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ABSTRACT
Motivation: Protein β-sheets play a fundamental role in pro-
tein structure, function, evolution, and bio-engineering. Accu-
rate prediction and assembly of protein β-sheets, however,
remains challenging because protein β-sheets require for-
mation of hydrogen bonds between linearly distant residues.
Previous approaches for predicting β-sheet topological featu-
res, such as β-strand alignments, in general have not exploited
the global covariation and constraints characteristic of β-sheet
architectures.
Results: We propose a modular approach to the problem
of predicting/assembling protein β-sheets in a chain by inte-
grating both local and global constraints in three steps. The
first step uses recursive neural networks to predict pairing
probabilities for all pairs of inter-strand β-residues from pro-
file, secondary structure, and solvent accessibility information.
The second step applies dynamic programming techniques
to these probabilities to derive binding pseudo-energies and
optimal alignments between all pairs of β-strands. Finally,
the third step, uses graph matching algorithms to predict
the β-sheet architecture of the protein by optimizing the glo-
bal pseudo-energy while enforcing strong global β-strand
pairing constraints. The approach is evaluated using cross-
validation methods on a large non-homologous dataset and
yields significant improvements over previous methods.
Availability: http://www.igb.uci.edu/servers/psss.html.
Contact: pfbaldi@ics.uci.edu

1 INTRODUCTION
Beta-sheets are a fundamental component of protein
architectures–more than 75% of all protein domains in the
Protein Data Bank (Bermanet al., 2000) containβ-sheets
(Zhang and Kim, 2000).β-sheets are formed by the pairing
of multiple β-strands held together by characteristic patterns
of hydrogen bonds running in parallel or anti-parallel fashion
(Figure 1). These patterns, which are essential forβ-sheet and

∗to whom correspondence should be addressed

protein stability (Smith and Regan, 1997), involve interactions
between residues that are often separated by large distances
along the primary sequence.

The β-sheet topology or architecture of a protein, i.e. the
pairing organization of all theβ-strands contained in a given
protein, is essential for understanding its structure (Zhang
and Kim, 2000). Prediction ofβ-sheet topology from amino
acid sequence is very useful not only for predicting tertiary
structure (Zaremba and Gregoret, 1999; Steward and Thorn-
ton, 2002; Ruczinskiet al., 2002; Rostet al., 2003), but also
for elucidating folding pathways (Merkel and Regan, 2000;
Mandel-Gutfreundet al., 2001), and designing new prote-
ins (Smith and Regan, 1995, 1997; Kortemmeet al., 1998;
Kuhlman et al., 2003). Many experimental and theoretical
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Fig. 1. Illustration of inter-strandβ-residue pairs and hydrogen-
bonding pattern in parallel and antiparallelβ-strands. Arrows show
the amide (N) to carbonyl (C) direction ofβ-strands. Hydrogen bonds
are represented by hatched blocks.

studies have been conducted to better understand the forma-
tion and stability ofβ-sheets. For instance, Minor and Kim
(1994) report that intrinsicβ-sheet propensities of different
amino acids contribute to the local structure and stability
of β-sheets and that the magnitude and order ofβ-sheet
propensities depend on the local sequence and structural con-
text. Statistical studies (Lifson and Sander, 1980; Wouters
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and Curmi, 1995) reveal nonrandom distribution and pairing
preferences of residue pairs in alignedβ-strands while evo-
lutionary conservation ofβ-residue interactions suggests also
that pairing preferences depend on structural context suchas
solvent accessibility (Zaremba and Gregoret, 1999). Clearly,
favorable side-chain interactions between residue pairs contri-
bute toβ-sheet stability (Smith and Regan, 1995; Hutchinson
et al., 1998). However, the evolutionary pressure to main-
tain complementarity between pairs on neighboring strands
appear to be weak (Mandel-Gutfreundet al., 2001) and the
overall pairing preferences are not very strong and appear to
be modulated by the local environment to a high-degree.

Several methods, mostly statistical data-driven approaches,
have been proposed to predict topological features ofβ-sheets
with moderate accuracy (Rost et al., 2003). An early method
(Hubbard, 1994) uses a statistical potential approach to predict
β-strand alignments with an accuracy level of about 35-45%.
Asogawa (1997) proposes to use pairwise statistical potentials
of β-residue pairs to improveβ-sheet secondary structure pre-
diction by considering clusters ofβ-residue contacts. Pairwise
statistical potentials are used also in Zhu and Braun (1999)to
identify up to 35% of native strand alignments from alterna-
tive strand alignments. In Baldiet al. (2000), elaborate neural
networks are used to improve the prediction accuracy of inter-
strandβ-residue contacts, but the method is not extended to
the prediction of strand pairings, strand alignments, andβ-
sheet topologies. Using an information theoretic approach,
Steward and Thornton (2002) report an accuracy of 45-48%
for strand alignments inβ-triplets, and 31-37% for any native
strand alignments. While encouraging, all these approaches
seem to leave room for major improvements.

