Sugar: Secure GPU Acceleration in Web Browsers

Zhihao Yao, Zongheng Ma, Yingtong Liu, Ardalan Amiri Sani, Aparna Chandramowlishwaran
University of California, Irvine
(z.yao,zonghenm,yingtong,ardalan,amowli)@uci.edu

Abstract

Modern personal computers have embraced increasingly
powerful Graphics Processing Units (GPUs). Recently, GPU-
based graphics acceleration in web apps (i.e., applications
running inside a web browser) has become popular. WebGL is
the main effort to provide OpenGL-like graphics for web apps
and it is currently used in 53% of the top-100 websites. Unfor-
tunately, WebGL has posed serious security concerns as sev-
eral attack vectors have been demonstrated through WebGL.
Web browsers’ solutions to these attacks have been reactive:
discovered vulnerabilities have been patched and new run-
time security checks have been added. Unfortunately, this
approach leaves the system vulnerable to zero-day vulnera-
bility exploits, especially given the large size of the Trusted
Computing Base of the graphics plane.

We present Sugar, a novel operating system solution that
enhances the security of GPU acceleration for web apps by
design. The key idea behind Sugar is using a dedicated vir-
tual graphics plane for a web app by leveraging modern GPU
virtualization solutions. A virtual graphics plane consists of
a dedicated virtual GPU (or vGPU) as well as all the software
graphics stack (including the device driver). Sugar enhances
the system security since a virtual graphics plane is fully iso-
lated from the rest of the system. Despite GPU virtualization
overhead, we show that Sugar achieves high performance.
Moreover, unlike current systems, Sugar is able to use two
underlying physical GPUs, when available, to co-render the
User Interface (UI): one GPU is used to provide virtual graph-
ics planes for web apps and the other to provide the primary
graphics plane for the rest of the system. Such a design not
only provides strong security guarantees, it also provides
enhanced performance isolation.

CCS Concepts - Security and privacy — Trusted com-
puting; Virtualization and security; Browser security;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS 18, March 24-28, 2018, Williamsburg, VA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03...$15.00
https://doi.org/10.1145/3173162.3173186

Keywords GPU acceleration, Web browser, Virtualization,
Systems security

ACM Reference Format:

Zhihao Yao, Zongheng Ma, Yingtong Liu, Ardalan Amiri Sani,
Aparna Chandramowlishwaran. 2018. Sugar: Secure GPU Acceler-
ation in Web Browsers. In ASPLOS ’18: 2018 Architectural Support
for Programming Languages and Operating Systems, March 24-28,
2018, Williamsburg, VA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3173162.3173186

1 Introduction

Web browsers have transformed the way we use computers
in our daily lives. Starting as a program to navigate static
content on the web, web browser is an undeniable pillar of
user’s experience on personal computers these days. Increas-
ingly, applications running inside web browsers, or web apps
for short, are capable of competing with their native coun-
terparts in terms of functionality and performance. Many
utility applications, such as word processing, presentation,
and spreadsheet applications, which used to be available only
as native apps, are now available as web apps as well. Indeed,
Chromebooks by Google (which only provide a web browser
environment for the user) demonstrate the vision that web
apps are capable of replacing native apps altogether.

One area in which web apps have recently started to com-
pete with native apps is GPU-accelerated graphics, e.g., for
enhanced graphics in a web page, 3D games, and scientific vi-
sualization. Most notably, WebGL has recently emerged as a
counterpart to OpenGL, promising a native-like graphics API
for web apps. Indeed, WebGL has become popular rapidly:
53% of top-100 websites now use WebGL (§2.1) and 96% of
48.8 million visitors to a series of websites used WebGL-
enabled browsers [66].

Unfortunately, WebGL endangers the system security. This
is because it exposes a large Trusted Computing Base (TCB)
to web apps, which are untrusted. This TCB is the operat-
ing system’s complex graphics plane, which includes the
GPU and all the software graphics stack needed to oper-
ate it. Similar to OpenGL, WebGL exposes several APIs, the
implementations of which span the browser, GPU libraries
(including the OpenGL library), and the GPU device driver
in the operating system kernel. Moreover, through WebGL,
a web app can program different shaders (i.e., GPU kernel
code) to run on the GPU, which can directly access the mem-
ory using Direct Memory Access (DMA). As a result, WebGL
weakens the browser’s ability to sandbox the web apps.

https://doi.org/10.1145/3173162.3173186
https://doi.org/10.1145/3173162.3173186

Indeed, browser vendors are aware of and concerned with
the security implications of WebGL. For example, Microsoft
did not initially support WebGL due to security concerns [14].
Browsers that do employ WebGL use various ad hoc solu-
tions to protect against vulnerability exploits. First, they
isolate the WebGL implementation in a separate process in
the browser called the GPU process [30, 43]. Second, they per-
form runtime security checks on the WebGL API calls [65].
Whenever a new vulnerability is discovered in the graphics
plane (which is not in the browser itself), a new security
check is added to the GPU process, while vulnerabilities
within the browser’s WebGL implementation are directly
patched. Third, browsers often “blacklist” [65] a system, not
allowing the use of WebGL, if the system uses untested GPU
device drivers and libraries. Unfortunately, these solutions
have important shortcomings: first, while a separate GPU
process can sandbox the WebGL implementation, it does not
protect the operating system graphics plane from a malicious
web app. As a result, a web app can mount various severe
attacks on the browser or the system through WebGL, as we
will show. Second, the API security checks and vulnerabil-
ity patches are reactive and cannot protect against zero-day
exploits. Finally, the blacklisting approach does not provide
any guarantees for white-listed systems.

To address these shortcomings, we present Sugar (Secure
GPU Acceleration)!, a novel operating system solution that
achieves secure GPU acceleration for web apps while pro-
viding high graphics performance. The key idea in Sugar is
to leverage GPU virtualization to implement virtual graphics
planes used by web apps. A virtual graphics plane consists
of a dedicated virtual GPU (vGPU) and all the graphics stack
needed to operate it, all sandboxed within the web app pro-
cess. Currently, all the applications (native or web apps) and
system services (such as the operating system window man-
ager) use a single physical graphics plane in the system, which
includes a physical GPU and its device driver in the kernel.
However, as mentioned, this physical graphics plane exposed
to untrusted web apps significantly increases the size of the
TCB. In Sugar, a web app is given a dedicated virtual graphics
plane, which is fully isolated from the rest of the system. The
trusted components of the system, including the operating
system window manager and the browser’s core processes,
use a separate graphics plane, hereafter called the primary
graphics plane. The main property of the primary graphics
plane is that it has exclusive access to the display and is used
to (i) perform graphics acceleration for trusted components
and (ii) display content rendered by various graphics plane
on the screen providing a unified User Interface (UI).

We present two different designs of Sugar. We design
single-GPU Sugar for machines with a single virtualizable
GPU. Our main targets for this design are commodity desk-
tops and laptops using Intel processors that incorporate a

ISugar is open sourced: https://trusslab.github.io/sugar/

virtualizable integrated GPU (all Intel Core processors start-
ing from the 4th generation, i.e., Haswell [99]). We design
dual-GPU Sugar for machines with two physical GPUs, one
of which is virtualizable. Our main targets for this design
are high-end desktops and laptops that incorporate a second
GPU in addition to the virtualizable integrated Intel GPU. In
both designs, web apps use the virtual graphics planes cre-
ated by the virtualizable GPU. The main difference between
the two designs is the primary graphics plane. In single-GPU
Sugar, the primary graphics plane uses the same underlying
virtualizable GPU but has exclusive access to the display
connected to it. In dual-GPU Sugar, the primary graphics
plane uses the other GPU, which is connected to the display.
As we will show, dual-GPU Sugar provides better security
than single-GPU Sugar, especially against Denial-of-Service
attacks. Moreover, dual-GPU Sugar achieves better graphics
performance isolation. That is, web apps’ usage of WebGL
causes a smaller drop in the graphics performance of the rest
of system and vice versa.

We address the following challenges in Sugar. First, to
enable a web app to use a dedicated vGPU in an isolated
manner, we port the vGPU device driver as a user space
library and link it with the web app process (§4). Second,
we redesign the Chromium web browser’s WebGL stack so
that a web app is responsible for its own GPU rendering. To
do this, a web app uses one of its own threads (called the
GPU thread), rather than the browser’s GPU process, for
processing its WebGL commands, and only shares the final
WebGL texture with the GPU process for compositing (§5).

