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Topic 5: Regression

Slides taken from Prof. Smyth and Prof Ihler
(with slight modifications)
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Data in Matrix Form

ID Income Age …. Monthly Debt Good Risk?

18276 65,000 55 …. 2200 Yes
72514 28,000 19 …. 1500 No
28163 120,000 62 …. 1800 Yes
17265 90,000 35 …. 4500 No
… … … …. … …
… … … …. … …
61524 35,000 22 …. 900 Yes

Measurements

Entities

“Measurements” may be called “variables”,
“features”, “attributes”, “fields”, etc
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Notation
• Variables X, Y….. with values x, y (lower case)

– Vectors indicated by X 

• Components of X indicated by Xj with values xj

• “Matrix” data set D with n rows and p columns
– jth column contains values for variable Xj
– ith row contains a vector of measurements on object i, indicated by x(i)
– The jth measurement value for the ith object is xj(i)

• Unknown parameter for a model =  
– Can also use other Greek letters, like 
– Vector of parameters = 
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Multivariate Linear Regression

• Task: predict real-valued Y, given real-valued vector X

• Score function, e.g., least squares is often used 

S() = i [y(i) – f(x(i) ; ) ]2  

• Model structure:  e.g., linear f(x ; )  = 0 + 
 

j xj

• Model parameters = 

 

= {0 , 1, …… p }

predicted valuetarget value
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Note that we can write

S() = i [y(i) – 
 

j xj]2 

= i ei
2

=  e’ e  where e = y – X 

=  (y – X )’ (y – X )

y = N x 1 vector 
of target values

N x (p+1) vector 
of input values

(p+1) x 1 vector 
of parameter values
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S() = 

 

e2 =  e’ e    =  (y – X )’ (y – X )

=  y’ y  – ’ X’ y  –  y’ X 

 

+ ’ X’ X 

=  y’ y  – 2 ’ X’ y  + ’ X’ X 

Taking derivative of S() with respect to the components of 

 

gives….

dS/d 

 

=  -2 X’ y  +  2 X’ X 

Set this to 0 to find the extremum (minimum) of S as a function of …
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Set to 0 to find the extremum (minimum) of S as a function of …

 - 2 X’ y  +  2 X’ X 

 

= 0     

 X’ X 

 

= X’ y (known in statistics as the Normal Equations)

Letting X’ X = C, and X’ y = b,  
we have C 

 

= b, i.e., a set of linear equations

We could solve this directly, e.g., by matrix inversion 


 
= C-1 b  =  ( X’ X )-1 X’ y
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Solving for the ’s
• Problem is equivalent to inverting X’ X matrix

– Inverse does not exist if matrix is not of full rank
• E.g., if 1 column is a linear combination of another (collinearity)
• Note that X’X is closely related to the covariance of the X data

– So we are in trouble if 2 or more variables are perfectly correlated
• Numerical problems can also occur if variables are almost collinear

• Equivalent to solving a system of p linear equations
– Many good numerical methods for doing this, e.g.,

• Gaussian elimination, LU decomposition, etc
– These are numerically more stable than direct inversion

• Alternative: gradient descent
– Compute gradient and move downhill
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Comments on Multivariate Linear Regression

• Prediction model is a linear function of the parameters

• Score function: quadratic in predictions and parameters


 

Derivative of score is linear in the parameters


 

Leads to a linear algebra optimization problem, i.e., C 

 

= b

• Model structure is simple….
– p-1 dimensional hyperplane in p-dimensions
– Linear weights => interpretability

• Often useful as a baseline model 
– e.g., to compare more complex models to

• Note: even if it’s the wrong model for the data (e.g., a poor fit) it can still be useful for 
prediction
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Limitations of Linear Regression

• True relationship of X and Y might be non-linear
– Suggests generalizations to non-linear models

• Complexity:
– O(N p2 + p3)  - problematic for large p

• Correlation/Collinearity among the X variables
– Can cause numerical instability (C may be ill-conditioned)
– Problems in interpretability (identifiability)

• Includes all variables in the model…
– But what if p=1000 and only 3 variables are actually related to Y?
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Non-linear models, but linear in parameters