In particular, these approaches fail to exploit systematically
the global covariation and constraints characteristic ofβ-sheet
architectures. Instead of treating each pair ofβ-residues orβ-
strands independently of each other, as previous methods do,
one ought to leverageβ-sheet constraints such as the fact that
eachβ residue has at most two partners, that neighboring
β-residues in a strand are paired sequentially in parallel or
anti-parallel fashion with another strand, and that eachβ-
strand has at least one partner strand and rarely more than two
or three partner strands.

Here we develop a novel modular approach for predicting
inter-strandβ-residue pairings,β-strand pairings,β-strand
alignments, andβ-sheet topology altogether from scratch by
integrating both local and global constraints in three steps.
First, 2D-Recursive Neural Networks(2D-RNN)(Baldi and
Pollastri, 2003) are trained to predict pairing probabilities
of inter-strandβ-residue pairs using profile, secondary struc-
ture, and relative solvent accessibility information. Second,
dynamic programming techniques are applied to these pro-
babilities to derive pairing pseudo-energies and alignments
between all pairs ofβ strands. Third, weighted graph matching
algorithms are used to optimize the globalβ-sheet architec-
ture of the protein satisfying theβ-strand pairing constraints.

While inter-chainβ-sheets play an important role in protein-
protein interactions and complex formation (Douet al., 2004),
it is worth noting that here, consistently with the available
literature, we focus exclusively on the already-challenging
prediction of intra-chainβ-sheets. However, we believe that
the methods developed here can be adapted to the problem
of predicting both intra- and inter-chainβ-sheets and training
datasets for the latter are available through the ICBS database
(Dou et al., 2004).

2 MATERIALS AND METHODS
2.1 Data
The dataset is extracted from the Protein Data Bank of May
2004. Only structures determined by X-ray diffraction and
having resolution better than 2.5 Å are retained. Chains con-
taining unknown or non-standard amino acids, backbone
interruptions, or whose length is less than 50 amino acids
are excluded. DSSP (Kabsch and Sander, 1983) is used to
assign secondary structure and relative solvent accessibility
values to each residue. Residues with secondary structure E
(extended strand) and B (isolatedβ-bridge) are considered
β-residues. Eachβ-residue may have 0, 1 or 2 partners accor-
ding to DSSP. A consistency check is used to remove chains
containing non-consistentβ-residue pair assignments (ei, ej),
wherebyei pairs withej , butej does not pairs withei accor-
ding to DSSP. A filtering procedure is used to select the chains
that contain 10-100β-residues, of which 90% must have at
least one partner. The redundancy in the dataset is reduced
by the UniqueProt (Mika and Rost, 2003) with a HSSP thres-
hold of 0, which corresponds to sequence identity of roughly
15-20%.

The final dataset contains 916 chains corresponding to
187,516 residues. Of these, 26% (48,996) areβ-residues par-
ticipating in 31,638 inter-strand residue pairs. The dataset has
10,745β-strands with an average length of 4.6 residues and
8,172β-strand pairs, including 4,519 antiparallel pairs, 2,214
parallel pairs, and 1,439 pairs involving isolatedβ-bridges.
These strand pairs form 2,533β-sheets. The average sequence
separation between residue pairs and strand pairs is 43 and 40
respectively. Sequence separation histograms are displayed in
Figures 2a and 2b. Figures 2c and 2d show that the number of
inter-strand residue pairs or strand pairs has a strong correla-
tion with the number ofβ-residues or strands in the chain, as
expected.

To leverage evolutionary information, PSI-BLAST (Alt-
schulet al., 1997) is used to generate profiles by aligning all
chains against the Non-Redundant (NR) database, as in Pol-
lastriet al. (2001). Finally the dataset is evenly and randomly
split into 10 folds to perform 10-fold cross-validation studies.
The final dataset (BetaSheet916) and the splitted folds are
available through http://www.igb.uci.edu/servers/psss.html.
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Fig. 2. (a) Amino acid separation betweenβ-residue pairs (Mean = 43, Minimum = 3, Maximum = 626, Standard deviation = 49).(b)
Amino acid separation betweenβ-strand pairs (Mean = 40, Minimum = 2, Maximum = 626, Standarddeviation = 54).(c) Scatterplot of
number ofβ-residue pairs (y) versus number ofβ-residues (x) per chain. The correlation coefficient is 0.98. Linear regression given by:
y = 0.66x − 0.65. (d) Scatterplot of number ofβ-strand pairs(y) versus number ofβ-strands (x) per chain. The correlation coefficient is
0.97. Linear regression given by:y = 0.74x + 0.27.