We evaluate the security and performance of Sugar. We
show that with Sugar, the TCB of the graphics stack exposed
to web apps is 20 times smaller. We also demonstrate that
Sugar effectively protects the system against 19 reported
WebGL vulnerability exploits out of the 20 reports that we
examined. Moreover, we show that it achieves high graphics
performance: for benchmarks that normally achieve a fram-
erate higher than the display refresh rate of 60 Hz, Sugar
also provides a framerate higher than 60. For those that are
normally around or below 60, Sugar achieves competitive
framerate. As a result, Sugar achieves similar user experience
for WebGL rendering.

2 Current State of WebGL

In this section, we present an overview of WebGL. More
specifically, we discuss the adoption of WebGL and its re-
ported security vulnerabilities, which motivate our work.

2.1 Adoption

Adoption rate. To study the adoption of WebGL by top web-
sites, we modify Chromium’s HTMLCanvasElementMod-
ule::getContext() function to detect if a web page attempts to
get a WebGL context (required to use WebGL). We then use
this browser to analyze the top websites in the Alexa Top

Sites list [44]. We analyze randomly-visited pages within
each site for one minute. We sometimes manually visit some
pages not covered by the random visit. Our analysis shows
that at least 53% of the top-100 sites, 29.3% of the top-1000
sites, and 16.4% of the top-10,000 sites use WebGL.

As websites have increased their use of WebGL, browsers

on personal computers are also increasingly WebGL-enabled.
At the time of this writing, WebGL Stats reports that 96% of
48.8 million visitors to a series of contributing websites used
WebGL-enabled browsers [66].
Uses of WebGL. Next, we investigate the reasons behind
the use of WebGL in these websites. Driven by the demand
for GPU-based graphics acceleration, many popular websites,
including websites of Apple, Microsoft, Google, Facebook,
and Baidu have adopted WebGL. For example, Apple utilizes
WebGL to render the introduction pages for the macOS [45];
Microsoft creates numerous WebGL demonstrations, includ-
ing one for the Assassin’s Creed Pirates and one for the
Dolby Audio Experience [52]; Google and Baidu use WebGL
to enhance their map services [46, 50]; and Facebook and
Unity work together to provide their users with WebGL-
based online games [41].

In addition to being used for enhanced graphics in web
pages and 3D games, WebGL is also widely adopted for sci-
entific applications. Some examples include the simulation
of the kinematic model of robots [78], the NASA Experience
Curiosity website, which allows the public to learn about
Mars and the Martian rover [53], the NGL Viewer, which
visualizes molecules [95], the Thingiverse Customizer, which
previews and edits 3D printing models [58], the LiverAnato-
myExplorer, which facilitates medical education [75], and
the NIST Digital Library of Mathematical Functions, which
brings mathematical formulas to life [55].

2.2 Security

We study the WebGL vulnerability reports. We find that since
its adoption, WebGL has seen several vulnerability exploits,
most of which is solved by Sugar by design.

WebGL vulnerability statistics. We search for WebGL vul-
nerabilities in the National Vulnerability Database (NVD) [54]

and Chrome bug report database [47]. We search these databases

using the keyword “WebGL”.

Figures 1 shows the number of WebGL vulnerabilities
reported in these databases. They demonstrate that WebGL-
related vulnerabilities have not decreased significantly over
the years. These statistics confirm our hypothesis: WebGL
introduces a large amount of trusted code, making it difficult
to discover and patch all vulnerabilities in a timely manner.
In Sugar, we eliminate most of these vulnerabilities (and
many yet not discovered) by design, i.e., by sandboxing the
entire graphic plane in the web app process.

WebGL vulnerability examples. We study 20 of the We-
bGL vulnerabilities in detail (including some reported in Fig-
ure 1 and others found through manual search, e.g., Firefox

(3]
[}
N
wn

] Low= e Unspecified =
= Medium == =1 Low ==
=20 High == =20 Medium ==
E 2 High ==
§ 15 E 15 Critical mm
E =]

210 Z10f

© 1

- b

25 25

i £

5 £}

Z 0 Z 0

10111213 14 15 16
Year (20--)

10 11 12 1314 15 16
Year (20--)

Figure 1. WebGL vulnerability statistics according to NVD
(Left) and Chrome reports (Right). Note that the max severity
level in NVD is “High”.

[WebGLWEBGL_dr x
§ < C | ® 127001

he functionality of the WEBGL_draw_buffes

b
h
b
b
b
b
b
b

by
bLrAsfe Uoge* bLrAsfe vofe"

Figure 2. Exploiting vulnerability #10 in Table 1. The exploit
manages to access to unauthorized parts of the GPU memory,
which holds previously rendered UI content. In this snapshot,
the exploit has accessed the content of a text previously
edited in a native text editor.

WebGL vulnerabilities). Our goal in this study is to under-
stand the impact of these vulnerabilities and to determine
whether Sugar can eliminate them.

Table 1 characterizes these vulnerabilities. For each of
them, we take the following steps. First, we attempt to recre-
ate the vulnerability exploit in the current version of the
platform targeted by the exploit. The platform refers to the
browser (e.g., Chrome or Firefox), the operating system (e.g.,
Linux, Windows, and macOS), and the GPU (e.g., Intel and
NVIDIA). The 8th column in the table shows that we could
recreate only 3 of the vulnerabilities in the current version
of the platform since most have already been fixed.

Second, we attempt to recreate the exploits after removing
the fix patch from the current version. This allows us to
validate the vulnerability and potentially use it to evaluate
Sugar. The 9th column in the table shows that we successfully
recreated 3 more of the exploits this way (Figure 2 shows

Vulner- . L Official vulnerability report Target Reproduced by us Solved by Sugar
g Vulnerability description Effect
ability Vendor platform After
NVD (number, B . |On current . One- Dual-
type (number, severity) (Browser: version TemovIng 1 py |GPU
severity) Y 0S:GPU) patch
1 |Use-after-free [26, 28] 1028891, Crit. |CVE-2014-1556, High |Browser crash; execute arbitrary code |FF X X v®a) |V (8A)
Int 2 | Write-after-free [17, 20] 149904, High |CVE-2012-5115, High |GPU process crash; unspecified impact | CHR:Mac |X N/A(CS) [Vea) |VBa)
rrilt;g 3 |Memory allocation [33, 34] 1190526, Crit. |CVE-2015-7179, High |Browser crash; execute arbitrary code |FF:Win X X Ba) |V (B4
4 Integer overflow (for 145544, CVE-2012-2896, GPU process crash; CHR:Lin |X X v®a) |V (BA)
texture dimension) [16,19] |High High unspecified impact CHR:Mac |X X
5 |Memory access control [5, 11]|656752, Crit. |CVE-2011-2367, Med. |Read of GPU memory FF X v YBa) |VBa)
6 |Uninitialized memory [12, 15]|659349, High |N/A Read of GPU memory FF X X vBa) |V (BA)
Read thorized FF:Mac:
7 | eadunauthonze 684882, High | CVE-2011-3653, Med. |Read of GPU memory 3% IN/A eNa) |N/A @NA) [V s |V sa)
memory [9, 13] Intel /
s Timing attack 655987, High |CVE-2011-2366, Med. |Read of cross-domain FF X v X®a) |XmBa)
[4, 6, 10] N/A CVE-2011-2599, Med. |image CHR X X
Confid 9 |Read-after-free [48, 49] 682020, Unsp. |CVE-2017-5031, Med. |Read of Browser GPU process memory | CHR:Win |X X vBa) |V (BA)
051 l‘t- 10 |Uninitialized memory [24, 27] [376951, Med. |CVE-2014-3173, Med. |Potential read of other graphics buffers| CHR X v vBa) |V (Ba)
entiality| -
Memory access : CHR:Win:
11 control [21, 22] 237611, Med. |CVE-2013-2874, Med. |Read of Browser’s UI content NVIDIA N/A (PNA) |N/A (PNA) |V (5a) |V (B4)
. Reveal OS user-name and browser .
12 | Information leak [3, 8] 83841, Low CVE-2011-2784, Med. CHR:Win |X N/A (NAP) |V B8a/0) |V (BA/C)
filesystem path
Usi ther WebGL texts, e.g.
13 | Unauthorized access [25, 29] 972622, Mod. |CVE-2014-1502, Med. | - L& OFI€r WebWh contexts, €8, | gp x x Yen |Ven
reading their buffers '
14 |Uninitialized memory [32] 521588, Low |N/A Reveal previous webpages UL CHR X X v®a) |V (BA)
CHR:Mac:
15 |Out of GPU memory [18] 153469, High |N/A Kernel Panic NVIDI:C X N/A(©CS) [V®a) |V(Ba)
UI freeze; GPU TDR; kernel panic
16 | GPU h: 31 483877, Unsp. |N/A ’ . All v N/A (NF v
ang [31] i / (platform dependent) IANE) | XBa) (BA)
Avail- 17 Compiler compute 593680, Unsp. |N/A Browser hang CHR:Lin |V N/A(NF) |/ v
ability overflow [37]
Invalid input (to shad
1g [[nvalid input (to shader 70718, Med. |N/A GPU process crash CHRLin |X x Yen Ve
compiler) [2] '
. . . . N/A (old
19 |Invalid pointer deref. [1] 63617, Low N/A Window manager (X) crash CHR:Lin |X 0s) Y84 |Y@Ba)
20 |GPU hang [7] N/A CVE-2011-2601, High |UI freeze; GPU TDR Mac v N/A (NF) | X@a) v (BA)

