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Topic 6: Collaborative Filtering

Some slides taken from Prof. Smyth
(with slight modifications)
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Outline

• General aspects of recommender systems

• Nearest neighbor methods

• Matrix decomposition and singular value 
decomposition (SVD)
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Recommender Systems
• Ratings or Vote data = m x n sparse binary matrix   

– n columns = “products”, e.g., books for purchase or movies for 
viewing

– m rows = users
– Interpretation:

• Ratings: v(i,j) = user i’s rating of product j (e.g. on a scale of 1 to 5)
• Purchases: v(i,j) = 1 if user i purchased product j
• entry = 0 if no purchase or rating 

• Automated recommender systems
– Given ratings or votes by a user on a subset of items, 

recommend other items that the user may be interested in
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Examples of Recommender Systems
• Shopping 

– Amazon.com etc

• Movie and music recommendations: 
– Netflix
– Last.fm

• Digital library recommendations
– CiteSeer (Popescul et al, 2001):

• m = 177,000 documents
• N = 33,000 users
• Each user accessed 18 documents on average (0.01% of the database -> 

very sparse!)

• Web page recommendations
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Users Items

Observed preferences

The Recommender Space as a 
Bipartite Graph

Item-Item 
Links

User-User
Links

Links derived from 
similar attributes, 

similar content, explicit 
cross references

Links derived from 
similar attributes, 

explicit connections

(Ratings, purchases, 
page views, play lists, 

bookmarks, etc)
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Different types of recommender algorithms

• Nearest-neighbor/collaborative filtering algorithms
– Widely used – simple and intuitive

• Matrix factorization (e.g., SVD)
– Has gained popularity recent due to Netflix competition

• Less used
– Neural networks
– Cluster-based algorithms
– Probabilistic models
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Nearest-Neighbor Algorithms for 
Collaborative Filtering

ri,k = rating of user i on item k 
Ii = items for which user i has generated a rating

Mean rating for user i is 

Predicted vote for user i on item j is a weighted sum

weights of K similar usersNormalization constant 
(e.g., total sum of weights)

Value of K can be optimized on a validation data set
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Nearest-Neighbor Weighting
• K-nearest neighbor

• Pearson correlation coefficient (Resnick ’94, Grouplens):

• Can also scale weights by number of items in common

Sums are over items rated by both users

Smoothing constant, e.g., 10 or 100
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Comments on Neighbor-based Methods
• Here we emphasized user-user similarity

– Can also do this with item-item similarity, i.e.,
– Find similar items (across users) to the item we need a rating for

• Simple and intuitive
– Easy to provide the user with explanations of recommendations 

• Computational Issues  
• In theory we need to calculate all n2 pairwise weights
• So scalability is an issue (e.g., real-time)
• Significant engineering involved, many tricks

• For recent advances in neighbor-based approaches see
Y. Koren, Factor in the neighbors: scalable and accurate collaborative filtering, ACM 
Transactions on Knowledge Discovery in Data, 2010
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NOTES ON MATRIX 
DECOMPOSITION AND SVD

Data Mining Lectures                                            Lecture 15: Text Classification              Padhraic Smyth, UC Irvine
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Matrix Decomposition
• Matrix D = m x n

- e.g., Ratings matrix with m customers, n items
- assume for simplicity that m > n

• Typically 
– R is sparse, e.g., less than 1% of entries have ratings
– n is large, e.g., 18000 movies
– So finding matches to less popular items will be difficult

Idea: 
compress the columns (items) into a lower-dimensional 

representation
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Singular Value Decomposition (SVD)

D    =  U    
 
Vt

m x n m x n n x n n x n

where: rows of Vt are eigenvectors of DtD = basis functions



 

is diagonal, with ii = sqrt(i )  (ith eigenvalue)

rows of U are coefficients for basis functions in V

(here we assumed that m > n, and rank D = n)
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SVD Example
• Data D =       10 20 10

2 5 2
8 17 7
9 20 10

12 22 11
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SVD Example
• Data D =        