2.2 Prediction of β-residue pairs using 2D-RNNs
Like contact map prediction (Fariselliet al., 2001; Pollastri
and Baldi, 2002; Shao and Bystroff, 2003; MacCallum, 2004;
Punta and Rost, 2005), we treat prediction of inter-strand resi-
due pairing as a binary classification problem on a 2D grid.
For each chain, our input is a 2D square matrixI, where the
size ofI is equal to the number ofβ-residues in the chain and
each entryIi,j is a vector of dimension 251 encoding the local
context information ofβ-residues (ei,ej), as well as their sepa-
ration. Specifically, we use a local window of size 5 around
ei andej . Each position in the window corresponds to a vec-
tor of length 25 with 20 positions for the amino acid profile,
3 positions for the secondary structure (Helix, Sheet, Coil),
and 2 positions for the relative solvent accessibility (buried
or exposed at 25% threshold). The two windows correspond
to 250=25×5×2 entries. One additional entry represents the
sequence separation betweenei andej .

The training target is a binary matrixT, whereby eachTi,j

equals 1 or 0 depending on whetherβ-residueei andej are

paired or not. Figure 3 and 4 show protein 1VJG in the PDB
and its corresponding target matrix which nicely displays the
constraints and directions (parallel or antiparallel) of strand
pairing. Neural networks or other machine learning methods

Fig. 3. Protein 1VJG is anα/β protein with 7 strands. Strands 1, 2, 3,
6, and 7 form a parallelβ-sheet. Strands 4 and 5 form an antiparallel
β-sheet. The parallelβ-sheet forms the hydrophobic core and is
surrounded by tightly packedα-helices.
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Fig. 4. Inter-strandβ-residue pairing map of protein 1VJG. The
seven strands are ordered along the vertical and horizontalaxis.
Alternating colors (black and green) are used to distinguish adja-
cent strands in sequence order. The three numbers associated with
each strand on the left are strand number and its starting andending
position along the chain. The map is symmetric. Each blue square
represents a nativeβ-residue pairing. A line segment parallel to the
main diagonal corresponds to the alignment of a parallel strand pair.
A line segment perpendicular to the main diagonal corresponds to
the alignment of an antiparallel strand pair. Each row or column has
at most two blue squares reflecting the constraint that one residue
has at most two partners.

can be trained on the data set to learn a mapping from the input
matrixI onto an output matrixO, wherebyOi,j is the predic-
ted probability thatei andej are paired. The goal is to make
the output matrixO as close as possible to the target matrixT.
The standard approach with feed-forward neural networks is
to treat each pair (ei,ej) independently and to learn a mapping
from a series of independent (Ii,j , Ti,j) examples (Baldiet al.,
2000). This simplified approach, however, does not explicitly
leverage covariations and interactions betweenβ-residue pairs
and might not effectively enforce the constraints ofβ-residue
and strand pairings. Here we use a two-dimensional recur-
sive neural network architecture to exploit covariations and
constraints betweenβ-residue pairs globally. This 2D-RNN
architecture, previously used in contact map prediction, is
described in detail in Baldi and Pollastri (2003) and is not
reproduced here for lack of space. Under this architecture,the
outputOi,j depends on the entire input matrixI instead of
Ii,j only. As for feed-forward neural networks, learning in a
2D-RNN is implemented using gradient descent. In the simu-
lations, the outputs of five models are averaged in an ensemble
to produce the predicted probability matrixO. Finally, it is
important to notice that because our approach is modular, it
is not constrained in any way to the use of recursive or even
feedforward neural networks–the output of any algorithm that
produces an estimate of the pairing probabilitiesOij can be
used as input for the second and third steps described below.

BecauseI andT are presented to the 2D-RNN as a whole
during training, the network can identify pairing constraints
encoded in these matrices beyond the local environment of

each residue. As a result, by thresholding the values of the
outputO, the predicted inter-strand residue pairs tend to form
line segments parallel or perpendicular to the main diagonal,
which correspond to parallel or antiparallel strand pairs.This
suggests that aggregate prediction ofβ-residue pairings can
be used to predictβ-strand pairings, pairing directions, and
alignments. Figure 5 shows the predicted inter-strand residue
pairs of 1VJG with a .15 threshold. The predicted map recalls
mostβ-residue pairs and satisfies pairing constraints with few
violations. It is worth noting that post-prediction inferences
can be used to further enforce some constraints and retrieve
some of the missing residue pairs. The predicted inter-strand
β-residue map can be used directly to inferβ-strand pairs. One
simple approach we tested is to consider two strand paired
if any two of their residues are predicted to be paired. In
isolation, however, such an approach cannot be optimal since
it disregards global constraints on the number of partners a
strand can have (see Section 2.4).