Table 1. WebGL vulnerabilities. Abbreviations and short forms used in the table: Crit. = Critical, Med. = Medium, Mod. = Moderate,
Unsp. = Unspecified, TDR = Timeout Detection and Recovery, CHR = Chrome, FF = Firefox, Lin = Linux, Mac = macOS, Win =
Windows, CS = Closed Source, NF = Not Fixed yet, NAP = No Access to Patch, PNA = Platform Not Available to us, BA = By Analysis,
BA/C = By Analysis/Conditional. In the 7th column, when a platform component is not specified, it means that the vulnerability
applies to all types of that component. For example, CHR alone means the vulnerability applies to Chrome on all operating systems
and GPUs.

our successful recreation of vulnerability #10). For the rest,
we could not take this approach since either the fix was in
a closed source component, we did not have access to the
patch, or the exploit targeted a platform we did not possess.

Third, we study the vulnerability reports in detail by an-
alyzing the reports themselves along with the discussions
and related reports. When possible, we also study the tar-
geted vulnerable code and the fix. We describe the type of
vulnerability and its potential impacts in the 3rd and 6th
columns, respectively, according to our understanding. We
have published our detailed study of these vulnerabilities on
the Sugar’s website?.

Fourth, we investigate the severity of each vulnerability
using the reports. We list the vendors report number and

Zhttps://trusslab.github.io/sugar/webgl_bugs.html

severity in the 4th column and the corresponding NVD re-
port number and severity in the 5th column. Note that dif-
ferent vulnerability report databases have different scoring
systems for capturing the severity. For example, NVD uses
the Common Vulnerability Scoring System version 2 (CVSS
v2), which has the following severity levels: Low, Medium,
and High [57]. Chrome reports, on the other hand, uses the
following levels: Low, Medium, High, and Critical. We use
the levels used by the corresponding report.

Finally, we investigate whether Sugar eliminates these vul-
nerabilities or not and show the results in the 10th and 11th
columns in the table (for single-GPU Sugar and dual-GPU
Sugar, respectively). We evaluate the effectiveness of Sugar
for most of the vulnerabilities by analysis (shown in the table
using “BA”). Also, for one vulnerability, we experimentally
evaluate the effectiveness of Sugar. This is a vulnerability

Operating system + Apps

Operating system + Apps

Operating system + Apps

Browser Web app proc. Browser Web app proc. Browser
GPU process Gra[:;ﬁcs GPU process Gra pdhics GPU process
f code code
°°tde o;;m;p;o;s;;or |<’- Compositor |{1] Compositor Compositor | L1 | Compositor
)_ m WebGL layer backend frontend WebGL layer backend frontend
Web app 1 Browser Qe 1. 1L B OemEls 1. 1L Browser
process OpenGL lib. process vGPU,driver | | | OpenGL lib. | process VGPU,driver OpenGL lib. process
\ - -
. i . Virtual .
Iinadow manager H N i Indow manager i Indow manager
Wind :g\r/;;:uacls ' Wind graphics Wind
U OpenGL lib. i plane OpenGL lib. plane OpenGL lib.
gserspace __________ |l e cdmmme e T —— A
OS kernel I 1 H 'i _________________ ittty [ttt neiei et iol Sl pieiriel
y . : | y . fl GPU 2 device
N PN) | il
Primary H Primary Primary
(physical) ¢ | vGPU (physical) : vGPU (physical)
graphics graphics graphics
plane vDisplay plane vDisplay plane
____________________ display
I | display subsys. GPU2 suays
| [| Display

(@)

(©

Figure 3. (a) Existing WebGL architecture. (b) Single-GPU Sugar’s architecture. (c) Dual-GPU Sugar’s architecture. Note that the
graphics planes bounding boxes in the figures only enclose the GPU and its driver, and not the graphics libraries, for simplicity.

that (i) we have successfully recreated and (ii) target the
platform used in Sugar’s prototype (i.e., Chrome, Linux, and
Intel GPU). We find that, out of the 20 vulnerabilities, single-
GPU Sugar and dual-GPU Sugar can eliminate 17 and 19 of
them, respectively. In §7.1, we provide more details on this
evaluation.

3 Sugar’s Design

Our preliminary study in §2 demonstrates various security
problems in WebGL. In this section, we present the design
of Sugar, an operating system solution that addresses many
of these problems by design.

Our key idea in Sugar is to use isolated graphics planes
for web apps. We use the term graphics plane to refer to a
GPU (or a vGPU) and the software stack required to use
it. The key rationale behind our design is the observation
that sharing a single physical graphics plane in the current
operating system is the source of the security problems in
WebGL. More specifically, in today’s systems, all the applica-
tions, including the web apps, use the same physical graphics
plane for hardware acceleration. Moreover, the operating
system window manager and browser’s core processes also
use the same graphics plane. To make the matters worse,
the GPU device driver (which is a key and large part of the
graphics plane) runs in the operating system kernel making
its vulnerabilities dangerous. Therefore, in Sugar, by using
fully isolated graphics planes for web apps, we significantly
reduce the size of the TCB.

Figure 3 (a) shows the existing architecture of the graphics
plane and how it is used by web apps. In this architecture,
web apps communicate to a GPU process in the browser
for WebGL API calls. The GPU process in the browser per-
forms security checks on the WebGL calls and then uses the
OpenGL library to communicate with the GPU device dri-
ver to render the WebGL texture. The browser’s compositor
in the browser process determines the layout of the final
browser’s window and composites the entire Ul using the
GPU process. In doing so, it uses the WebGL texture previ-
ously rendered by the GPU process. Note that in Chrome,
the compositing process is performed in two steps. First, a
compositor thread in the web app process composites the
web app’s UI (by sending commands to the GPU process).
The browser’s compositor then composites the full browser
window content. However, in our discussions and in the
figures, we only show a single browser compositor in the
browser process for simplicity.

The key idea in Sugar is to use virtualization support on
modern GPUs, such as Intel integrated GPUs, to realize iso-
lated graphics planes for web apps. A virtualizable GPU can
create multiple virtual GPUs (vGPUs) all isolated from each
other. vGPUs are normally used by virtual machines. One of
our contributions in Sugar is to enable an operating system
process, e.g., a web app process in the browser, to program
and use a vGPU. The process loads the entire graphics stack
into its address space (including the device driver, which we
transform into a library as discussed in §4). The vGPU along

with its software stack is an isolated graphics plane used by
the web app, referred to as a virtual graphics plane.

The operating system window manager, the browser core
processes such as the GPU process, and the rest of the trusted
applications use a different graphics plane for their opera-
tions. We refer to this graphics plane as the primary graphics
plane. This graphics plane has a special requirement: exclu-
sive access to the display. That is, it must have the unique
ability to program the display controller in order to set the
address of the framebuffer and to set the display mode (e.g.,
resolution). The operating system will then allow the win-
dow manager (but no other processes) to use the primary
graphics plane’s access to the display controller for Ul man-
agement.

Figure 3 (b) and (c) show two variants of Sugar’s archi-
tecture. Figure 3 (b) shows the single-GPU Sugar variant, in
which we assume that the system has a virtualizable GPU.
Our main targets for single-GPU Sugar are commodity desk-
tops and laptops using Intel processors that incorporate an
integrated virtualizable GPU (all Intel Core processors start-
ing from the 4th generation, i.e., Haswell [99]). In this design,
each web app uses a virtual graphics plane. Moreover, the
primary graphics plane uses the same underlying GPU but is
given exclusive access to the display subsystem by the GPU
device driver.