Note the pattern in the data above: the center column
values are typically about twice the 1st and 3rd column values:

 So there is redundancy in the columns, i.e., the column
values are correlated

10 20 10
2 5 2
8 17 7
9 20 10

12 22 11
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SVD Example
• Data D = D = U 

 

Vt

where U = 0.50    0.14   -0.19              
0.12   -0.35    0.07
0.41   -0.54    0.66
0.49   -0.35   -0.67
0.56    0.66    0.27

where 

 

=   48.6          0         0
0           1.5         0
0             0        1.2

and Vt =  0.41    0.82    0.40
0.73   -0.56    0.41
0.55    0.12   -0.82

10 20 10
2 5 2
8 17 7
9 20 10

12 22 11
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SVD Example
• Data D = D = U 

 

Vt

where U = 0.50    0.14   -0.19              
0.12   -0.35    0.07
0.41   -0.54    0.66
0.49   -0.35   -0.67
0.56    0.66    0.27

where 

 

=   48.6          0         0
0           1.5         0
0             0        1.2

and Vt =  0.41    0.82    0.40
0.73   -0.56    0.41
0.55    0.12   -0.82

10 20 10
2 5 2
8 17 7
9 20 10

12 22 11

Note that first singular value
is much larger than the others
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SVD Example
• Data D = D = U 

 

Vt

where U = 0.50    0.14   -0.19              
0.12   -0.35    0.07
0.41   -0.54    0.66
0.49   -0.35   -0.67
0.56    0.66    0.27

where 

 

=   48.6          0         0
0           1.5         0
0             0        1.2

and Vt =  0.41    0.82    0.40
0.73   -0.56    0.41
0.55    0.12   -0.82

10 20 10
2 5 2
8 17 7
9 20 10

12 22 11

Note that first singular value
is much larger than the others

First basis function (or eigenvector)
carries most of the information and it “discovers”
the pattern of column dependence
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Rows in D = weighted sums of basis vectors

1st row of D = [10 20 10]
Since D = U S Vt,    then D(1,: )  =  U(1, :) * 

 

* Vt

=  [24.5  0.2 -0.22] * Vt

Vt =  0.41    0.82    0.40
0.73   -0.56    0.41
0.55    0.12   -0.82



 

D(1,: ) = 24.5 v1 + 0.2 v2 + -0.22 v3

where v1 ,  v2 , v3 are rows of Vt and are our basis vectors

Thus, [24.5, 0.2, 0.22] are the weights that characterize row 1 in D

In general, the ith row of U* 

 

is the set of weights for the ith row in D
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Summary of SVD 
Representation

D = U 
 

Vt

Data matrix:
Rows = data vectors

U*

 

matrix:
Rows = weights
for the rows of D

Vt matrix:
Rows = our basis 

functions 
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How do we compute U, , and V?

• SVD decomposition is a standard eigenvector/value 
problem
– The eigenvectors of D’ D = the rows of V
– The eigenvectors of D D’ = the columns of U
– The diagonal matrix elements in 

 

are square roots of the 
eigenvalues of D’ D 

=> finding U,,V  is equivalent to finding eigenvectors of D’D
– Solving eigenvalue problems is equivalent to solving a set of 

linear equations – time complexity is O(m n2 + n3)

In MATLAB, we can calculate this using the svd.m function, i.e., 
[u, s, v] = svd(D);

If matrix D is non-square, we can use svd(D,0)
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Approximating the matrix D
• Example: we could approximate any row D just using a single weight  

• Row 1: 
– Can be approximated by 

D’ = w1 *v1 = 24.5*[ 0.41  0.82 0.40] 
=      [10.05  20.09 9.80] 

– D(1,:) = 10  20  10
– Note that this is a close approximation of the exact D(1,:)
(Similarly for any other row)