Fig. 5. Predictedβ-residue pairing map of 1VJG. Upper triangle
(blue) is the true map and lower triangle (red) is the predicted map.
The predicted pairs form three segments parallel to the maindiagonal
corresponding to the true parallel strand pair (1,2), (1,3),and (3,6).
Two residue pairs in the true antiparallel strand pair (4,5)are also
recalled. One out of two residue pairs in the parallel strand(6,7) is
correctly predicted. There are two false positives in strand pair (1,3)
and (3,6). For instance, one residue in strand 3 is wrongly predicted
as having two partners in strand 1. This error can be detectedby
checking pairing constraints: a residue can have up to two partners
in total, and at most one partner in any single strand. A few residue
pairs between strand 1 and 2, which are missing in the predicted map,
can be inferred once strands 1 and 2 are predicted to pair.

2.3 Pseudo-energy for β-strand alignment
For each pair of strands, we can define an optimal alignment
and an overall alignment score using dynamic programming
techniques in parallel and anti-parallel directions with local
scores or penalties derived from the matrixO of residue-
pairing probabilities. Additional intra-strand gap penalties
corresponding toβ-bulges, as well as penalties for gaps at
the end of the strands, can be introduced. The penalty for the
bulges can be derived from their frequency. Becauseβ-bulges
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tend to be isolated and rare (only 14% of paired strands con-
tain a bulge, and 90% of these contain only a single bulge),
to a first-order-approximation here we do not allow bulges in
the alignments by setting the bulge penalty to infinity. Thisis
also consistent with previous studies (Hubbard, 1994; Zhu and
Braun, 1999; Steward and Thornton, 2002). Gaps at the edges
of the strands are allowed but are not penalized (penalty =0).
Under these assumptions, we can simply search exhaustively
through all possible alignments by “sliding” one strand along
the other, in both parallel and anti-parallel fashion. Assuming
in addition that two paired strands must have at least one resi-
due pairing, two strands with lengthm ≥ 2 and n ≥ 2
have2(m + n − 1) possible alignments, counting parallel
and antiparallel directions. If one strand is an isolated bridge
( m = 1 or n = 1), then there aremax(m, n) possible ali-
gnments. Without consideringβ-bulges, one alignment can
be uniquely specified by its direction (parallel, antiparallel, or
isolated bridge) and by one inter-strand residue pair.

To discriminate native alignments from alternative ones, the
binding pseudo-energyW (A[Er, Es]) of each alignmentA
of each pair of strandsEr andEs can be computed by adding
the pseudo-energies of each pair of residuesi and j in the
alignment, derived from the pairing probabilitiesOij , or their
logarithmlog Oij . The binding pseudo-energyWrs of a pair
of strands can then be defined by taking the maximum over all
their possible alignments:Wrs = maxA W (A[Er, Es]). For
any pair of strandsr ands in a given protein chain, the pseudo-
energy is used to identify the best putative alignment, i.e.the
one with maximal pseudo-energyWrs, between these two
strands. Figure 6a shows the resulting pseudo-energy matrix
W = (Wrs) for the best alignments between all strand pairs
of protein 1VJG. Note how the native strand pairs tend to have
higher energy scores suggesting that the pseudo-energy can
be used effectively to score and rank strand pairs.

2.4 Prediction of β-strand pairs and β-sheet
topology using graph algorithms

Unlike previous methods (Hubbard, 1994; Zhu and Braun,
1999; Steward and Thornton, 2002) which treat strand pairs
independently of each other, here prediction of strand pai-
ring and alignment takes into account additional physical
constrains characteristic ofβ-sheet architectures. To illustrate
β-sheet topology and its constraints, we use schematic dia-
grams (similar to Branden and Tooze (1999)) whereβ-strands
are represented by rectangles of length proportional to the
length of the strand. Figure 7 shows the diagram of 1VJG.
Lines with arrows connect adjacent strands in sequence order
from the N to the C terminus. Such schematic diagrams readily
reveal several pairing constraints forβ-sheet architectures.
First, eachstrandhas twoedges available forpairingwithother
strands and, as a result, aβ-residue can have at most two part-
ners. It is important to note that this doesnot imply that a strand
can pair at most with two other strands, since a long strand
may pair with several short strands on either side. Second, one

strand can only pair with one side of another strand sequenti-
ally in parallel or antiparallel fashion. If two strands pair with
the same side of another strand, no overlap is allowed. Third,
all strands must have at least one strand partner (ignoring inter-
chain pairings) and we impose the additional condition that
they should have at most three strand partners. This condition
is not absolute but it is very reasonable since 98.6% of strands
have 1, 2, or 3 partners in the large non-redundant dataset. We
let C denote all these constraints.