Figure 3 (c) shows the dual-GPU Sugar variant, in which
we assume that the system has two GPUs, one of which
is virtualizable. This setup is common in high-end laptops
and desktops that include one GPU in addition to the one
provided by the Intel processor. It will also be available in the
recently announced “Intel with Radeon Graphics”, a multi-
chip package that incorporates both an Intel integrated GPU
and a Radeon GPU [67]. Similar to the single-GPU Sugar,
this design uses a virtual graphics plane for a web app. The
main difference is the primary graphics plane. In this design,
the primary graphics plane uses the other GPU in the system.
Finally, note that in all the three architectures in Figure 3,
the web app process is not allowed to directly communicate
with the GPU device driver in the kernel.

WebGL texture retrieval in Sugar. In Sugar, a web app
does not use the browser’s GPU process for WebGL support.
Instead, it makes calls into its own “GPU thread” (§5.1). The
GPU thread executes the web app’s WebGL commands in
order to render the WebGL texture. The GPU process then
retrieves this texture and uses it to composite the browser’s
UI (per compositing commands from the browser process).

Sharing a texture rendered by a web app with the GPU
process requires transferring a graphics buffer (i.e., the buffer
holding the WebGL texture) from the web app’s virtual graph-
ics plane to the primary graphics plane. While buffer sharing
within a graphics plane is trivially enabled by the GPU (or
vGPU) device driver, doing so across the planes is more chal-
lenging. We use two techniques to enable this. First, we use
the virtual display (i.e., vDisplay) read-back capability of

coEm

Figure 4. Screenshot of dual-GPU Sugar in action.

the Intel GPU virtualization. That is, for every frame, once
the WebGL texture is ready, we use a simple GPU shader
to post the texture to the virtual display of the vGPU. That
is, we copy the texture to the framebuffer of this vGPU in a
fullscreen mode. The Intel GPU device driver then encapsu-
lates the virtual display framebuffer as a texture available to
the browser’s GPU process, which can use it for compositing.
While the previous technique is sufficient for single-GPU
Sugar, it is not adequate for dual-GPU Sugar since it uses two
different physical GPUs for the web app’s virtual graphics
plane and the primary graphics plane. Therefore, in our
second technique, we use Linux dma-buf interface [51] to
transfer buffers between the two GPU device drivers. With
this interface, the Intel GPU exports the virtual display’s
framebuffer, which is then imported by the device driver of
the other GPU.
Co-rendering the UL One of our key contributions is to use
multiple graphics planes (potentially using different physical
GPUs as in dual-GPU Sugar) to render the content of a single
unified UI displayed to the user on the display. Figure 4
shows an example screenshot of Ul in dual-GPU Sugar, which
illustrates this point. In this screenshot, the blob texture in
one browser session is rendered by one Intel vGPU, the
planets texture in the second browser session is rendered by
another Intel vGPU, and the native 3D game and the rest of
the Ul is rendered and composited by a Radeon GPU.
Single-GPU Sugar vs. dual-GPU Sugar. Single-GPU Sugar
is deployable on any machine with a single virtualizable GPU,
such as Intel integrated GPUs. However, when a second GPU
is available, dual-GPU Sugar is preferred since it provides two
advantages. First, it can protect against Denial-of-Service at-
tacks caused by hanging the GPU (§7.1). If successful, these
attacks cause the system UI to freeze, causing significant
inconvenience to the user. Single-GPU Sugar in our current
prototype cannot protect against these attacks because hang-
ing a vGPU in the Intel GPU virtualization technology hangs
the underlying physical GPU as well. However, in dual-GPU
Sugar, the primary graphics plane uses a separate physical
GPU. Hence hanging the Intel GPU does not result in a Ul

freeze. Second, dual-GPU Sugar provides enhanced perfor-
mance isolation, as we demonstrate in §7.2, since the web
apps will not time-share the underlying GPU with the rest of
the system. In other words, when using dual-GPU Sugar, web
apps’ usage of WebGL causes a smaller drop in the graphics
performance of the rest of system and vice versa.

Indeed, many modern high-end desktops and laptops in-
corporate two GPUs. Therefore, one might wonder how ex-
isting systems leverage these two GPUs and how dual-GPU
Sugar advances the state of the art. In most laptops and desk-
tops, only one GPU is connected to the display and hence
that is the only GPU used for graphics. Some systems can
support different displays connected to different GPUs as
well. In such cases, each display is fully controlled by a differ-
ent GPU. In dual-GPU Sugar, only one GPU is connected to
the display but the content on this display can be rendered
by two GPUs (when a web app renders a WebGL texture).
Such a seamless integration of two GPUs for graphics is one
of our contributions.

Note that many existing systems use the second GPU for

computation. Doing so is easier since the Ul is supported by
one GPU and the other GPU is simply treated as an accelera-
tor.
Supporting multiple web apps. Sugar can support mul-
tiple web apps using WebGL simultaneously. It does so by
assigning a separate vGPU to each of the web apps. However,
Sugar is bound by the max number of vGPUs achieved by the
virtualizable GPU. In our prototype, we find this number to
be 3. Even though Intel GPU virtualization can theoretically
support up to 8 vGPUs, some practical constraints in this
technology limits this number (see §7.2). Given this limita-
tion, one might wonder what Sugar can do if more web apps
need to use WebGL. We see three possible options, which
we plan to explore in the future. First, Sugar can simply pre-
vent more web apps from using WebGL. Second, it can allow
some user-selected white-listed web sites to use WebGL on
top of the primary graphics plane bypassing Sugar. Third, it
can enable a group of web apps to share a single vGPU by
assigning that vGPU to a separate GPU process, with which
all these web apps communicate.

3.1 Threat Model

We assume that a web app, and hence the whole web app
process, is untrusted. This is the common threat model for
web apps as they are developed by potentially unknown
developers and can contain malware. We assume that the
rest of the browser, including the browser and GPU processes,
and the operating system are trusted.

We attempt to protect the system against various attacks
by a web app including integrity, confidentiality, and avail-
ability attacks (§2.2). We do not protect against side-channel
attacks.

3.2 Trusted Computing Base

We define the TCB of WebGL architecture (either the existing
one or Sugar) as the privileged parts of the software stack
involved in performing hardware acceleration through the
WebGL API. A privileged part refers to one residing outside
the web app process (which is the sandbox for the web app
code). The TCB of existing WebGL architecture includes the
browser’s GPU process, the OpenGL and GPU libraries, and
the GPU device driver. The TCB of Sugar includes the GPU
virtualization software (mainly an emulation layer), Sugar’s
code to attach a vGPU to a process (§4.1), and part of KVM
for instruction decoding used in Sugar (§6).

It is important to note that we rely on the operating system
kernel and root user to be protected from a web app. If a web
app can gain root or kernel privileges, it can simply bypass
Sugar. We also trust the GPU hardware.

4 vGPU Driver as a Library

One of the key components of Sugar is enabling a web app to
use a vVGPU for WebGL rendering. In this section, we discuss
how Sugar achieves this.

Before presenting our solution, we discuss a straw-man
solution. This solution is to run a web app inside a virtual ma-
chine with access to a vGPU. Prior work has demonstrated
a web browser design in which each web app runs inside
a virtual machine, e.g., in Tahoma [77]. A similar approach
is being used in Windows Defender Application Guard in
Microsoft Edge [42]. However, one main drawback of this so-
lution is that it requires significant revamping of the browser
design. Moreover, even with hardware support for virtual-
ization available in modern processors, CPU and memory
virtualization still incurs some — although small - overhead,
and hence this design does affect the overall performance of
the browser, even for non-graphics tasks.

In Sugar, we take a different approach. That is, we en-
able the web app to directly access and use a vGPU without
requiring a virtual machine. We achieve this by wrapping
the vGPU’s device driver inside a user space library, link the
library to the web app process address space, and then attach
the vGPU to the process. This reduces the required modifi-
cations to the browser to only the WebGL stack. Moreover,
it avoids the overhead of CPU and memory virtualization.

