
1

CS 175: Project in
Artificial Intelligence

Slides 6: Decision Trees

2

Topic 8: Decision Trees

Some slides taken from Prof. Welling, Smyth, & Ihler

3

Decision Trees
Problem: decide whether to wait for a table at a restaurant,

based on the following attributes:

1.

Alternate: is there an alternative restaurant nearby?
2.

Bar: is there a comfortable bar area to wait in?
3.

Fri/Sat: is today Friday or Saturday?
4.

Hungry: are we hungry?
5.

Patrons: number of people in the restaurant (None, Some, Full)
6.

Price: price range ($, $$, $$$)
7.

Raining: is it raining outside?
8.

Reservation: have we made a reservation?
9.

Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

4

Attribute-based representations
•

Examples described by attribute values (Boolean, discrete, continuous)
•

E.g., situations where I will/won't wait for a table:

•

Classification

of examples is positive

(T) or negative

(F)
•

General form for data: a number N of instances, each with attributes
(x1,x2,x3,...xd) and target value y.

5

Decision trees
•

One possible representation for hypotheses

•

We imagine someone taking a sequence of decisions.
•

E.g., here is the “true”

tree for deciding whether to wait:

Note you can use the same
attribute more than once.

6

Expressiveness
•

Decision trees can express any function of the input attributes.
•

E.g., for Boolean functions, truth table row → path to leaf:

•

Trivially, there is a consistent decision tree for any training set with one path
to leaf for each example (unless f nondeterministic in x) but it probably won't
generalize to new examples

•

Prefer to find more compact

decision trees: we don’t want to memorize the
data, we want to find structure

in the data!

7

Hypothesis spaces
How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2n

rows = 22n

•

E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees

n=2: 2^2 = 4 rows. For each row we can choose T or F: 2^4 functions.

8

Decision tree learning
•

If there are so many possible trees, can we actually
search this space? (solution: greedy search).

•

Aim: find a small tree consistent with the training
examples

•

Idea: (recursively) choose "most significant" attribute as
root of (sub)tree.

9

Choosing an attribute
•

Idea: a good attribute splits the examples into subsets
that are (ideally) "all positive" or "all negative"

•

Patrons or type? To wait or not to wait is still at 50%.

10

Using information theory

•

Entropy

measures the amount of uncertainty
in a probability

distribution:

Consider tossing a biased coin.
If you toss the coin VERY often,
the frequency of heads is, say, p,
and hence the frequency of tails is
1-p. (fair coin p=0.5).

The uncertainty in any actual outcome
is given by the entropy:

Note, the uncertainty is zero if p=0 or 1
and maximal if we have p=0.5.

11

Using information theory

•

If there are more than two states s=1,2,..n we
have (e.g. a die):

() (1)log[(1)]
(2)log[(2)]

...
()log[()]

Entropy p p s p s
p s p s

p s n p s n

   

  

  

1
() 1

n

s
p s





12

Using information theory

•

Imagine we have p examples which are true
(positive) and n examples which are false
(negative).

•

Our best estimate of true or false is given by:

•

Hence the entropy is given by:

(,) log logp p pn n nEntropy
p n p n p n p n p n p n

  
     

() /
() /

P true p p n
p false n p n

 

 

13

Using Information Theory

•

How much information do we gain if we
disclose the value of some attribute?

•

Answer:

uncertainty before minus uncertainty after

14

Example

Before: Entropy = -

½

log(1/2) –

½

log(1/2)=log(2) = 1 bit:
There is “1 bit of

information

to be discovered”.

After:

for Type: If we go into branch “French”

we have 1 bit, similarly for the others.
French: 1bit
Italian: 1 bit
Thai: 1 bit
Burger: 1bit

After: for Patrons: In branch “None”

and “Some”

entropy = 0!,
In “Full”

entropy = -1/3log(1/3)-2/3log(2/3).

So Patrons gains more information!

On average: 1 bit ! We gained nothing!

15

Information Gain
• How do we combine branches:

1/6 of the time we enter “None”, so we weight“None”

with 1/6.
Similarly: “Some”

has weight: 1/3 and “Full”

has weight ½.

1
() (,)

n
i i i i

i i i i i

p n p nEntropy A Entropy
p n p n p n




  

weight for each branch

entropy for each branch.

16

Information gain

•

Information Gain (IG) or reduction in entropy from the
attribute test:

•

Choose the attribute with the largest IG

()IG A Entropy before Entropy after 

17

Information gain

For the training set, p

= n

= 6, I(6/12, 6/12) = 1 bit

Patrons has the highest IG of all attributes and so is chosen by the DTL
algorithm as the root

bits 0)]
4
2,

4
2(

12
4)

4
2,

4
2(

12
4)

2
1,

2
1(

12
2)

2
1,

2
1(

12
2[1)(

bits 0541.)]
6
4,

6
2(

12
6)0,1(

12
4)1,0(

12
2[1)(





IIIITypeIG

IIIPatronsIG

Is it sensible to have the same attribute on a single branch of

the tree (why)?

18

Example contd.
•

Decision tree learned from the 12 examples:

•

Substantially simpler than “true”

tree---a more complex
hypothesis isn’t justified by small amount of data

19

Gain-Ratio

• If 1 attribute splits in many more classes than another, it has

an
(unfair) advantage if we use information gain.

• The gain-ratio is designed to compensate for this problem,

1
log

n
i i i i

i

Info GainGain Ratio p n p n
p n p n


 

 


 

• if we have n uniformly populated classes the denominator is log2(n)
which penalized relative to 1 for 2 uniformly populated classes.