• We can add additional polynomial terms in our equations, e.g., all “2nd 

order” terms 
f(x ; )  = 0 + 

 
j xj + 

 
ij xi xj

• Note that it is a non-linear functional form, but it is linear in the parameters 
(so still referred to as “linear regression”)
– We can just treat the xi xj terms as additional fixed inputs
– In fact we can add in any non-linear input functions!, e.g.

f(x ; )  = 0 + 
 

j fj(x)

Comments:
- Exact same linear algebra for optimization (same math)
- Number of parameters has now exploded -> greater chance of 

overfitting
- Ideally would like to select only the useful quadratic terms
- Can generalize this idea to higher-order interactions
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Non-linear (both model and parameters)
• We can generalize further to models that are nonlinear in all aspects

f(x ; )  = 0 +  k gk (k0 
 

kj xj )

where the g’s are non-linear functions with fixed functional forms.

In machine learning this is called a neural network

In statistics this might be referred to as a generalized linear model or 
projection-pursuit regression

For almost any score function of interest, e.g., squared error, the score 
function is a non-linear function of the parameters. 

Closed form (analytical) solutions are rare.

Thus, we have a multivariate non-linear optimization problem
(which may be quite difficult!)
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Optimization in the Non-Linear Case

• We seek the minimum of a function in d dimensions, where d is the 
number of parameters (d could be large!)

• There are a multitude of heuristic search techniques 
– Steepest descent (follow the gradient)
– Newton methods (use 2nd derivative information)
– Conjugate gradient
– Line search
– Stochastic search
– Genetic algorithms

• Two cases:
– Convex (nice -> means a single global optimum)
– Non-convex (multiple local optima => need multiple starts)
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Other non-linear models

• Splines
– “patch” together different low-order polynomials over different parts of 

the x-space
– Works well in 1 dimension, less well in higher dimensions

• Memory-based models 
y’ =  w(x’,x) y,    where y’s are from the training data 
w(x’,x) = function of distance of x from x’

• Local linear regression 
y’ = 0 + 

 
j xj , where the alpha’s are fit at prediction time just to 

the (y,x) pairs that are close to x’
Local linear regression will be in HW2
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Selecting the k best predictor variables

• Linear regression: find the best subset of k variables to put in model
– This is a generic problem when p is large 

(arises with all types of models, not just linear regression)

• Now we have models with different complexity..
– E.g., p models with a single variable
– p(p-1)/2 models with 2 variables, etc…
– 2p possible models in total

• Can think of space of models as a lattice
– Note that when we add or delete a variable, the optimal weights on the 

other variables will change in general
• k best is not the same as the best k individual variables

• Aside: what does “best” mean here? (will return to this shortly…)



34

Search Problem
• How can we search over all 2p possible models?

– exhaustive search is clearly infeasible

– Heuristic search is used to search over model space:
• Forward search (greedy)
• Backward search (greedy)
• Generalizations (add or delete)

– Think of operators in search space
• Branch and bound techniques

– This type of variable selection problem is common to many data 
mining algorithms

• Outer loop that searches over variable combinations
• Inner loop that evaluates each combination
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Empirical Learning
• Squared Error score (as an example: we could use other scores)

S() = i [y(i) – f(x(i) ; ) ]2  

where S() is defined on the training data D

• We are really interested in finding the f(x; ) that best predicts y on 
future data, i.e., minimizing 

E [S] = E [y – f(x ; ) ]2    (where the expectation is over future data)

• Empirical learning
– Minimize S() on the training data Dtrain
– If Dtrain is large and model is simple we are assuming that the best f  on 

training data is also the best predictor f on future test data Dtest
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Complexity versus Goodness of 
Fit

x

y
Training data
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Complexity versus Goodness of 
Fit

x

y

x

y
Too simple?Training data



38

Complexity versus Goodness of 
Fit

x

y

x

y

x

y

Too simple?

Too complex ?

Training data
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Complexity versus Goodness of Fit

x

y

x

y

x

y

x

y

Too simple?

Too complex ? About right ?