4.1 Attaching a vGPU to an Operating System
Process

As previously mentioned, our current focus is to use the
virtualization support of Intel GPUs since they are commonly
available on all modern desktops and laptops. Intel GPU
virtualization is a mediated passthrough solution, which
leverages hardware isolation features such as GPU page
tables. In this solution, the vGPU device driver’s attempts to
access the vGPU’s registers and page tables are trapped by
the virtualization layer and emulated. However, the vGPU

driver’s access to performance critical resources, such as
memory, is not trapped enabling high graphics performance.

To enable an operating system process to directly use a
vGPU, we employ the following techniques. First, we map
the registers of the vGPU into the process address space, but
remove read and write permissions from these mappings.
This allows the vGPU driver to access the registers, which is
then trapped into the kernel, passed to the GPU virtualization
layer, and emulated as needed. Note that this is possible since
all the vGPU’s registers are memory-mapped (i.e., Memory-
Mapped I/O or MMIO).

Second, we deliver the interrupts for vGPU using operat-
ing system signals (SIGUSR1 in our prototype). When the
vGPU driver disables the interrupts, we mask the signal. Sim-
ilarly, when the driver re-enables the interrupts, we unmask
the signals and deliver the pending ones.

Third, we add support for vGPU driver’s programming of
the GPU page tables. Intel GPUs include an MMU, which al-
lows the device driver to control the GPU’s access to memory
using Direct Memory Access (DMA). Similarly, the vGPU
device driver attempts to program the vGPU’s MMU page
tables. In this case, the GPU virtualization layer shadows
the page tables. That is, it traps vGPU driver’s attempt to
update the tables and updates the actual tables. The page
table shadowing is required for safety. It only allows the
vGPU driver to map its own process memory pages into the
page tables, which limits the vGPU’s DMA access to the web
app process memory.

Shadowing the vGPU’s page table in Sugar raises a chal-
lenge — determining the virtual and physical address spaces
for the vGPU device driver. Normally, the vGPU device driver
programs the page tables using the physical addresses of the
virtual machine that it runs in. The GPU virtualization layer
then translates these physical addresses to system physical
addresses. However in Sugar, the vGPU driver runs in an
operating system process, which only has a single virtual
address space (and no notion of a physical address space). We
solve this challenge by refactoring the vGPU device driver
and using the process virtual address space as both the vGPU
driver’s virtual and physical address spaces (i.e., one-to-one
mapping). In this case, the vGPU driver updates the page
tables using its physical address space, which is identical
to its virtual address space. This enables the virtualization
layer to translate the vGPU’s physical addresses by simply
walking the process page tables.

Fourth, we pin in memory the process memory pages that
can be accessed by the vGPU through DMA. This ensures
that the physical pages will not be swapped out as long as
they can be accessed by the vGPU. Pinning memory pages
puts pressure on the operating system memory manager. In
future work, we plan to explore techniques similar to that
in [87] to minimize the number of pinned pages in Sugar.

Finally, graphics applications interact with the GPU dri-
ver through user space libraries. These libraries include the

OpenGL library and some platform-specific GPU libraries
such as the Direct Rendering Manager (DRM) libraries in
Linux-based OSes. These libraries issue system calls to inter-
act with the driver. We modify these libraries to instead issue
a function call into the vGPU driver library for Sugar. Note
that these modified libraries are only used by Sugar. The rest
of the system can continue to use the unmodified versions of
these libraries for their own access to the primary graphics
plane.

4.2 Reusing the vGPU Driver Code

As mentioned, we run the vGPU driver as a library within
a process. Existing vGPU driver from Intel is developed to
run in an operating system kernel, and not in the user space.
Therefore, one option for us was to rewrite the driver for
user space. However, this approach would have required
significant engineering effort since Intel’s vGPU driver is
almost the same as the Intel’s actual GPU driver, which con-
sists of about 123,000 LoC. Therefore, we decided to instead
port the existing kernel driver to user space with a wrapper.
We use User Mode Linux (UML) as our wrapper. UML ports
Linux to run on top of the Linux syscall interface. We modify
the build system of the UML so that it is built into a shared
library, and not an executable.

We allocate memory for the library in two steps. First,
at UML and driver’s initialization time, we allocate a fixed
chunk of memory, which is given to the SLAB page allocator
of UML and used for small allocation calls in the driver (e.g.,
allocating memory for an object). Second, for larger memory
allocations required for graphics buffers, we dynamically
allocate more memory from the system. We believe that this
design achieves a reasonable trade-off between performance
and memory provisioning. Allocating all the memory at ini-
tialization time can result in over-provisioning of memory.
On the other hand, allocating all the required memory dy-
namically can affect the performance especially due to small
object allocations within the driver.

4.3 Surface Management for vGPU

A graphics plane typically requires a window manager to
control and share the framebuffer between applications us-
ing that plane. The window manager allocates windows for
applications. It also allocates renderable surfaces for these
windows. Once the applications have filled these surfaces
with their UI contents, the window manager composites all
of these surfaces on their corresponding window locations
on the framebuffer. The operating system window manager
shown in Figures 3 (b) and (c) operates on the primary graph-
ics plane.

Similar to the primary graphics plane, a virtual graphics
plane requires some form of window management to control
the usage of its framebuffer. However, due to our design, a
virtual graphics plane is used by a single web app, making a
full-blown window manager unnecessary. Therefore, we use

a baremetal surface manager in Sugar. The surface manager
allocates a single fullscreen surface for the web app and posts
the WebGL texture fullscreen to the vGPU’s display. In §9,
we explain how this design would cause challenges for web
apps that use more than one WebGL texture and discuss a
potential solution for it as well.

5 Browser’s Support for Sugar
5.1 GPU Thread vs. GPU Process

As previously mentioned, modern web browsers, such as
Chromium, use a dedicated process for GPU-related tasks,
called the GPU Process [30, 43]. All other processes communi-
cate with this process for using the GPU. In Sugar, web apps
use dedicated vGPUs. Hence, the web app process handles
all the GPU-related operations. To enable this, we create a
thread in the web app process for GPU-related tasks, called
the GPU thread. When needed, other threads in the web app
process submit GPU-related tasks to this thread for execu-
tion.

The GPU thread executes mostly the same code that the
GPU process does, with the following exceptions. First, the
GPU process receives graphics operation requests through
IPC from other processes whereas the GPU thread receives
requests only from other threads in the same process. Sec-
ond, the GPU process does not perform any display manage-
ment operations. It only acquires a window and its surface
from the operating system window manager and renders
the browser’s final Ul on that surface. In contrast, the GPU
thread configures and manages its own virtual display.

It is important to note the rationale behind using a dedi-
cated thread in the web app process for graphics operations.
While it was possible for us to simply execute the graphics
operations in the same thread that executes the web app’s
javascript code, we opted for a separate thread in order not
to slow down the rest of operations in the web app since
graphics operations can block for relatively long periods of
time.

5.2 Rendering Synchronization

In the existing WebGL architecture, the GPU process orches-
trates the submission of commands to the GPU based on
their dependencies. Consider the following example — the
browser process issues compositing commands to the GPU
process. These commands rely on the web app’s WebGL tex-
tures to be rendered first and used in compositing. To enable
this, the browser process inserts a sync point in its commands
declaring these dependencies. When encountering the sync
point, the GPU process pauses the submission of the browser
commands to the GPU. However, it continues to execute the
web app’s commands for WebGL. When these commands are
fully executed and the WebGL texture is ready, the sync point
is triggered and the GPU process resumes the execution of
paused browser’s compositing commands.

In Sugar, however, the commands for the web app’s We-
bGL textures are executed within the web app itself, and
hence the GPU process is not normally informed of their
completion, causing the dependent commands to be paused
indefinitely. We solve this problem by sending an IPC with
the right sync point information to the GPU process from
the web app when the WebGL texture is rendered and posted
to the vGPU’s display.

6 Implementation and Prototype

Our implementation has the following components: the Intel
vGPU driver library, Intel GPU virtualization layer, Mesa
(open source OpenGL Implementation) and DRM libraries,
and the Chromium browser. We build both Intel vGPU driver
and the GPU virtualization layer on top of the Intel driver
with virtualization support, i.e., Intel GVT-g (2016-Q3 re-
lease of KVMGT [38]), which uses Linux kernel version 4.3.0.
We build our libraries on top of Mesa version 12.0.6 and
DRM version 2.4.70. Finally, we add support for Sugar to
Chromium version 58.0.3023.0.

We added support to Intel GPU virtualization for attaching
a vGPU to a process, as discussed in §4.1. This requires us to
trap and emulate vGPU driver’s accesses to vGPU registers
and some protected memory regions. We use existing KVM’s
x86 instruction decoder to decode the trapped accesses.

