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ABSTRACT

Motivation: Protein 8-sheets play a fundamental role in pro-
tein structure, function, evolution, and bio-engineering. Accu-
rate prediction and assembly of protein -sheets, however,
remains challenging because protein (-sheets require for-
mation of hydrogen bonds between linearly distant residues.
Previous approaches for predicting 3-sheet topological featu-
res, such as g-strand alignments, in general have not exploited
the global covariation and constraints characteristic of 5-sheet
architectures.

Results: We propose a modular approach to the problem
of predicting/assembling protein 3-sheets in a chain by inte-
grating both local and global constraints in three steps. The
first step uses recursive neural networks to predict pairing
probabilities for all pairs of inter-strand g-residues from pro-
file, secondary structure, and solvent accessibility information.
The second step applies dynamic programming techniques
to these probabilities to derive binding pseudo-energies and
optimal alignments between all pairs of §-strands. Finally,
the third step, uses graph matching algorithms to predict
the -sheet architecture of the protein by optimizing the glo-
bal pseudo-energy while enforcing strong global (3-strand
pairing constraints. The approach is evaluated using cross-
validation methods on a large non-homologous dataset and
yields significant improvements over previous methods.
Availability: http://www.igb.uci.edu/servers/psss.html.
Contact: pfbaldi@ics.uci.edu

1 INTRODUCTION

protein stability (Smith and Regan, 1997), involve intei@ts
between residues that are often separated by large distance
along the primary sequence.

The (3-sheet topology or architecture of a protein, i.e. the
pairing organization of all thg-strands contained in a given
protein, is essential for understanding its structure (gha
and Kim, 2000). Prediction gf-sheet topology from amino
acid sequence is very useful not only for predicting teytiar
structure (Zaremba and Gregoret, 1999; Steward and Thorn-
ton, 2002; Ruczinskét al., 2002; Rostt al., 2003), but also
for elucidating folding pathways (Merkel and Regan, 2000;
Mandel-Gutfreundet al., 2001), and designing new prote-
ins (Smith and Regan, 1995, 1997; Kortemetel., 1998;
Kuhlmanet al., 2003). Many experimental and theoretical
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Fig. 1. lllustration of inter-strand3-residue pairs and hydrogen-
bonding pattern in parallel and antiparallektrands. Arrows show
the amide (N) to carbonyl (C) direction gfstrands. Hydrogen bonds
are represented by hatched blocks.

Beta-sheets are a fundamental component of protein
architectures—more than 75% of all protein domains in the

Protein Data Bank (Bermad al., 2000) contain3-sheets

studies have been conducted to better understand the forma-

(Zhang and Kim, 2000)3-sheets are formed by the pairing tion and stability of3-sheets. For instance, Minor and Kim
of multiple g-strands held together by characteristic patterng1994) report that intrinsig3-sheet propensities of different

of hydrogen bonds running in parallel or anti-parallel fash

amino acids contribute to the local structure and stability

(Figure 1). These patterns, which are essentigbfsheetand of 3-sheets and that the magnitude and order3efheet