• Basis for data compression:
– Sender and receiver agree on basis functions in advance
– Sender then sends the receiver a small number of weights
– Receiver then reconstructs the signal using the weights + the basis function
– Results in far fewer bits being sent on average – trade-off is that there is some 

loss in the quality of the original signal
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Matrix Approximation with SVD

D        U    
 
Vt~~

m x n m x f f x f f x n

where: columns of V are first f eigenvectors of RtR



 

is diagonal with f largest eigenvalues

rows of U are coefficients in reduced dimension V-space

This approximation gives the best rank-f approximation to matrix R
in a least squares sense (this is also known as principal components analysis)
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•
 

A matrix D can be decomposed:

•
 

Rank-f approximation:

Singular Value Decomposition

SUD V’M

N M

M M

N

N

N

=

BADM M F=
N NF

SUD V’M

N F

M F

F

F

N

=
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Why do SVD?

•
 

SVD provides the best f-rank approximation 
under the Frobenius

 
Norm*:

•
 

We often want to minimize (root) mean 
squared error for our ratings

* Benjamin Marlin. Collaborative Filtering: A Machine Learning Perspective. 2004. 
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Stochastic Gradient Descent
•

 

Sometimes, matrix of ratings is too huge (i.e. Netflix

 

is 480189 x 17770) 
to do full SVD

•

 

Perform stochastic gradient descent to approximate A and B
–

 

Repeat until convergence:
•

 

Select one rating (Dmn

 

) in our training set, randomly
•

 

Update row ‘m’

 

in A and column ‘n’

 

in B, based on update equations

•

 

Can be done efficiently in Matlab, via vectorization
–

 

With f = 300, can do about 600,000 iterations per minute 

Exercise:
Work out these derivatives
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Results of SVD on Netflix
 

(f=600):

0 5 10 15 20 25 30 35 40 45 50
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Iterations

Root Mean 
Squared Error
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Example: Applying SVD to a 
Document-Term Matrix

database SQL index regression likelihood linear

d1 24 21 9 0 0 3

d2 32 10 5 0 3 0

d3 12 16 5 0 0 0

d4 6 7 2 0 0 0

d5 43 31 20 0 3 0

d6 2 0 0 18 7 16

d7 0 0 1 32 12 0

d8 3 0 0 22 4 2

d9 1 0 0 34 27 25

d10 6 0 0 17 4 23
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Results of SVD with 2 factors (f=2)
U1 U2

d1 30.9 -11.5

d2 30.3 -10.8

d3 18.0 -7.7

d4 8.4 -3.6

d5 52.7 -20.6

d6 14.2 21.8

d7 10.8 21.9

d8 11.5 28.0

d9 9.5 17.8

d10 19.9 45.0

database SQL index regression likelihood linear

d1 24 21 9 0 0 3

d2 32 10 5 0 3 0

d3 12 16 5 0 0 0

d4 6 7 2 0 0 0

d5 43 31 20 0 3 0

d6 2 0 0 18 7 16

d7 0 0 1 32 12 0

d8 3 0 0 22 4 2

d9 1 0 0 34 27 25

d10 6 0 0 17 4 23
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v1 = [0.74,   0.49,  0.27,  0.28, 0.18,  0.19]
v2 = [-0.28, -0.24  -0.12, 0.74,  0.37,  0.31]

D1 = database x 50
D2 = SQL x 50
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Latent Semantic Indexing
• LSI = application of SVD to document-term data 

• Querying
– Project documents into f-dimensional space
– Project each query q into f-dimensional space
– Find documents closest to query q in f-dimensional space
– Often works better than matching in original high-dimensional space 

• Why is this useful?
– Query contains “automobile”, document contains “vehicle”
– can still match Q to the document since the 2 terms will be close in k- 

space (but not in original space), i.e., addresses synonymy problem
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Related Ideas

• Topic Modeling
– Can also be viewed as matrix factorization 

• Basis functions = topics
– Topics tend to be more interpretable than LSI vectors (better 

suited to non-negative matrices)
– May also perform better for document retrieval

• Non-negative Matrix Factorization
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NETFLIX: CASE STUDY