We use an Intel Core i7-5775C processor in our prototype,
which comes with an Iris Pro Graphics 6200 integrated GPU.
While we have tested Sugar only on this GPU, we anticipate it
to easily support other Intel GPUs with virtualization support
as well since our vGPU driver library (§4) is derived from the
existing vGPU driver, which support all Intel virtualizable
GPUs.

Our prototype uses a desktop with the aforementioned
CPU, 16 GB of memory, 500 GB of SSD, a 27" display, and an
ASRock Z97 Extreme4 motherboard. For dual-GPU Sugar,
we use a Radeon R9 290 discrete GPU as well. Based on our
experience, it is important that the second discrete GPU is
powerful enough to perform the compositing load needed
for running WebGL at a high framerate. Even if the web
app does not use this GPU for rendering, still the rest of the
system uses it for the primary graphics plane. In an initial
prototype, we used a weak Radeon HD 6450 GPU, which
could not keep up with the compositing load, resulting in
an overall slowdown. Indeed, in most dual-GPU systems,
the second GPU is a powerful one compared to the Intel
integrated GPU.

EGL vs. GLX. On a Linux machine, Chromium by default
uses the GLX framework for interfacing between OpenGL
and the X window system. However, the Intel vGPU frame-
buffer read-back implementation, which we have used in the
GPU processor, is based on the EGL framework. Therefore,
we reconfigure Chromium to use EGL, which achieves simi-
lar performance to GLX. However, EGL sometimes causes

TCB

System (LoC) Component LoC
- GPU device driver 123,000
. - Mesa library 441,000
Baseline WebGL|738,000 - DRM libraries 16,000
- Chromium GPU process 158,000

- Intel GPU virtualization 28,300

- Sugar’s code to attach 1,500
a vGPU to a process
- KVM x86 instruction decoder| 4,600
Table 2. WebGL TCB Analysis (assuming an Intel GPU).
For Mesa and DRM libraries, before counting, we manually
eliminate parts of the source trees specific to platforms and
GPUs other than Linux and Intel GPU.

Sugar 34,400

some visual choppiness at high framerates. We plan to add
GLX support to Sugar in the future to replace EGL.

GPU and display configurations. For single-GPU Sugar,
we connect the display to the VGA port of the Intel GPU.
For dual-GPU Sugar, we first update the BIOS settings to
set the Radeon GPU as the primary GPU and enable the
“iGPU Multi-Monitor” option to activate both GPUs. We then
connect the display to the VGA port of the Radeon GPU.
Chromium build options. We follow Google’s guidelines
to build the “Release” version of Chromium, both for our base-
line and Sugar experiments [56]. However, for enhanced We-

bGL performance for both, we turn off the “dcheck_always_on”

option, which performs runtime assertions.

7 Evaluation

We evaluate the security and performance of Sugar.

7.1 Security

TCB analysis. In the current implementation of WebGL,
the TCB exposed to the web app is large. It includes the
code in the browser’s GPU process, the graphics libraries
(including OpenGL and DRM libraries in Linux), and the
GPU device driver in the kernel. Table 2 presents the size of
these components. It shows that the size of the TCB is about
738,000 LoC. In contrast, the TCB of Sugar is about 34,400
including 28,300 LoC for Intel GPU virtualization (mostly a
GPU emulation layer), 1,500 LoC for Sugar for attaching a
vGPU to a process as discussed in §4.1), and 4,600 LoC for
the KVM x86 instruction decoder (this number includes the
KVM code for instruction emulation too, which we do not
use). Moreover, a full GPU virtualization has the potential to
further reduce the size of TCB in Sugar by eliminating the
GPU emulation layer.

Failure domain analysis. We analyze how effectively Sugar
protects the system against the exploit of WebGL vulnerabili-
ties. As shown in Table 1, we study 20 WebGL vulnerabilities
and determine (either experimentally or by analysis) whether

they are solved by Sugar or not. We determine that single-
GPU Sugar manages to overcome 17 of these vulnerabilities
and dual-GPU Sugar overcomes 19.

Sugar protects against most of these vulnerabilities be-
cause of the following reasons. First, it sandboxes all the
vulnerable code in the web app process. Second, it isolates
the GPU memory accessible to the web app as a result of
GPU memory virtualization.

The additional vulnerabilities that dual-GPU Sugar over-
comes (compared to single-GPU Sugar) is related to GPU
hang problem (vulnerabilities #16 and #20). Single-GPU Sugar
cannot protect against these vulnerabilities since, on Intel
GPUs, a vGPU hang results in the same effect in the physical
GPU. Moreover, neither single-GPU Sugar nor dual-GPU
Sugar protects the system against vulnerability #8 in the ta-
ble. This vulnerability leverages a timing side-channel, which
is also successful in Sugar, as we mentioned in our threat
model (§3.1).

Three of the vulnerabilities in the table require additional
explanation. Vulnerability #12 (marked as Conditional (BA/C)
in the table) leaks the system user-name and the browser’s
executable file system path due to a bug in the shader com-
piler in the GPU process. Sugar moves the shader compiler to
the web app process since the compiler is part of the OpenGL
library. This, on its own, does not solve the problem. How-
ever, it can be effective along with proper sandboxing of the
web app process and preventing its access to such system
info.

Vulnerabilities #16 and #20 that hang the GPU will result
in the GPU device driver triggering a Timeout Detection and
Recovery (TDR) operation, which resets the GPU hardware.
Unfortunately, TDR has been shown to be often error-prone
resulting in either a kernel panic or visual side effects [31].
While dual-GPU Sugar prevents these vulnerabilities from
freezing the UL, it does trigger the TDR for the hung GPU, and
hence can suffer from the bugs in TDR. We plan to address
this problem in two ways in the future in dual-GPU Sugar.
First, after a hang, the system can simply refuse to reset
this GPU. It can continue to use the primary graphics plane
but cannot use Sugar anymore until a full system reboot.
Second, we are considering to move the TDR operation to
the user space, which will at least eliminate the possible
kernel panics.

7.2 Performance

We evaluate the performance of Sugar with five benchmarks:
Blob [61], Many-Planets [63], San-Angeles [64], Cubemap [62],
and Animometer [60]. Note that the Blob benchmark can be
configured with varying number of blobs and resolutions.
Unless otherwise stated, we use the default settings.

We configure the system as follows for the experiments.
First, we use a default memory size for our vGPUs in all

1000

Framerate (FPS)
=N WA N] o\
=Si=k=k=2=1=k=R=1=]
[=l=R=R=R=R=R=R=R=]

Baseline (Chromium using Intel GPU)]
Single-GPU Sugar 1

Dual-GPU Sugar =3

Chromium using SwiftShader
Chromium using Radeon GPU Il

60 FPS ——
e ——— M HI-I W .
Many-P. San-A. Cube. Anim. Blbl BIb2 BIb3 Blb4 BIb5 BIb6
100 @
_ ‘ Baseline ‘(Chromium‘ using Intef GPU) 1 ‘ Ch}omium usfng SWiftShlader m
= 80 Single-GPU Sugar 1 Chromium using Radeon GPU Il
= Dual-GPU Sugar 3
.8
= 60F
N
S 40
=]
= ol (ol ol ool M (ke (ol |
° I ol |
0 1
Many-P. San-A. Cube. Anim. Blbl BIb2 BIb3 Blb4 BIb5 BIb6
(b)

1000 ‘ — . ‘
© Baseline (Chromium using Intel GPU) (] Chromium using SwiftShader
€ 100! Single-GPU Sugar Chromium using Radeon GPU Il
i3 Dual-GPU Sugar B
8 10f
3
£ Iy
=
2 0.1 H H
©]

0.01

Many-P. San-A. Cube. Anim. Blbl BIb2 BIb3 Blb4 BIb5 BIb6

(©

Figure 5. (a) Benchmarks’ performance. (b) System’s CPU utilization while executing the benchmarks. (c) Benchmarks’ raw

CPU usage.