*to whom correspondence should be addressed

propensities depend on the local sequence and structural co
text. Statistical studies (Lifson and Sander, 1980; Wauter
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and Curmi, 1995) reveal nonrandom distribution and pairingWhile inter-chaing-sheets play an important role in protein-
preferences of residue pairs in align@etrands while evo- protein interactions and complex formation (Debal., 2004),
lutionary conservation of-residue interactions suggests alsoit is worth noting that here, consistently with the avaitabl
that pairing preferences depend on structural context asich literature, we focus exclusively on the already-challeqgi
solvent accessibility (Zaremba and Gregoret, 1999). Glear prediction of intra-chairj-sheets. However, we believe that
favorable side-chaininteractions between residue pairsic  the methods developed here can be adapted to the problem
bute tog-sheet stability (Smith and Regan, 1995; Hutchinsonof predicting both intra- and inter-chaiftsheets and training
et al.,, 1998). However, the evolutionary pressure to main-datasets for the latter are available through the ICBS datab
tain complementarity between pairs on neighboring strandgDou et al., 2004).
appear to be weak (Mandel-Gutfreuadal., 2001) and the
overall pairing preferences are not very strong and apjpear t
be modulated by the local environment to a high-degree.
Several methods, mostly s_,tatistical d@ta-driven appresich 2 MATERIALS AND METHODS
have been proposed to predict topological featurgsstieets
with moderate accuracy (Rost et al., 2003). An early method-1 Data
(Hubbard, 1994) uses a statistical potential approactettigt  The dataset is extracted from the Protein Data Bank of May
[B-strand alignments with an accuracy level of about 35-45%2004. Only structures determined by X-ray diffraction and
Asogawa (1997) proposes to use pairwise statistical gatent having resolution better than 2.5 A are retained. Chains con
of g-residue pairs to imprové-sheet secondary structure pre- taining unknown or non-standard amino acids, backbone
diction by considering clusters gfresidue contacts. Pairwise interruptions, or whose length is less than 50 amino acids
statistical potentials are used also in Zhu and Braun (1899) are excluded. DSSP (Kabsch and Sander, 1983) is used to
identify up to 35% of native strand alignments from alterna-assign secondary structure and relative solvent acckigsibi
tive strand alignments. In Balet al. (2000), elaborate neural values to each residue. Residues with secondary structure E
networks are used to improve the prediction accuracy ofinte (extended strand) and B (isolatgdbridge) are considered
strandg-residue contacts, but the method is not extended t@-residues. Each-residue may have 0, 1 or 2 partners accor-
the prediction of strand pairings, strand alignments, @nd ding to DSSP. A consistency check is used to remove chains
sheet topologies. Using an information theoretic apprpachcontaining non-consistegtresidue pair assignments (e;),
Steward and Thornton (2002) report an accuracy of 45-48%vherebye; pairs withe;, bute; does not pairs witl; accor-
for strand alignments if-triplets, and 31-37% for any native dingto DSSP. A filtering procedure is used to select the hain
strand alignments. While encouraging, all these appraacheahat contain 10-10@-residues, of which 90% must have at
seem to leave room for major improvements. least one partner. The redundancy in the dataset is reduced
In particular, these approaches fail to exploit systeraitic by the UniqueProt (Mika and Rost, 2003) with a HSSP thres-
the global covariation and constraints characteristig-eheet  hold of 0, which corresponds to sequence identity of roughly
architectures. Instead of treating each pajf-o&sidues o- 15-20%.
strands independently of each other, as previous methqds do The final dataset contains 916 chains corresponding to
one ought to leveragé-sheet constraints such as the fact that187,516 residues. Of these, 26% (48,996)@&residues par-
eachf residue has at most two partners, that neighboringicipating in 31,638 inter-strand residue pairs. The dzithas
B-residues in a strand are paired sequentially in parallel oL0,7453-strands with an average length of 4.6 residues and
anti-parallel fashion with another strand, and that edeh 8,1723-strand pairs, including 4,519 antiparallel pairs, 2,214
strand has at least one partner strand and rarely more tloan tyarallel pairs, and 1,439 pairs involving isolat@ébridges.
or three partner strands. These strand pairs form 2,583sheets. The average sequence
Here we develop a novel modular approach for predictingseparation between residue pairs and strand pairs is 43and 4
inter-strandg-residue pairings-strand pairingsG-strand  respectively. Sequence separation histograms are dispiay
alignments, ang-sheet topology altogether from scratch by Figures 2a and 2b. Figures 2c and 2d show that the number of
integrating both local and global constraints in three step inter-strand residue pairs or strand pairs has a strongleerr
First, 2D-Recursive Neural Networks(2D-RNN)(Baldi and tion with the number ofi-residues or strands in the chain, as
Pollastri, 2003) are trained to predict pairing probaigiit expected.
of inter-strand3-residue pairs using profile, secondary struc- To leverage evolutionary information, PSI-BLAST (Alt-
ture, and relative solvent accessibility information. &at,  schulet al., 1997) is used to generate profiles by aligning all
dynamic programming techniques are applied to these prazhains against the Non-Redundant (NR) database, as in Pol-
babilities to derive pairing pseudo-energies and aligrimen lastriet al. (2001). Finally the dataset is evenly and randomly
between all pairs of strands. Third, weighted graph matching split into 10 folds to perform 10-fold cross-validation gdigs.
algorithms are used to optimize the glolsakheet architec- The final dataset (BetaSheet916) and the splitted folds are
ture of the protein satisfying theé-strand pairing constraints. available through http://www.igb.uci.edu/servers/gsssl.
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Fig. 2. (a) Amino acid separation betweehresidue pairs (Mean = 43, Minimum = 3, Maximum = 626, Stadddeviation = 49).(b)
Amino acid separation betweeghstrand pairs (Mean = 40, Minimum = 2, Maximum = 626, Stand#ediation = 54).(c) Scatterplot of
number of3-residue pairs (y) versus number @fresidues (x) per chain. The correlation coefficient is Ol98ear regression given by:
y = 0.66x — 0.65. (d) Scatterplot of number of-strand pairgf) versus number of-strands £) per chain. The correlation coefficient is
0.97. Linear regression given by:= 0.74x + 0.27.