With these constraints in mind, we develop graph matching
algorithms to infer strand pairings and overallβ-sheet archi-
tecture from the matrixW of pseudo-energies of the best
alignments of all strands pairs in a given chain. This pseudo-
energy matrix defines a completely connected and weighted
Strand Pairing Graph (SPG), where vertices represent strands,
edges represent possible pairing relations, and weights opti-
mal pairing energies. The fully connected SPG of course does
not satisfy the set of constraintsC. To predict theβ-sheet topo-
logy, the goal is to prune the complete SPG to derive the true
SPG (Figure 8), whereβ-sheets appear as maximal connected
components. These components are to be derived by maximi-
zing the global pseudo-energy while satisfying all the strand
pairing constraints above, that is by maximizing

∑
S Wrs

taken over all subsetsS of edges that satisfyC. The global
pseudo-energy of an architecture is the sum of the pseudo-
energies of each of itsβ-sheets, and the pseudo-energy of a
β-sheet is the sum of the pseudo-energies of all the strand
pairs it comprises. To address this constrained optimization
problem, we first use a greedy heuristic approach (see box).

Start with a complete SPG with weight matrixW. Order all
the edges according to the weights into a listL.
∅ → S. S is the set of chosen edges.
Repeat

Remove one edgee with maximum weight fromL.
If both vertices ofe are not inS, adde into S.
If both vertices ofe are inS, discarde.
If one vertex ofe is in S, align the strand of the vertex

with the strand of another vertex not inS using
their best alignment. If the pair and its alignment
satisfy the strand pairing constraintsC, adde into S.
Otherwise discarde.

Until all vertices inG appear inS once.

The greedy algorithm has time complexityO(N2 log N),
whereN is the number of strands. After converging, the edges
and vertices inS constitute a spanning sub-graphG∗ of G.
Connected components inG∗ are in 1:1 correspondence with
the proteinβ-sheets and provide the global predictedβ-sheet
architecture. Figure 6 illustrates how the algorithm assembles
the strands of protein 1VJG.
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Fig. 7. Schematic diagram ofβ-sheet topology of protein 1VJG.(a)
Unpaired strands in sequence order.(b) Paired strands in eachβ-
sheet are aligned side by side. This diagram includes twoβ-sheets
consisting of strand 1,2,3,6,7 and strand 4,5 respectively.

By treatingβ-sheets as spanning trees of complete SPGs,
a variant of the well-known algorithm for finding Mini-
mum/Maximum Spanning Tree (MST) (Even, 1979), Krus-
kal’s algorithm (Kruskal, 1956), is also used to predict
β-sheets (trees) with maximum pseudo-energy. The only dif-
ference between this constrained-MST algorithm with the
previous greedy algorithm is that it does not always dis-
card edgee when its adjacent vertices are already in the
set S. Instead, it addse into L if its two vertices belong
to two disconnected components and the alignment satisfies
the strand pairing constraints. Not surprisingly this algorithm
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Fig. 8. Strand Pairing Graph of protein 1VJG.(a) The complete
SPG. Red edges denote true strand pairs.(b) The true SPG. Two
components (1,2,3,6,7) and (4,5) correspond to twoβ-sheets. The
weights are the pseudo-energy of the best alignments of strand pairs.

tends to choose more strand pairs (edges) than the greedy
graph algorithm. It is worth noting that both the greedy and
constrained-MST algorithms as described do not allow for
cycles and all the components they produce are trees. This
approximation is not entirely correct in the case of circular β-
sheets, such asβ-barrels. To handleβ-barrels, we are currently
modifying these algorithms to allow up to one cycle in each
component.

3 RESULTS AND DISCUSSION
The performance ofβ-residue pairing prediction is asses-
sed using a variety of standard measures including: area
under ROC curve, True Positive Rate [TPR = TP/(TP+FN)]
at 5% False Positive Rate [FPR = FP/(FP+TN)], specifi-
city [TP/(TP+FP)], sensitivity [TP/(TP+FN)], and correlation
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coefficient [(TP×TN-FP×FN)/((TP+FN)(TP+FP)(TN+FN)
(TN+FP)) 1/2], and compared with predictions associated
with the base-line and with a a general-purpose contact map
predictor. At the break-even point where the total number
of predictedβ-residue pairs is equal to the true number of
β-residue pairs, the specificity and sensitivity of inter-strand
β-residue pairings are equal to 41% with a correlation coef-
ficient of 0.4. The accuracy of the base-line predictor (the
number of trueβ-residue pairs / total number of inter-strand
β-residue pairs) is 2.3%. Thus the improvement factor, i.e.
the ratio between the accuracy (specificity or sensitivity)of
our method over the base-line (Fariselliet al., 2001), is 17.8.
To the best of our knowledge, only one method in the lite-
rature (Baldiet al., 2000) reports quantitive evaluation of
β-residue pairing prediction. However, it only reports sepcifi-
city without mentioning the corresponding sensitivity, thus a
direct comparison cannot be made. However, we can compare
theβ-residue pairing predictor with a general-purpose contact
map predictor (Pollastri and Baldi, 2002) focusing exclusively
on β-residue pairings. We use a pre-trained 8Åcontact map
predictor (CMAPpro) to predict contacts for all chains in the
same dataset. To make the comparison even more stringent,
we do not take into consideration any homology between the
current dataset and the dataset used to train (CMAPpro). We
then extract the contact probabilities forβ-residue pairings
from the full predicted contact map and evaluate them using
the same measures. At the break-evenpoint, the specificityand
sensitivity of CMAPpro are equal to 27% and the correlation
coefficient is 0.26. Thus our method improves the specificity
and sensitivity of CMAPpro restricted toβ-residues by 14%.
The area under the ROC curve for the beta-pairing predictor
is 0.86 versus 0.80 for CMAPpro (Figure 9). At 5% FPR,
TPR for the beta-pairing predictor is 58% versus 42% for
CMAPpro. Thus the specializedβ-residue pairing predictor
significantly improves the predictions of our general-purpose
contact map predictor restricted toβ-strands, consistently
with previous expectations (e.g. Rostet al. (2003)).
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Fig. 9. ROC curve of prediction of inter-strandβ-residue pairs using
theβ-residue pairing predictor and CMAPpro.