experiments. We determine the default memory size in Ex-
periment 2 by comparing the performance of various con-
figurations. Our default setting uses 64 MB of CPU-visible
GPU memory (i.e., aperture) and 128 MB of CPU-non-visible
GPU memory. Second, we use the EGL framework for Sugar
(§6) but use GLX for the baseline experiments since GLX
is used by default in Chromium. Third, as mentioned in §6,
we use Mesa version 12.0.6 for Sugar. However, this version
of Mesa does not properly support the high-end Radeon R9
290 GPU in our prototype [40]. Therefore, we use Mesa ver-
sion 17.0.7 for the Radeon GPU in dual-GPU Sugar and in
Radeon performance experiments since this version of Mesa
has a fix for the aforementioned problem [35]. Moreover,
for better comparison of single-GPU Sugar with dual-GPU
Sugar, we use Mesa version 17.0.7 for the GPU process in
Sugar (since in dual-GPU Sugar, while the web app process
uses our Mesa library, the GPU process uses the Mesa library

17.0.7 needed for the Radeon-based primary graphics plane).
And, for baseline experiments on the Intel GPU, we use Mesa
version 12.0.6 for better comparison with Sugar (in which
web apps use our Mesa library based on version 12.0.6).
Experiment 1: Sugar’s performance. In the first set of
experiments, we compare the performance of single-GPU
Sugar and dual-GPU Sugar with the baseline Chromium
(running on the Intel GPU). Figure 5 (a) shows the results for
our benchmarks. In this experiment, we use 5 other settings
for the Blob benchmark other than the default ones. These
settings include (1, 16"3) for Blob1, (10, 24"3) for Blob2 (the
default), (10, 32"3) for Blob3, (100, 32"3) for Blob4, (1000,
40"3) for Blob5, and (1000, 48°3) for Blob6, where the two
parameters determine the number of blobs and resolution,
respectively.

Our results show that Sugar achieves high graphics per-
formance. More specifically, we observe the following: First,

500 500
64/32 64/32 3
450 6d/oa| 450 64/64 3
5400 64/128 =3 400 64/128 =1
& 350 64/250mm | D350 64/256 ==
=300 64/512 mm & 300 64/512 mm
SHEE 25 SES
2 200 5 200
5150 £ 150
* 100 i= 100
50 50

Blb. Many-P. San-A.

Cube.

Anim.

Blb.

Many-P. San-A. Cube. Anim.

Figure 6. Effect of varying vGPU memory sizes for (Left) single-GPU Sugar and (Right) dual-GPU Sugar.

for benchmarks that achieve a framerate higher than 60
(which is equal to the display refresh rate at 60 Hz), Sugar
also achieves a performance higher than 60. Given that in
practice, the browser caps the WebGL framerate to 60 (to
synchronize with the display refresh rate), Sugar matches
the baseline performance in this case (i.e., both baseline and
Sugar will achieve 60 FPS in practice). Second, for bench-
marks that have performance below or close to 60 FPS, Sugar
achieves competitive performance as the baseline. As a re-
sult, our experiments show that Sugar will provide a similar
user experience.

Our experiments also show that at max framerate, Sugar
achieves noticeably lower performance than the baseline
running on the Intel GPU. We believe that a large part of
performance loss in Sugar is due to the overhead of GPU
virtualization, as also reported in [99]. Therefore, a GPU
virtualization solution with higher performance can further
improve Sugar’s performance. Other reasons behind Sugar’s
performance loss are (1) our use of operating system signals
for interrupt delivery and (2) additional usage of GPU in
the web app process to post the WebGL texture to its vir-
tual display (§3). While the former can be eliminated by a
faster interrupt delivery mechanism to the user space driver,
the latter is fundamental to the design of Sugar. Hence, we
measure this overhead for the default Blob benchmark and
expect the same result for other benchmarks since the post
operation requires filling up the same-sized virtual display in
all benchmarks. Our experiments show that the time taken
to complete the WebGL texture post operation is about 0.23
ms. To put this number in perspective, imagine a benchmark
that achieves about 300 FPS on Sugar. The frame time for this
benchmark is about 3.3 ms. In this case, the WebGL texture
post operation takes up 7% of the frame time. We believe
that this is a small overhead.

Figure 5 (a) also shows the performance of running the
same benchmarks on the Radeon GPU in our dual-GPU pro-
totype as well. The Radeon GPU is a more powerful GPU
than the Intel one and hence can achieve noticeably higher
performance. Sugar is, however, bounded by the performance
of the Intel GPU, which provides the vGPUs.

Figure 5 (b) shows the system’s CPU utilization for the
same set of benchmarks. We measure the CPU utilization by
calculating the percentage of time in which the CPU cores
are not idle. The results show that Sugar does not incur sig-
nificant CPU utilization, which would affect other running
processes in the system. To compare the CPU usage of differ-
ent WebGL solutions, Figure 5 (c) shows the raw CPU usage
per frame. We measure the CPU usage by calculating the
total units of CPU time (in jiffies) needed to render a frame.
The figure shows that Sugar does incur almost same CPU
usage as the baseline. This is because while Sugar does use
more CPU instructions for vGPU emulation, it eliminates IPC
communication and shared-memory data transfer between
the web app process and the GPU process.

The same figure also shows the results for an software ren-
derer, Chrome SwiftShader. As the figure shows, single-GPU
Sugar beats the SwiftShaders’s performance by an average of
375% (as high as 1216% for one benchmark) while incurring
74% less CPU utilization and 92% less raw CPU usage.
Experiment 2: vGPU memory size. We attempt to under-
stand the effect of vGPU memory size on the performance of
Sugar. A vGPU memory consists of memory accessed by the
CPU (also referred to as aperture) and memory not accessed
directly by CPU. For Intel Iris Pro 6200 GPU used in our
prototype, the overall size of these memory types are 250
MB and 3.75 GB, respectively. The system reserves 96 MB
and 384 MB of these two memory types, respectively, for
the primary graphics plane. Moreover, the aperture size of a
vGPU cannot be smaller than 64 MB on Linux according to
Intel GPU virtualization guidelines [39]. Based on these con-
straints, we test the following configurations (represented as
A/B where A and B refer to the aperture size and the size of
CPU-non-visible GPU memory in MB): 64/32, 64/64, 64/128,
64/256, 64/512, 64/1024, and 128/1024.

Figure 6 shows the results. We observe the following. First,
the small memory sizes of 32/64 and 64/64 result in a drop in
performance. We believe that this is due to higher memory
contention. Second, the large memory size of 128/1024 also
results in a drop in performance. We believe that this is due to
the overhead of memory pinning, which affects the overall
performance of the system, including the browser. Based

on these results, we choose 64/128 as the default memory
size configuration for the rest of the experiments in the
paper. This is the configuration with the smallest amount
of memory that shows no drop in performance. While we
believe that this configuration is a good default one, we
admit that different benchmarks might benefit from other
configurations. It is, therefore, possible to extend Sugar’s
design to dynamically test and choose the right configuration
for the current benchmark.

Experiment 3: supporting multiple web apps. We mea-
sure the scalability of Sugar when supporting multiple web
apps. To do this, we run up to 3 web apps concurrently, each
running the default Blob benchmark in a separate Chromium
session and each occupying an equal portion of the screen.
Given the vGPU memory size constraints mentioned ear-
lier, we cannot run more than 3 vGPUs at a time. Moreover,
when using three vGPUs, we reduce the GPU aperture size
allocated for the system to 32 MB in order to free up enough
aperture for the vGPUs.

Figure 7 shows the results. It shows that single-GPU Sugar
sees a significant drop in performance when supporting more
than one web app. Baseline and dual-GPU Sugar, on the other
hand, see a more moderate drop. The more significant drop
in single-GPU Sugar vs. dual-GPU Sugar is due to additional
load on the primary graphics plane for compositing, which
is sharing the same GPU with web apps. Moreover, the more
significant drop in single-GPU Sugar vs. the baseline is due
to the overhead of virtualization to the GPU device driver.
Experiment 4: performance isolation. We evaluate the
effectiveness of dual-GPU Sugar in isolating the performance
of a web app from the rest of the system. To do this, we run
a native OpenGL benchmark (Unity WaveShooter [59]) at
the same time as one of our WebGL benchmarks (Blob), each
occupying almost half of the screen. Figure 8 (Left) shows the
WebGL benchmark performance in this setup and Figure 8
(Right) shows the OpenGL benchmark performance. Each
figure shows the results for baseline, single-GPU Sugar, and
dual-GPU Sugar. Moreover, each figure shows the perfor-
mance of the benchmark while running with or without the
other benchmark. For the latter cases, we run the benchmark
in half of the screen while the other half is empty. The fig-
ures show that the performance drop both in the WebGL
and OpenGL benchmarks is smallest in dual-GPU Sugar. As
previously mentioned, this is because the native app in Sugar
runs on the secondary GPU while the web app uses an In-
tel vGPU. However, we see some drop even with dual-GPU
Sugar. This is because the OpenGL benchmark competes
with the browser’s GPU process for access to the second
GPU.