2.2 Prediction of 3-residue pairsusing 2D-RNNs paired or not. Figure 3 and 4 show protein 1VJG in the PDB
Like contact map prediction (Farisedt al., 2001; Pollastri ~@nd its corresponding target matrix which nicely displdyes t
and Baldi, 2002; Shao and Bystroff, 2003; MacCallum, 2004constraints and directions (parallel or antiparallel) w&isd
Punta and Rost, 2005), we treat prediction of inter-strasi r pairing. Neural networks or other machine learning methods
due pairing as a binary classification problem on a 2D grid.
For each chain, our input is a 2D square maltixhere the
size ofl is equal to the number gi-residues in the chain and
each entryl; ; is a vector of dimension 251 encoding the local
contextinformation oB-residuesd; e;), as well as their sepa-
ration. Specifically, we use a local window of size 5 around
e; ande;. Each position in the window corresponds to a vec-
tor of length 25 with 20 positions for the amino acid profile,
3 positions for the secondary structure (Helix, Sheet, )Coil

-3

and 2 positions for the relative solvent accessibility i@ar R 5

or exposed at 25% threshold). The two windows correspond ”2“?}5?

to 250=25<5x2 entries. One additional entry represents the f1

sequence separation betwegmnde;. Fig. 3. Protein 1VJG is an//3 protein with 7 strands. Strands 1, 2, 3,

The training target is a binary matrik, whereby eacl; ; 6, and 7 form a paralle¥-sheet. Strands 4 and 5 form an antiparallel

equals 1 or 0 depending on wheth®residuee; ande; are [B-sheet. The paralleB-sheet forms the hydrophobic core and is
surrounded by tightly packed-helices.
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— each residue. As a result, by thresholding the values of the
1 [3:11] outputO, the predicted inter-strand residue pairs tend to form
line segments parallel or perpendicular to the main dialgona
which correspond to parallel or antiparallel strand pditss
2 [38:47] suggests that aggregate predictiorgefesidue pairings can
be used to predict-strand pairings, pairing directions, and
3 [73:791 .'-...- ‘ alignments. Figure 5 shows the predicted inter-stranduvesi
.'-.. pairs of 1VJG with a .15 threshold. The predicted map recalls
E ES;SS% | _." | mosts-residue pairs and satisfies pairing constraints with few
& [116:119] ..'- . violations. It is worth noting that post-prediction infeces
7 [154:155] | w can be used to further enforce some constraints and retrieve

some of the missing residue pairs. The predicted intendtra
(B-residue map can be used directly to infestrand pairs. One
simple approach we tested is to consider two strand paired
cent strands in sequence order. The three numbers assowidte ?f any two of their residues are predicted to be p‘."“"ed' . In
each strand on the left are strand number and its startingraatidg !sol_atlon, however, such an {ipproach cannot be optimagsinc
position along the chain. The map is symmetric. Each bluersqu It disregards global constraints on the number of partners a

represents a nativé-residue pairing. A line segment parallel to the Strand can have (see Section 2.4).
main diagonal corresponds to the alignment of a parallehstpair.