Training data
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Complexity and Generalization

Strain ()

Stest ()

Complexity = degrees
of freedom in the model
(e.g., number of variables)

Score Function
e.g., squared
error 

Optimal model
complexity
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Complexity and Generalization

Strain ()

Stest ()

Score Function
e.g., squared
error 

High bias
Low variance

Low bias
High variance
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Defining what “best” means
• How do we measure “best”?

– Best performance on the training data?
• K = p will be best (i.e., use all variables), e.g., p=10,000
• So this is not useful in general 

– Performance on the training data will in general be optimistic

• Practical Alternatives:
– Measure performance on a single validation set

– Measure performance using multiple validation sets
• Cross-validation

– Add a penalty term to the score function that “corrects” for 
optimism

• E.g., “regularized” regression: SSE + 

 

sum of weights squared
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Training Data

Training Data
Use this data to find the best 

 
for each model fk (x ; ) 
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Validation Data

Training Data

Validation Data

Use this data to find the best 

 
for each model fk (x ; ) 

Use this data to 
(1) calculate an estimate of  Sk () for 

each fk (x ; ) and 
(2) select k* = arg mink Sk () 



45

Validation Data

Training Data

Validation Data

Use this data to find the best 

 
for each model fk (x ; ) 

Use this data to 
(1) calculate an estimate of  Sk () for 

each fk (x ; ) and 
(2) select k* = arg mink Sk () 

can generalize to cross-validation….
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2 different (but related) issues here

1. Finding the function f that minimizes S() for future data

2. Getting a good estimate of S(), using the chosen 
function, on future data,
– e.g., we might have selected the best function f, but our estimate 

of its performance will be optimistically biased if our estimate of 
the score uses any of the same data used to fit and select the 
model.
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Test Data

Training Data

Validation Data

Test Data

Use this data to find the best 

 
for each model fk (x ; ) 

Use this data to 
(1) calculate an estimate of  Sk () for 

each fk (x ; ) and 
(2) select k* = arg mink Sk () 

Use this data to calculate an 
unbiased estimate of  Sk* () for 
the selected model 
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Another Approach with Many 
Predictors: Regularization

• Modified score function:

S

 

() = i [y(i) – f(x(i) ; ) ]2 +  

 


 

j 
2

• The second term is for “regularization”
– When we minimize -> encourages keeping the j ‘s near 0
– Bayesian interpretation: minimizing - log P(data|q) - log P(q)

• L1 regularization

S

 

() = i [y(i) – f(x(i) ; ) ]2 +  

 

j 

(basis of popular “Lasso” method, e.g., see Rob Tibshirani’s page on lasso 
methods: http://www-stat.stanford.edu/~tibs/lasso.html)

http://www-stat.stanford.edu/~tibs/lasso.html
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Time-series prediction as regression

• Measurements over time x1 ,…… xt

• We want to predict xt+1 given x1 ,…… xt

• Autoregressive model 
xt+1 = f( x1 ,…… xt ; 

 

)  = 
 

k xt-k

– Number of coefficients K = memory of the model
– Can take advantage of regression techniques in general to solve this 

problem (e.g., linear in parameters, score function = squared error, etc)

• Generalizations
– Vector x
– Non-linear function instead of linear
– Add in terms for time-trend (linear, seasonal), for “jumps”, etc
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Other aspects of regression

• Diagnostics
– Useful in low dimensions

• Weighted regression
– Useful when rows have different weights

• Different score functions
– E.g. absolute error, or additive noise varies as a 

function of x

• Predicting y values constrained to a certain 
range, e.g., y > 0, or 0 < y < 1

• Predicting binary y values
– Regression as a generalization of classification
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Generalized Linear Models (GLMs) 
(McCullagh and Nelder, 1989)

• g(y) =   u(x) = 0 + 
 

j xj
– Where g [ ] is a “link” function
– u(x) is a linear function of the vector x   

• Examples:
– g = identity function -> linear regression

– Logistic regression: g(y) = log(y / 1-y)  = 0 + 
 

j xj

– Logarithmic link:  g(y) = log(y) = 0 + 
 

j xj

– GLMs are widely used in statistics

– Details of learning/fitting algorithm depend on the specifics of the 
link function
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Tree-Structured Regression
• Functional form of model is a “regression tree”