Data Mining Lectures                                            Lecture 15: Text Classification              Padhraic Smyth, UC Irvine
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Netflix
• Movie rentals by DVD (mail) and online (streaming)

• 100k movies, 10 million customers

• Ships 1.9 million disks to customers each day
– 50 warehouses in the US
– Complex logistics problem

• Employees: 2000
– But relatively few in engineering/software
– And only a few people working on recommender systems

• Moving towards online delivery of content

• Significant interaction of customers with Web site
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The $1 Million Question
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Million Dollars Awarded Sept 21st 2009
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Ratings Data

1 3 4
3 5 5

4 5 5
3
3

2 2 2
5

2 1 1
3 3

1

17,700 movies

480,000
users
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Scoring
Minimize root mean square error  (RMSE)

Does not necessarily correlate well with user 
satisfaction

But is a widely-used well-understood quantitative 
measure 

Mean square error = 1/|R| 
 

u,i) R

 

( rui

 

- rui

 

)2^
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RMSE Baseline Scores on Test Data

1.054   - just predict the mean user rating for each movie

0.953   - Netflix’s own system (Cinematch) as of 2006

0.941   - nearest-neighbor method using correlation

0.857   - required 10% reduction to win $1 million
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Why did Netflix do this?
• Customer satisfaction/retention is key to Netflix – they would really 

like to improve their recommender systems

• Progress with internal system (Cinematch) was slow

• Initial prize idea from CEO Reed Hastings

• $1 million would likely easily pay for itself

• Potential downsides
– Negative publicity (e.g., privacy)
– No-one wins the prize (conspiracy theory)
– The prize is won within a day or 2
– Person-hours at Netflix to run the competition
– Algorithmic solutions are not useful operationally
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Figure from Koren, Bell, Volinksy, IEEE Computer, 2009



43

Dealing with Missing Data

mina,b
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sum is only over known ratings



44

Dealing with Missing Data
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Time effects also important
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Explanation 
for increase?
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The Kitchen Sink Approach….
• Many options for modeling

– Variants of the ideas we have seen so far
• Different ways to model time
• Different ways to handle implicit information
• Different numbers of factors
• ….

– Other models 
• Nearest-neighbor models
• Restricted Boltzmann machines

• Model averaging was useful….
– Linear model combining
– Neural network combining
– Gradient boosted decision tree combining
– Note: combining weights learned on validation set (“stacking”)
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Other Aspects of Model Building
• Automated parameter tuning

– Using a validation set, and grid search, various parameters such 
as learning rates, regularization parameters, etc., can be 
optimized

• Memory requirements
– Memory: can fit within roughly 1 Gbyte of RAM

• Training time 
– Order of days: but achievable on commodity hardware rather than 

a supercomputer
– Some parallelization used 
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Matrix factorization vs Near Neighbor?

From Koren, ACM Transactions on Knowledge Discovery, 
2010

“Latent factor models such as SVD face real difficulties 
when needed to explain predictions. …Thus, we believe 
that for practical applications neighborhood models are 
still expected to be a common choice.”
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June 26th 2009: after 1000 Days and nights…
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The Leading Team
• BellKorPragmaticChaos

– BellKor: 
• Yehuda Koren (now Yahoo!), Bob Bell, Chris Volinsky, AT&T

– BigChaos:
• Michael Jahrer, Andreas Toscher, 2 grad students from Austria

– Pragmatic Theory
• Martin Chabert, Martin Piotte, 2 engineers from Montreal (Quebec) 

• June 26th submission triggers 30-day “last call”

• Submission timed purposely to coincide with vacation 
schedules 
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The Last 30 Days
• Ensemble team formed

– Group of other teams on leaderboard forms a new team
– Relies on combining their models
– Quickly also get a qualifying score over 10%

• BellKor
– Continue to eke out small improvements in their scores
– Realize that they are in direct competition with Ensemble