A line segment perpendicular to the main diagonal corredpdn
the alignment of an antiparallel strand pair. Each row oucwol has -.'-.....'-.....

Fig. 4. Inter-strandg-residue pairing map of protein 1VJG. The
seven strands are ordered along the vertical and horizarial
Alternating colors (black and green) are used to distirtyaidja-

=

[3:11]
at most two blue squares reflecting the constraint that osidue
has at most two partners.

[33:471 ..'-

ra

can betrained on the data setto learn a mapping from the input

- - ! . 3 [73:79] -'-..
matrixI onto an output matri, wherebyO; ; is the predic- .'-.
ted probability that; ande; are paired. The goal is to make s o I -". |
the output matridO as close as possible to the target maitix & [116:119] n
The standard approach with feed-forward neural networks is 7 15411551 | o 'j

to treat each paik(,¢;) independently and to learn a mapping . _ N .
from a series of independerdt (j, 7 ;) examples (Baldit al., Fig. 5._Pred|ctedﬁ-re5|due pairing map of 1V\_]G. Upper triangle
2000). This simplified approach, however, does not exyicit (P1ue) is the true map and lower triangle (red) is the predichap.
leverage covariations and interactions betwéeesidue pairs | "¢ Predicted pairs formthree segments paralel to the diagonal
and might not effectively enforce the constraintglefesidue corresponding to the true parallel strand pair (1,2), (&r8) (3,6).

Two residue pairs in the true antiparallel strand pair (&%) also

and strand pairings. Here we use a two-dimensional reCUNGcalled. One out of two residue pairs in the parallel sti@nd) is

sive neural network architecture to exploit covariationsl @ o rectly predicted. There are two false positives in strgair (1,3)
constraints betweefi-residue pairs globally. This 2D-RNN  ang (3,6). For instance, one residue in strand 3 is wrongglipted
architecture, previously used in contact map predictisn, ias having two partners in strand 1. This error can be detésnted
described in detail in Baldi and Pollastri (2003) and is notchecking pairing constraints: a residue can have up to twin@es
reproduced here for lack of space. Under this architectinee, in total, and at most one partner in any single strand. A fesidree
outputO; ; depends on the entire input matiixnstead of  pairs between strand 1 and 2, which are missing in the prtifoap,
I, ; only. As for feed-forward neural networks, learning in a can be inferred once strands 1 and 2 are predicted to pair.
2D-RNN is implemented using gradient descent. In the simu-
lations, the outputs of five models are averaged in an engembl )
to produce the predicted probability mat@ Finally, itis ~2-3 Pseudo-energy for 3-strand alignment
important to notice that because our approach is modular, For each pair of strands, we can define an optimal alignment
is not constrained in any way to the use of recursive or eveland an overall alignment score using dynamic programming
feedforward neural networks—the output of any algorithat th techniques in parallel and anti-parallel directions withdl
produces an estimate of the pairing probabilitigs can be  scores or penalties derived from the mat@xof residue-
used as input for the second and third steps described beloyairing probabilities. Additional intra-strand gap pdiesd
Becausd andT are presented to the 2D-RNN as a whole corresponding tg3-bulges, as well as penalties for gaps at
during training, the network can identify pairing consttai  the end of the strands, can be introduced. The penalty for the
encoded in these matrices beyond the local environment djulges can be derived from their frequency. Becaiibealges
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tend to be isolated and rare (only 14% of paired strands corstrand can only pair with one side of another strand sequenti
tain a bulge, and 90% of these contain only a single bulge)ally in parallel or antiparallel fashion. If two strands paith