20

What to Do if...

•

In some leaf there are no examples:
Choose True or False according to the
number of positive/negative examples at
your parent.

•

There are no attributes left
Two or more examples have the same
attributes but different label: we have an
error/noise. Stop and use majority vote.

21

Continuous Variables

• If variables are continuous we can bin them, or..

• We can learn a simple classifier on a single dimension

•

E.g. we can find a decision point which classifies all data to

the left of
that point in one class and all data to the right in the other (decision stump
–

next slide)

•

We can also use a small subset of dimensions and train a linear

 classifier (e.g. logistic regression classifier).

22

Decision Stump

•

Data: {(X1,Y1),(X2,Y2),....,(Xn,Yn)}

attributes (e.g. temperature outside)
label (e.g. True or False,

0 or 1
-1 or +1)

Xi

threshold-1

+11
()

1
i

i

if X
h x

if X



 
  

So, we choose one attribute “i”, a sign “+/-”

and and

a threshold
This determines a half space to be +1 and the other half -1.

 -1+1-1

23

Simple example of Regression Tree
 (where target variable is continuous)

Income > t1

Debt > t2

Income > t3

E[y] = 5.3

E[y] = 2.1

E[y] = 10.8E[y] = -1.0

24

Greedy Search for Learning
Regression Trees

•

Binary_node_splitting, real-valued variables

–

For each variable xj
•

For each possible threshold tj , compute

•

Select tj with the lowest MSE for that variable

–

Select variable xj and tj with the lowest MSE

–

Split the training data into the 2 branches
–

For each branch
•

If leaf-node: prediction at this leaf node = mean value of y data points
•

If not: call binary_node_splitting

recursively

25

When to Stop ?
• If we keep going until perfect classification we might over-fit.

• Heuristics:
• Stop when Info-Gain (Gain-Ratio) is smaller than threshold
• Stop when there are M examples in each leaf node

• Penalize complex trees by minimizing
with “complexity”

= # nodes.
Note: if tree grows, complexity grows but entropy shrinks.

• Compute many full grown trees on subsets of data and test them on
hold-out data. Pick the best or average their prediction (random forest –

next slide)

• Do a statistical test: is the increase in information significant.

()
all leafs

complexity entropy leaf   

2 2
1 1 1 1

1 1
2
1,

1 1 1 1

n p n pn n p p
n p n p
n p n pn p
n p n p



    
         

    
       

0
2
4
6
8

10
12
14
16
18
20

1n 1 1n p n
n p

 1p 1 1n p p

n p



26

Pruning & Random Forests
• Sometimes it is better to grow the trees all the way down and prune them
back later. Later splits may become beneficial, but we wouldn’t see them
if we stopped early.

• We simply consider all child nodes and consider them for elimination, using any
of the above criteria.

• Alternatively, we grow many trees on datasets sampled from the original dataset
with replacement (a bootstrap sample) .

• Draw K bootstrap samples of size N
• Grow a DT, randomly sampling one or a few attributes/dimensions

to split on
• Average the predictions of the trees for a new query (or take majority vote)

• Evaluation: for each bootstrap sample about 30% of the data was

left out.
For each data-item determine which trees did not use that data-case and test
performance using this sub-ensemble of trees.

• Random Forests are state of the art classifiers!

27

Bagging

• The idea behind random forests can be applied to any classifier
and is called bagging:

• Sample M bootstrap samples.
• Train M different classifiers on these bootstrap samples
•

For a new query, let all classifiers predict and take an average (or
majority vote)

•

The basic idea that this works is that if the classifiers make

 independent errors, then their ensemble can improve performance.

•

Stated differently: the variance in the prediction is reduced (we don’t
suffer from the random errors that a single classifier is bound to make).

28

Boosting
•

Main idea:

–

train classifiers (e.g. decision trees) in a sequence.

–

a new classifier should focus on those cases which were incorrectly
classified in the last round.

–

combine the classifiers by letting them vote on the final prediction
(like bagging).

–

each classifier could be (should be) very “weak”, e.g. a decision
stump.

29

Boosting Intuition
•

We adaptively weigh each data case.

•

Data cases which are wrongly classified get high weight (the
algorithm will focus on them)

•

Each boosting round learns a new (simple) classifier on the weighed
dataset.

•

These classifiers are weighed to combine them into a single
powerful classifier.

•

Classifiers that that obtain low training error rate have high weight.

•

We stop by using monitoring a hold out set (cross-validation).

30

Boosting in a Picture

training cases correctly
classified

training case
has large weight
in this round

this DT has
a strong vote.

boosting rounds

31

32

	CS 175: Project in Artificial Intelligence
	Topic 8: Decision Trees
	Decision Trees
	Attribute-based representations
	Decision trees
	Expressiveness
	Hypothesis spaces
	Decision tree learning
	Choosing an attribute
	Using information theory
	Using information theory
	Using information theory
	Using Information Theory
	Example
	Information Gain
	Information gain
	Information gain
	Example contd.
	Gain-Ratio
		What to Do if...
	Continuous Variables
	Decision Stump
	Simple example of Regression Tree�(where target variable is continuous)
	Greedy Search for Learning Regression Trees
	When to Stop ?
	Pruning & Random Forests
	Bagging
	Boosting
	Boosting Intuition
	Boosting in a Picture
	Slide Number 31
	Slide Number 32