The correlation coefficients of strand pairing by the greedy
and constrained-MST graph algorithms are virtually identical
(0.502 and 0.503 respectively). The specificity and sensitivity
of strand pairing using the greedy graph algorithm are 59%
and 54% respectively. In contrast, the specificity and sensi-
tivity of the naive algorithm that always pairs sequentially
adjacent strands are 42% and 50% respectively. Thus, around
similar operating regimes, the greedy graph algorithm yields
improvements of 17% in specificity and 4% in sensitivity over
the naive algorithm. The smaller improvement in sensitivity
is still very significant because 16% of correctly predicted
strand pairs are non-adjacent strand pairs. The constrained-
MST graph algorithm has specificity and sensitivity of 53%
and 59% respectively. Its sensitivity is 9% higher than the
naive algorithm and 20% of correctly predicted strand pairs
are non-adjacent strand pairs.

Using the pseudo-energy to align strand predicted to be pai-
red by the greedy graph algorithm, pairing directions (parallel,
antiparallel, or isolated bridge) of 93% of the correctly pre-
dicted strand pairs are correctly identified, 72 % of which are
correctly aligned (71% of parallel pairs, 69% of antiparallel
pairs, 88% of strand pairs involving isolated bridges). The
constrained-MST graph algorithm yields similar results.

To further evaluate the ability of the pseudo-energy to dis-
criminate true alignments from false alignments, we use it
to align all native strand pairs. Pairing directions of 84%
native pairs are correctly predicted. Considering only parallel
and antiparallel pairs, the pairing directions of 82% of these
pairs are predicted correctly, which yields a 15% improve-
ment over the 67% precision achieved by the trivial algorithm
which labels all pairs as being antiparallel. Among all strand
pairs with correctly predicted directions, 66% of them are
aligned correctly (66% of parallel pairs, 63% of antiparallel
pairs, 72% of isolated bridges). In comparison, on diffe-
rent datasets, the statistical potential approach in Hubbard
(1994) aligns 35-45% of strand pairs correctly, when pairing
directions are correctly predicted. If we assume all pairing
directions are known, as some previous methods do (Zhu and
Braun, 1999; Steward and Thornton, 2002), then 61% of all
native parallel pairs and 60% of all native antiparallel pairs are
aligned correctly. The pseudo-energy approach based on pair-
wise potentials in Zhu and Braun (1999) discriminates 35%
of native alignments from alternative alignments, assuming
pairing directions are known. Thus on a larger albeit different
dataset, the accuracy of the method presented here is signifi-
cantlyhigher thanprevious approaches. Assuming thatpairing
direction and position of one strand is known, the information
theoretic approach of Steward and Thornton (2002), which ali-
gns the known strand with all sub-sequences in a±10 offset
around another strand to identify the best alignment, achie-
ves precisions of 48% and 45% for parallel and antiparallel
pairs in strand triplets, and 37% and 31% for arbitrary par-
allel and antiparallel pairs respectively. Since our methods

7
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assume that the position of the twoβ-strands under consi-
deration is known–in a purelyab initio setting, this would
have to be predicted (Rost and Sander, 1993; Jones, 1999;
Pollastriet al., 2001)– the alignment accuracy of our methods
can not be compared directly with the information theore-
tic approach. However, our results show that it is easier to
align parallel strand pairs than antiparallel ones, which agrees
with the observations derived using the information theoretic
approach. Figure 10 and 11 show the histograms of alignment
offsets of all parallel and antiparallel pairs where paringdirec-
tions are correctly predicted. No simple metric is yet available
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Fig. 10. Histogram of alignment offsets of antiparallel strand pairs.
A perfect alignment corresponds to a 0 offset.