to a first-order-approximation here we do not allow bulges inthe same side of another strand, no overlap is allowed. Third
the alignments by setting the bulge penalty to infinity. Tikis all strands must have atleast one strand partner (ignoriag i
also consistent with previous studies (Hubbard, 1994; Aldu a chain pairings) and we impose the additional condition that
Braun, 1999; Steward and Thornton, 2002). Gaps at the edgéisey should have at most three strand partners. This conditi
of the strands are allowed but are not penalized (penalty =0)s not absolute but it is very reasonable since 98.6% ofdfran
Under these assumptions, we can simply search exhaustivelhave 1, 2, or 3 partners in the large non-redundant dataget. W

through all possible alignments by “sliding” one strandngo
the other, in both parallel and anti-parallel fashion. Asig

let C denote all these constraints.
With these constraints in mind, we develop graph matching

in addition that two paired strands must have at least orite resalgorithms to infer strand pairings and overgdsheet archi-

due pairing, two strands with lengthh > 2 andn > 2

tecture from the matriXdW of pseudo-energies of the best

have2(m + n — 1) possible alignments, counting parallel alignments of all strands pairs in a given chain. This pseudo
and antiparallel directions. If one strand is an isolatedd®e  energy matrix defines a completely connected and weighted
(m = 1orn = 1), then there arenaxz(m,n) possible ali-  Strand Pairing Graph (SPG), where vertices representstran
gnments. Without considering-bulges, one alignment can edges represent possible pairing relations, and weighis op
be uniquely specified by its direction (parallel, antipkelabr ~ mal pairing energies. The fully connected SPG of course does
isolated bridge) and by one inter-strand residue pair. not satisfy the set of constrairtisTo predict the3-sheet topo-

To discriminate native alignments from alternative onles, t logy, the goal is to prune the complete SPG to derive the true
binding pseudo-energW’ (A[E,, E,]) of each alignmend  SPG (Figure 8), wheré-sheets appear as maximal connected
of each pair of strandg’,. and E; can be computed by adding components. These components are to be derived by maximi-
the pseudo-energies of each pair of residuasdj in the  zing the global pseudo-energy while satisfying all thersdra
alignment, derived from the pairing probabiliti®s;, or their  pairing constraints above, that is by maximizidgg W,
logarithmlog O;;. The binding pseudo-enerdy,, of a pair ~ taken over all subsetS of edges that satisf¢. The global
of strands can then be defined by taking the maximum over afpseudo-energy of an architecture is the sum of the pseudo-
their possible alignment$V,.; = max 4 W(A[E,, E4]). For  energies of each of it§-sheets, and the pseudo-energy of a
any pair of strandsands in a given protein chain, the pseudo- g-sheet is the sum of the pseudo-energies of all the strand
energy is used to identify the best putative alignmentthe. pairs it comprises. To address this constrained optinurati
one with maximal pseudo-enerdy.,.s, between these two problem, we first use a greedy heuristic approach (see box).
strands. Figure 6a shows the resulting pseudo-energyxmatri
W = (W,,) for the best alignments between all strand pairs
of protein 1VJG. Note how the native strand pairs tend to havg
higher energy scores suggesting that the pseudo-energy can
be used effectively to score and rank strand pairs.

2.4 Prediction of 3-strand pairsand 3-sheet
topology using graph algorithms
Unlike previous methods (Hubbard, 1994; Zhu and Braun,

Start with a complete SPG with weight matW. Order all
the edges according to the weights into alist
¢ — S. S is the set of chosen edges.
Repeat
Remove one edgewith maximum weight fromL.
If both vertices of are not inS, adde into S.
If both vertices ofe are inS, discarde.

1999; Steward and Thornton, 2002) which treat strand pairg
independently of each other, here prediction of strand pai
ring and alignment takes into account additional physical
constrains characteristic Gfsheet architectures. To illustrate

If one vertex ofe is in .S, align the strand of the vertex
with the strand of another vertex not$husing
their best alignment. If the pair and its alignment
satisfy the strand pairing constrairitsadde into S.

Otherwise discard.