– Univariate thresholds at internal nodes
– Constant or linear surfaces at the leaf nodes
– Yields piecewise constant (or linear) surface
– (like classification tree, but for regression)

• Very crude functional form…. but
– Can be very useful in high-dimensional problems
– Can useful for interpretation
– Can handle combinations of real and categorical variables

• Search problem
– Finding the optimal tree is intractable
– Practice: greedy algorithms
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Simple example of Tree Model
Income > t1

Debt > t2

Income > t3

E[y] = 5.3

E[y] = 2.1

E[y] = 10.8E[y] = -1.0
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Greedy Search for Learning 
Regression Trees

• Binary_node_splitting, real-valued variables
– For each variable xj

• For each possible threshold tjk , compute

• Select tjk with the lowest MSE for that variable

– Select variable xj and tjk with the lowest MSE 

– Split the training data into the 2 branches
– For each branch

• If leaf-node: prediction at this leaf node = mean value of y data points
• If not: call binary_node_splitting recursively

• Time complexity?

MSE in left branch MSE in right branch
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Time-Complexity 
• Binary_node_splitting

– For each variable xj
• For each possible threshold tjk , compute

• Select tjk with the lowest MSE for that variable

– Select variable xj and tjk with the lowest MSE 

• O(p N logN ) for the root node split

• For tree of depth L ??
– Need to resort at each internal node, O(n’ log n’) …..

MSE in left branch MSE in right branch

p variables
O(N) thresholds
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More on Regression Trees
• Greedy search algorithm

– For each variable, find the best split point such the mean of Y either 
side of the split minimizes the mean-squared error

– Select the variable with the minimum average error
• Partition the data using the threshold

– Recursively apply this selection procedure to each “branch”

• What size tree?
– A full tree will likely overfit the data
– Common methods for tree selection

• Grow a large tree and select an appropriate subtree by Xvalidation
• Grow a number of small fixed-sized trees and average their predictions

• Will discuss trees further in lectures on classification: very similar 
ideas used for building classification trees and regression trees
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Model Averaging
• Can average over parameters and models

– E.g., weighted linear combination of predictions from multiple models

y = 
 

wk yk

– Why? Any predictions from a point estimate of parameters or a single 
model has only a small chance of the being the best

– Averaging makes our predictions more stable and less sensitive to 
random variations in a particular data set (good for less stable models 
like trees)
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Model Averaging
• Model averaging flavors

– Fully Bayesian: average over uncertainty in parameters and 
models

– “empirical Bayesian”: learn weights over multiple models
• E.g., stacking and bagging (widely used in Netflix competition)

– Build multiple simple models in a systematic way and combine 
them, e.g.,  

• Boosting: will say more about this in later lectures

• Random forests (for trees): stochastically perturb the data, learn 
multiple trees, and then combine for prediction
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Components of ML Algorithms

• Model Representation:
– Determining the nature and structure of the representation to be used

• Score function
– Measuring how well different representations fit the data  

• Search/Optimization method
– An algorithm to optimize the score function 

• Data Management
– Deciding what principles of data management are required to implement 

the algorithms efficiently.
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Software
• MATLAB

– Many free “toolboxes” on the Web for regression and prediction
– e.g., see http://lib.stat.cmu.edu/matlab/ 

and in particular the CompStats toolbox

• R
– General purpose statistical computing environment (successor to S)
– Free (!)
– Widely used by statisticians, has a huge library of functions and 

visualization tools

• Commercial tools
– SAS, Salford Systems, other statistical packages
– Various data mining packages
– Often are not programmable: offer a fixed menu of items
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Useful References

N. R. Draper and H. Smith, 
Applied Regression Analysis, 2nd edition,
Wiley, 1981
(the “bible” for classical regression methods in statistics)

T. Hastie, R. Tibshirani, and J. Friedman, 
Elements of Statistical Learning, 2nd edition,
Springer Verlag, 2009
(statistically-oriented overview of modern ideas in regression and 
classification, mixes machine learning and statistics)
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