Alignment offset of parallel strand pairs
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Fig. 11. Histogram of alignment offsets of parallel strand pairs. A
perfect alignment corresponds to a 0 offset.

for evaluating the prediction ofβ-sheet topologies. Here we
report the strand pairing precision of predictedβ-sheets, i.e.
the proportion of correctly predicted strand pairs in eachβ-
sheet. Using the greedy graph algorithm, for instance, 51%
of predictedβ-sheets haveβ-strand pairing precision greater
than 60%.

4 CONCLUSION
We have proposed a newab inito modular approach to the pro-
blem of predicting and assemblingβ-sheets. The method is

modular in the sense that alternative algorithms can be “plug-
ged in” for each one of its stages, for instance in order to
predict residue pairing probabilities. Starting fromβ-residue
pairing probabilities, the method provides an integrated pre-
diction of β-sheet architectures by predictingβ-strand pairs,
β-strand alignments, andβ-sheets assembly. The pseudo-
energy derived from pairing probabilities ofβ-residue pairs
can rather accurately predictβ-strand alignments and score
β-strand pairs. The greedy and constrained-MST graph algo-
rithms are able to predict strand pair andβ-sheet topology
from pseudo-energy matrices by globally optimizing the
pseudo-energy ofβ-sheets. While the performance of, for
instance,β-strand alignment appears significantly improved
over previous statistical data-driven approaches, it is clear
that even further improvements should be possible in each
one of the three stages. For instance, in the first step, more
information about the inter-strand sequence can be included
(Punta and Rost, 2005). In the second step, gap penalties for
β-bulges can be taken into account. In the third step, graph
algorithms that allow cycles ought to recover cyclicβ-sheets.
Furthermore, constrained optimization of the binding pseudo-
energy derived here is at best an approximation that will need
to be refined to include other packing constraints associated
with other secondary structure elements.

β-sheets have remained one of the main stumbling blocks of
protein structure prediction over the years. Thus new methods
for the accurate prediction ofβ-sheets may lead to noticeable
improvements in the study of protein structure and folding,
and in protein design. Our results suggests that the methods
presented here can be combined with contact map prediction
to generate more accurate contact maps, which in turn can
be used in fold recognition and 3D reconstruction. Accurate
β-residue andβ-strand pairings may also provide strong cons-
traints for improvingab initio sampling of tertiary structures
and derive energy terms to help select near native structures
from decoys.

ACKNOWLEDGMENT
Work supported in part by NIH Biomedical Informatics
Training grant (LM-07443-01) and NSF MRI grant (EIA-
0321390) to PB.

REFERENCES
Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Mil-

ler,W. and Lipman,D.J. (1997) Gapped blast and psi-blast: anew
generation of protein database search programs.Nucleic Acids
Research, 25 (17), 3389–3402.

Asogawa,M. (1997) Beta-sheet prediction using inter-strand residue
pairs and refinement with hopfield neural network. InProceeding
of International Conference on Intelligent System of Molecular
Biology vol. 5,. pp. 48–51.

Baldi,P. and Pollastri,G. (2003) The principled design of large-scale
recursive neural network architectures–DAG-RNNs and the pro-
tein structure prediction problem.Journal of Machine Learning

8



Three-Stage Prediction of Protein Beta-Sheets

Research, 4, 575–602.
Baldi,P., Pollastri,G., Andersen,C.A.F. and Brunak,S. (2000) Mat-

ching proteinβ-sheet partners by feedforward and recurrent neural
networks. InProceedings of the 2000 Conference on Intelligent
Systems for Molecular Biology (ISMB00), La Jolla, CA. AAAI
Press Menlo Park, CA pp. 25–36.

Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N., Weis-
sig,H., Shindyalov,I.N. and Bourne,P. (2000) The protein data
bank.Nucleic Acids Research, 28, 235–242.

Branden,C. and Tooze,J. (1999)Introduction to protein structure;2nd
edition. Garland Publishing, New York, NY.

Dou,Y., Baisnee,P., Pollastri,G., Pecout,Y., Nowick,J. and Baldi,P.
(2004) Icbs: a database of interactions between protein chains
mediated by beta-sheet formation.Bioinformatics, 20 (16),
2767–2777. submitted.

Even,S. (1979)Graph Algorithms. Computer Science Press, Rock-
ville, MD.

Fariselli,P., Olmea,O., Valencia,A. and Casadio,R. (2001) Prediction
of contact maps with neural networks and correlated mutations.
Protein Engineering, 13, 835–843.

Hubbard,T.J. (1994) Use ofβ-strand interaction pseudo-potentials
in protein structure prediction and modelling. InProceedings of
the Biotechnology Computing Track, Protein Structure Prediction
MiniTrack of the 27th HICSS, (Lathrop,R.H., ed.),. IEEEComputer
Society Press pp. 336–354.

Hutchinson,E.G., Sessions,R.B., Thornton,J.M. and Woolfson,D.N.
(1998) Determinants of strand register in antiparallel beta-sheets
of proteins.Protein Sci, 7 (11), 287–300.