(B-sheet topology and its constraints, we use schematic diat ) >e dl )
Until all vertices inG appear inS once.

grams (similar to Branden and Tooze (1999)) whasrands
are represented by rectangles of length proportional to the
length of the strand. Figure 7 shows the diagram of 1VJG.
Lines with arrows connect adjacent strands in sequence orde

from the N to the C terminus. Such schematic diagrams readily The greedy algorithm has time complexi®( N2 log N),
reveal several pairing constraints férsheet architectures. whereN is the number of strands. After converging, the edges
First, each strand has two edges available for pairing Witaro  and vertices inS constitute a spanning sub-grapt of G.
strands and, as a resultgaesidue can have at most two part- Connected components@i are in 1:1 correspondence with
ners. Itisimportantto note that this does imply thatastrand  the protein3s-sheets and provide the global predictedheet
can pair at most with two other strands, since a long strandrchitecture. Figure 6 illustrates how the algorithm adsem
may pair with several short strands on either side. Secora, o the strands of protein 1VJG.
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(b)Assembly process of beta—sheets of 1VJG using graph algorithm

4 5
HIE

4 1.02 | .02).04 0

50.02 | .02].03 1910

6 .10 [.05 |74 | .04 | .04 | O

7 1.02 .02 {.03 | .02 | .02 |.20 0

Step 1: pair 4, 5 and connect them  Step 2: pair 1, 2 and connect them

(a)Energy matrix of the best alignments of
seven strands of 1VIG

Step 3: pair 1, 3 and connect 2, 3 Step 4: pair 3, 6 and connect 5, 6 Step 5: pair 6, 7 and connect them

Fig. 6. (a) Predicted pseudo-energy matW of the best alignments of all strand pairs of protein 1VJGd Rembers denote the pseudo-
energy of the alignments of true strand pa(ty. 5-sheet assembly process. It takes five steps to assemble stexeds into twgs-sheets
using the energy matrix in (a). In step 1-4, the strand pain miaximum energy is added. In step 5, pair(2,3) has highenggrthan pair(6,7).
But it is not chosen because strand 2 and 3 have already bleeteskin previous steps.
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(a) The order and starting/ending positions of seven strands of 1VIG

2

Q) Q)

(a)The complete SPG (b)The true weighted SPG

Fig. 8. Strand Pairing Graph of protein 1VJ@) The complete
SPG. Red edges denote true strand pdb¥.The true SPG. Two
components (1,2,3,6,7) and (4,5) correspond to Bagheets. The
weights are the pseudo-energy of the best alignments aoitspairs.

(b) Strand pairing topology of beta—sheets

Fig. 7. Schematic diagram gf-sheet topology of protein 1VJGa)
Unpaired strands in sequence ord@) Paired strands in eagh-
sheet are aligned side by side. This diagram includes@wsbeets
consisting of strand 1,2,3,6,7 and strand 4,5 respectively

tends to choose more strand pairs (edges) than the greedy
graph algorithm. It is worth noting that both the greedy and
constrained-MST algorithms as described do not allow for
cycles and all the components they produce are trees. This
_ _ approximation is not entirely correct in the case of circula

By treating3-sheets as spanning trees of complete SPGsyheets, such asbarrels. To handig-barrels, we are currently

a variant of the well-known algorithm for finding Mini- mogifying these algorithms to allow up to one cycle in each
mum/Maximum Spanning Tree (MST) (Even, 1979), Krus'component.

