Analysis

The Approach (cont.) 

Feature 
metrics

Performance 

CC
A(M – λI) = 0*

Pattern 1

Pattern 2

Pattern 3

[no. of VMs, transactions, …]

metrics
…

Pattern N[I/O speed, CPU speed, power 
consumed…]

* M: correlation matrix, λ: latent root, I: identity matrix

71

›I/O intensive profiles

Results & Discussion (cont.)

λ1 = 0.998

λ3 = 0.413

λ2 = 0.884

Horizontal axis: feature coefficient. Vertical axis : performance coefficient
72
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›Memory intensive profiles

Results & Discussion (cont.)

›CPU intensive profiles
λ1 = 0.998

p

λ1 = 0.985
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› Prediction model

Results & Discussion (cont.)

New feature 
metrics 
(Fnew)

Calculate 
canonical score 

(S)

Sk < S < 
Sk+1

New performance 
metrics:

Pnew = (Pk + Pk+1)/2Prediction  accuracy: 
90.5%
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›Limitation

Limitation & Future Work

-No access to real clouds

-Limited-function power meter

›Future work

-Combination of  test profilesp

-Consolidation strategies
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› Measurement of  actual cost savings

Open Issues

› Balance between QoS and resource utilization

› Compatibility between services offered by 

different service providers

› Reliability of  cloud services

› Accountability
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›Liberation of  innovative ideas from resource 
constraints

Finally

›Energy efficiency

›Economical solution to ever increasing computing 
needs

›Pricing models explicitly incorporating and 
effectively balancing various considerations will 
better leverage the proliferation of  cloud 
computing

›Services should be more accountable and secure
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Thank youThank you
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