Jones,D.T. (1999) Protein secondary structure predictionbased on
position-specific scoring matrices.J. Mol. Biol., 292, 195–202.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical
features.Biopolymers, 22, 2577–2637.

Kortemme,T., Ramirez-Alvarado,M. and Serrano,L. (1998) Design
of a 20-amino acid, three-strandedβ-sheet protein.Science, 281,
253–256.

Kruskal,J.B. (1956) On the shortest spanning subtree of a graph and
the traveling salesman problem. InProceeding of the American
Mathematical Society vol. 7,. pp. 48–50.

Kuhlman,B., Dantas,G., Ireton,G., Varani,G., Stoddard,B. and
Baker,D. (2003) Design of a novel globular protein fold with
atomic-level accuracy.Science, 302, 1364–1368.

Lifson,S. and Sander,C. (1980) Specific recognition in the tertiary
structure of beta-sheets of proteins.Journal of Molecular Biology,
139 (4), 627–639.

MacCallum (2004) Striped sheets and protein contact prediction.
Bioinformatics, 20 (Supplement 1), i224–i231. Proceedings of
the ISMB 2004 Conference.

Mandel-Gutfreund,Y., Zaremba,S.M. and Gregoret,L.M.
(2001) Contributions of residue pairing to beta-sheet forma-
tion:conservation and covariation of amino acid residue pairs on
antiparallel beta-strands.Journal of Molecular Biology, 305 (2),
1145–1159.

Merkel,J.S. and Regan,L. (2000) Modulating protein folding rates
in vivo and in vitro by side-chain interactions between the paral-
lel beta strands of green fluorescent protein.J Biol Chem, 275,
29200–29206.

Mika,S. and Rost,B. (2003) Uniqueprot: creating representative pro-
tein sequence sets.Nucleic Acids Research, 31 (13), 3789–3791.

Minor,D.L. and Kim,S. (1994) Context is a major determinantof
beta-sheet propensity.Nature, 371 ((6494)), 264–267.

Pollastri,G. and Baldi,P. (2002) Predition of contact mapsby
GIOHMMs and recurrent neural networks using lateral propa-
gation from all four cardinal corners.Bioinformatics, 18
(Supplement 1), S62–S70. Proceedings of the ISMB 2002
Conference.

Pollastri,G., Przybylski,D., Rost,B. and Baldi,P. (2001)Improving
the prediction of protein secondary strucure in three and eight clas-
ses using recurrent neural networks and profiles.Proteins, 47,
228–235.

Punta,M. and Rost,B. (2005) Toward good 2d predictions in proteins.
FEBS, . in press.

Rost,B., Liu,J., Przybylski,D., Nair,R., Wrzeszczynski,K.O., Bige-
low,H. and Ofran,Y. (2003) Prediction of protein structurethrough
evolution. In Handbook of Chemoinformatics - From Data to
Knowledge, (Gasteiger,J. and Engel,T., eds),. Wiley New York
pp. 1789–1811.

Rost,B. and Sander,C. (1993) Prediction of protein secondary struc-
ture at better than 70 % accuracy.Journal of Molecular Biology,
232 (2), 584–599.

Ruczinski,I., Kooperberg,C., Bonneau,R. and Baker,D. (2002) Dis-
tributions of beta sheets in proteins with application to structure
prediction.Proteins, 48, 85–97.

Shao,Y. and Bystroff,C. (2003) Predicting inter-residue contacts
using templates and pathways.Proteins, 53 (Supplement 6),
497–502.

Smith,C.K. and Regan,L. (1995) Guidelines for protein design: the
energetics ofβ sheet side chain interations.Science, 270 (5238),
980–982.

Smith,C.K. and Regan,L. (1997) Construction and design of beta-
sheets.Acc Chem Res, 30, 153.

Steward,R.E. and Thornton,J.M. (2002) Prediction of strand pairing
in antiparallel and parallel beta-sheets using information theory.
Proteins: Structure, Function, and Genetics, 48, 178–191.

Wouters,M.A. and Curmi,P.M.G. (1995) An analysis of side-chain
interactions and pair correlations within antiparallel beta-sheets:
the differences between backbone hydrogen-bonded and non-
hydrogen-bonded residue pairs.Proteins Struct. Funct. Genet.,
22, 119–131.

Zaremba,S.M. and Gregoret,L.M. (1999) Context-dependence of
amino acid residue pairing in antiparallelβ-sheets. Journal of
Molecular Biology, 291 (2), 463–479.

Zhang,C. and Kim,S. (2000) The anatomy of protein beta-sheet
topology.Journal of Molecular Biology, 2 (4), 1075–1089.

Zhu,H. and Braun,W. (1999) Sequence specificity, statistical
potentials, and three-dimensional structure prediction with self-
correcting.Protein Sci., 8, 326–342.

9