kal's algorithm (Kruskal, 1956), is also used to predict

(-sheets (trees) with maximum pseudo-energy. The only dif-

ference between this constrained-MST algorithm with the3 RESULTS AND DISCUSSION

previous greedy algorithm is that it does not always dis-The performance ofs-residue pairing prediction is asses-
card edgee when its adjacent vertices are already in thesed using a variety of standard measures including: area
set S. Instead, it adds into L if its two vertices belong under ROC curve, True Positive Rate [TPR = TP/(TP+FN)]
to two disconnected components and the alignment satisfiet 5% False Positive Rate [FPR = FP/(FP+TN)], specifi-
the strand pairing constraints. Not surprisingly this ailipon city [TP/(TP+FP)], sensitivity [TP/(TP+FN)], and corrétan
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coefficient [(TP<TN-FPxFN)/((TP+FN)(TP+FP)(TN+FN) The correlation coefficients of strand pairing by the greedy
(TN+FP)) /2], and compared with predictions associatedand constrained-MST graph algorithms are virtually ideadti
with the base-line and with a a general-purpose contact maff).502 and 0.503 respectively). The specificity and seitsiti
predictor. At the break-even point where the total numbeiof strand pairing using the greedy graph algorithm are 59%
of predicteds-residue pairs is equal to the true number ofand 54% respectively. In contrast, the specificity and sensi
B-residue pairs, the specificity and sensitivity of inteestl  tivity of the naive algorithm that always pairs sequenyiall
(B-residue pairings are equal to 41% with a correlation coefadjacent strands are 42% and 50% respectively. Thus, around
ficient of 0.4. The accuracy of the base-line predictor (thesimilar operating regimes, the greedy graph algorithnmdgiel
number of true3-residue pairs / total number of inter-strand improvements of 17% in specificity and 4% in sensitivity over
(B-residue pairs) is 2.3%. Thus the improvement factor, i.ethe naive algorithm. The smaller improvement in sensitivit
the ratio between the accuracy (specificity or sensitivity) is still very significant because 16% of correctly predicted
our method over the base-line (Farisetlal., 2001), is 17.8.  strand pairs are non-adjacent strand pairs. The congtraine
To the best of our knowledge, only one method in the lite-MST graph algorithm has specificity and sensitivity of 53%
rature (Baldiet al., 2000) reports quantitive evaluation of and 59% respectively. Its sensitivity is 9% higher than the
(B-residue pairing prediction. However, it only reports sépc  naive algorithm and 20% of correctly predicted strand pairs
city without mentioning the corresponding sensitivityy¢tea  are non-adjacent strand pairs.

direct comparison cannot be made. However, we can compareUsing the pseudo-energy to align strand predicted to be pai-
thes-residue pairing predictor with a general-purpose contacted by the greedy graph algorithm, pairing directions (ieita
map predictor (Pollastriand Baldi, 2002) focusing exaleli  antiparallel, or isolated bridge) of 93% of the correctlgpr
on 3-residue pairings. We use a pre-trained 8Acontact maplicted strand pairs are correctly identified, 72 % of whidh ar
predictor (CMAPpro) to predict contacts for all chains ieth correctly aligned (71% of parallel pairs, 69% of antipaghll
same dataset. To make the comparison even more stringeipirs, 88% of strand pairs involving isolated bridges). The
we do not take into consideration any homology between theonstrained-MST graph algorithm yields similar results.
current dataset and the dataset used to train (CMAPpro). We To further evaluate the ability of the pseudo-energy to dis-
then extract the contact probabilities fBfresidue pairings criminate true alignments from false alignments, we use it
from the full predicted contact map and evaluate them usingo align all native strand pairs. Pairing directions of 84%
the same measures. Atthe break-even point, the specifidty a native pairs are correctly predicted. Considering onlajelr
sensitivity of CMAPpro are equal to 27% and the correlationand antiparallel pairs, the pairing directions of 82% ofsthe
coefficient is 0.26. Thus our method improves the specificitypairs are predicted correctly, which yields a 15% improve-
and sensitivity of CMAPpro restricted terresidues by 14%. ment over the 67% precision achieved by the trivial algonith
The area under the ROC curve for the beta-pairing predictowhich labels all pairs as being antiparallel. Among all stka