• Strategy
– Both teams carefully monitoring the leaderboard
– Only sure way to check for improvement is to submit a set of predictions

• This alerts the other team of your latest score
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24 Hours from the Deadline
• Submissions limited to 1 a day

– So only 1 final submission could be made by either in the last 24 hours

– team 24 hours before deadline…
– BellKor team member in Austria notices (by chance) that Ensemble 

posts a score that is slightly better than BellKor’s
– Leaderboard score disappears after a few minutes (rule loophole)

• Frantic last 24 hours for both teams
– Much computer time on final optimization
– run times carefully calibrated to end about an hour before deadline

• Final submissions
– BellKor submits a little early (on purpose), 40 mins before deadline
– Ensemble submits their final entry 20 mins later
– ….and everyone waits….
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Training Data

100 million ratings

Held-Out Data

3 million ratings

1.5m ratings 1.5m ratings

Quiz Set:
scores
posted on
leaderboard

Test Set:
scores
known only
to Netflix

Scores used in
determining
final winner
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Million Dollars Awarded Sept 
21st 2009
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Lessons Learned
• Scalability is important

– e.g., stochastic gradient descent on sparse matrices

• Latent factor models work well on this problem
– Previously had not been explored for recommender systems 

• Understanding your data is important, e.g., time-effects

• Combining models works surprisingly well
– But final 10% improvement can probably be achieved by judiciously 

combining about 10 models rather than 1000’s
– This is likely what Netflix will do in practice 

• Surprising amount of collaboration among participants



62



63

Why Collaboration?

Openness of competition structure

• Rules stated that winning solutions would be 
published

• Non-exclusive license of winning software to Netflix
• “Description of algorithm to be posted on site”

• Research workshops sponsored by Netflix

• Leaderboard was publicly visible: “it was addictive….”
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Why Collaboration?

Development of Online Community

• Active Netflix prize forum + other blogs

• Quickly acquired “buzz”

• Forum was well-moderated by Netflix

• Attracted discussion from novices and experts alike

• Early posting of code and solutions

• Early self-identification (links via leaderboard)
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Why Collaboration?

Academic/Research Culture

• Nature of competition was technical/mathematical

• Attracted students, hobbyists, researchers

• Many motivated by fundamental interest in producing better 
algorithms - $1 million would be a nice bonus

• History in academic circles of being open, publishing, sharing
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Questions
• Does reduction in squared error metric correlate with real 

improvements in user satisfaction?

• Are these competitions good for scientific research?
– Should researchers be solving other more important problems?

• Are competitions a good strategy for companies?
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Evaluation Methods
• Research papers use historical data to evaluate and compare 

different recommender algorithms
– predictions typically made on items whose ratings are known
– e.g., leave-1-out method,  

• each positive vote for each user in a test data set is in turn “left out”
• predictions on left-out items made given rated items

– e.g., predict-given-k method
• Make predictions on rated items given k=1, k=5, k=20 ratings

– See Herlocker et al (2004) for detailed discussion of evaluation

• Approach 1: measure quality of rankings
• Score = weighted sum of true votes in top 10 predicted items

• Approach 2: directly measure prediction accuracy
• Mean-absolute-error (MAE) between predictions and actual votes
• Typical MAE on large data sets ~ 20%  (normalized)

– E.g., on a 5-point scale predictions are within 1 point on average
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Evaluation with (Implicit) Binary 
Purchase Data

• Cautionary note:
– It is not clear that prediction on historical data is a meaningful way to evaluate 

recommender algorithms, especially for purchasing
– Consider: 

• User purchases products A, B, C
• Algorithm ranks C highly given A and B, gets a good score
• However, what if the user would have purchased C anyway, i.e., making this 

recommendation would have had no impact?  (or possibly a negative impact!)

– What we would really like to do is reward recommender algorithms that lead the 
user to purchase products that they would not have purchased without the 
recommendation

• This can’t be done based on historical data alone

– Requires direct “live” experiments (which is often how companies evaluate 
recommender algorithms)
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