is 0.86 versus 0.80 for CMAPpro (Figure 9). At 5% FPR, pairs with correctly predicted directions, 66% of them are
TPR for the beta-pairing predictor is 58% versus 42% foraligned correctly (66% of parallel pairs, 63% of antipahll
CMAPpro. Thus the specializegtresidue pairing predictor pairs, 72% of isolated bridges). In comparison, on diffe-
significantly improves the predictions of our general-mneg rent datasets, the statistical potential approach in Hubba
contact map predictor restricted t&strands, consistently (1994) aligns 35-45% of strand pairs correctly, when pgirin
with previous expectations (e.g. Resal. (2003)). directions are correctly predicted. If we assume all pgirin
directions are known, as some previous methods do (Zhu and
Braun, 1999; Steward and Thornton, 2002), then 61% of all
native parallel pairs and 60% of all native antiparalletpare
aligned correctly. The pseudo-energy approach based pn pai
wise potentials in Zhu and Braun (1999) discriminates 35%
of native alignments from alternative alignments, assgmin
pairing directions are known. Thus on a larger albeit déffe:r
dataset, the accuracy of the method presented here is signifi
cantly higherthan previous approaches. Assuming thahgair

TPR

— BetaPairing

414/ -~ CMAPpIO direction and position of one strand is known, the inforimati

theoretic approach of Steward and Thornton (2002), whieh al

gns the known strand with all sub-sequences inla offset

L B B around another strand to identify the best alignment, achie

00 02 04 06 08 10 ves precisions of 48% and 45% for parallel and antiparallel
FPR pairs in strand triplets, and 37% and 31% for arbitrary par-

Fig. 9. ROC curve of prediction of inter-strarttiresidue pairs using  allel and antiparallel pairs respectively. Since our mdtho
the 5-residue pairing predictor and CMAPpro.

00 02 04 06 08 1.0
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assume that the position of the tyibstrands under consi- modular in the sense that alternative algorithms can beg“plu
deration is known—in a purelgb initio setting, this would ged in” for each one of its stages, for instance in order to
have to be predicted (Rost and Sander, 1993; Jones, 1998redict residue pairing probabilities. Starting frgtrresidue
Pollastriet al., 2001)— the alignment accuracy of our methodspairing probabilities, the method provides an integrates p
can not be compared directly with the information theore-diction of 5-sheet architectures by predictipsgstrand pairs,
tic approach. However, our results show that it is easier t@-strand alignments, and-sheets assembly. The pseudo-
align parallel strand pairs than antiparallel ones, whigieas  energy derived from pairing probabilities gfresidue pairs
with the observations derived using the information theore can rather accurately predig@tstrand alignments and score
approach. Figure 10 and 11 show the histograms of alignmerit-strand pairs. The greedy and constrained-MST graph algo-
offsets of all parallel and antiparallel pairs where padirgc-  rithms are able to predict strand pair afiesheet topology
tions are correctly predicted. No simple metricisyetaldig  from pseudo-energy matrices by globally optimizing the
pseudo-energy ofi-sheets. While the performance of, for
instance,3-strand alignment appears significantly improved
over previous statistical data-driven approaches, it ésircl
that even further improvements should be possible in each
one of the three stages. For instance, in the first step, more
information about the inter-strand sequence can be indlude
(Punta and Rost, 2005). In the second step, gap penalties for
. (-bulges can be taken into account. In the third step, graph
algorithms that allow cycles ought to recover cyglicheets.
Furthermore, constrained optimization of the binding pleeu
T T I T energy derived here is at best an approximation that willinee

s o0 s o to be refined to include other packing constraints assatiate
Alignment offset of antiparallel strand pairs Wlth Other Secondary structure e|ements_

(-sheets have remained one of the main stumbling blocks of
protein structure prediction over the years. Thus new nuztho
for the accurate prediction gf-sheets may lead to noticeable
improvements in the study of protein structure and folding,
and in protein design. Our results suggests that the methods
presented here can be combined with contact map prediction
to generate more accurate contact maps, which in turn can
= be used in fold recognition and 3D reconstruction. Accurate
B-residue ang-strand pairings may also provide strong cons-
traints for improvingab initio sampling of tertiary structures
and derive energy terms to help select near native stricture
7 from decoys.
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Fig. 10. Histogram of alignment offsets of antiparallel strand pair
A perfect alignment corresponds to a 0 offset.
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