8 Related Work

Browser security & web app isolation. Other solutions
have attempted to protect the browser and the system against

500
Baseline 3

Single-GPU Sugar =
Dual-GPU Sugar mm

mlll

3 web apps

—_— D) N W W B
SWUNO WnNO WO W
S o oo oOoOoO

N
(=)

Framerate (FPS)

1 web app 2 web apps

Figure 7. Supporting multiple web apps simultaneously.

1400 1400
Standalone run == Standalone run =2
1200 Concurrent run mm 1200 Concurrent run mm
é’ 1000 § 1000¢
~ 800 = 800
2]
= 600 £ 600¢
(5} Q
£ 400 g 4000
H 200 = 200
0

Baseline Sing.-GPU Dual-GPU 0 Baseline Sing.-GPU Dual-GPU
Figure 8. Performance isolation. (Left) A WebGL benchmark
running standalone or concurrent with an OpenGL bench-
mark. (Right) An OpenGL benchmark running standalone
or concurrent with a WebGL benchmark.

an untrusted web app, e.g., by sandboxing it inside a pico-
process [85], in an exokernel browser [89], inside a virtual
machine [42, 77], or by reducing the TCB of the browser [98].
Moreover, Xax [79] and Native Client [100] enable secure
execution of native code in the browser using hardware pro-
tection mechanisms and software fault isolation, respectively.
These solutions are orthogonal to our work, which focuses
on secure GPU acceleration for web apps.

User space I/0. Sugar allows the user space web app pro-
cess to directly use a vGPU and hence is related to all user
space I/O solutions. For example, Arrakis [91] and IX [73]
decouple the control and data planes of the networking and
storage stacks in the operating system and run the data plane
in the user space by leveraging virtualized I/O devices. How-
ever, unlike existing solutions, Sugar focuses on GPU and
integrates with web browsers.

Secure UI embeddings. AdSplit [96], AdDroid [90], Layer-
Cake [94], and SchrodinText [68] demonstrate secure em-
bedding of UI interfaces. These solutions, at a high level, are
similar to Sugar that renders various parts of the Ul in isola-
tion. However, Sugar focuses on GPU accelerated graphics
and leverages GPU virtualization in its design, none of which
is addressed in these systems.

Library operating systems and other sandboxes. Library
operating systems, such as Exokernel [81] and Drawbridge [92],

improve the system security by executing the operating sys-
tem management components as a library in the application’s
process address space. Indeed, Sugar can be thought of as
an exokernel design for GPU acceleration and hence is com-
plementary to this line of work. Haven uses Intel Software
Guard Extension (SGX) to protect an application from the
untrusted cloud, and uses a library operating system in the
enclave. While Sugar uses a library operating system-like
architecture, it cannot protect the web app from an untrusted
system.

GPU virtualization. Cells supports operating system-level
virtualization of mobile devices and supports secure sharing
of the GPU between multiple virtual phones through virtual-
ization [71]. Paradice paravirtualizes I/O devices, including
GPU, using the UNIX device file boundary [69]. In contrast,
Sugar uses existing GPU virtualization solutions for secure
GPU access by web apps.

Application’s direct access to hardware. The nonkernel
gives applications direct access to devices [74]. Combined
with GPU virtualization, the nonkernel can be used to assign
vGPUs to different applications. However, the nonkernel will
not be able to effectively assign vGPUs to web applications
without support in the browser, as in Sugar. Dune [72] gives
applications direct access to virtualization hardware exten-
sions. Similarly, Sugar gives an application direct access to a
vGPU.

Alternative device driver designs. A main source of se-
curity concern with GPU access in the browser is the GPU
kernel device driver’s vulnerabilities. There are solutions
that improve the device driver’s risk on the system security
and hence are related to Sugar. For example, microkernels
move the device driver to the user space [80, 82, 84, 86, 93].
SUD [76], Microdriver [83], and Glider [70] move either part
or all of the driver to the user space. Indeed, SUD and Glider
use UML to achieves this, similar to Sugar (§4.2). LeVasseur
et al. [88] move the device driver to a virtual machine for
better isolation. Moreover, Nooks [97] and SafeDrive [101]
keep the driver in the kernel but protect against its vulnera-
bilities using runtime and language solutions, respectively.
In contrast, Sugar is the first to run a full vGPU device driver
as a library and show that it can be effectively integrated
with web apps within the web browser.

9 Limitations and Future Work

Multiltiple WebGL textures in one web app. Sugar cur-
rently supports only web apps with a single WebGL texture
simply because it uses the whole framebuffer of the virtual
display for that texture. We plan to remove this limitation
by having multiple WebGL textures share this framebuffer.
Tearing effect. Sugar suffers from some tearing effect at
high framerate, where the displayed frame contains content
from consecutively rendered frames. This is because the
virtual display readback in the GPU process overlaps with

consecutive posting of WebGL textures to the virtual display.
We plan to solve this problem by using multiple framebuffers
for the virtual display (similar to how multiple render buffers
solves the tearing problem in existing graphics framework).
Other GPU Virtualization Solutions. Sugar can leverage
any GPU virtualization solution and its performance and
security trade-off will be determined by that of the solution.
We chose Intel GPU virtualization due to its availability on
almost all desktops and laptops. Virtualizable GPUs from
NVIDIA [23] and AMD [36] provide better performance and
isolation (e.g., by using SR-IOV), but are mostly tailored
for servers and hence much less commonly available on
personal computers. Supporting these GPUs requires non-
trivial engineering effort to port their drivers to user space.
Native apps. Sugar can be used to provide secure GPU ac-
celeration for untrusted native apps too. Doing this requires
modifying the operating system window manager so that it
retrieves the rendered texture of the app from the vGPU’s
display framebuffer, similar to how the GPU process in the
browser retrieves the web app’s WebGL texture.

10 Conclusions

We presented Sugar, an operating system solution for en-
hancing the security of GPU acceleration for web apps. Sugar
leverages modern GPU virtualization solutions to implement
a dedicated and isolated virtual graphics plane for a web app.
We demonstrated that Sugar reduces the TCB exposed to
web apps and that it eliminates various vulnerabilities al-
ready reported in the WebGL framework. Furthermore, we
showed that Sugar’s performance is high, providing similar
user-visible performance with existing less secure systems.

Acknowledgments

The work was supported by NSF Award #1617513. The au-
thors thank Zhen Wang and the anonymous reviewers for
their insightful comments.

References

[1] 2010. Chromium issue 63617: Closing multiple WebGL tabs at the
same time causes segfault in Xorg. https://bugs.chromium.org/p/
chromium/issues/detail?id=63617. (2010).

[2] 2011. Chromium Issue 70718: Crashes when opening a page with we-
bgl. https://bugs.chromium.org/p/chromium/issues/detail?id=70718.
(2011).

[3] 2011. Chromium issue 83841: User information leakage esp lo-
cal paths, username in webgl getProgramInfoLog. https://bugs.
chromium.org/p/chromium/issues/detail?id=83841. (2011).

[4] 2011. CVE-2011-2366: Timing attack steals cross-domain images
(Firefox). https://nvd.nist.gov/vuln/detail/CVE-2011-2366. (2011).

[5] 2011. CVE-2011-2367: Read of GPU memory through Firefox WebGL.
https://nvd.nist.gov/vuln/detail/CVE-2011-2367. (2011).

[6] 2011. CVE-2011-2599: Timing attack steals cross-domain images
(Chrome). https://nvd.nist.gov/vuln/detail/CVE-2011-2599. (2011).

[7] 2011. CVE-2011-2601: The GPU support functionality in Mac OS
X does not properly restrict rendering time, which allows remote

https://bugs.chromium.org/p/chromium/issues/detail?id=63617
https://bugs.chromium.org/p/chromium/issues/detail?id=63617
https://bugs.chromium.org/p/chromium/issues/detail?id=70718
https://bugs.chromium.org/p/chromium/issues/detail?id=83841
https://bugs.chromium.org/p/chromium/issues/detail?id=83841
https://nvd.nist.gov/vuln/detail/CVE-2011-2366
https://nvd.nist.gov/vuln/detail/CVE-2011-2367
https://nvd.nist.gov/vuln/detail/CVE-2011-2599

(8]
(9]

(10]

(11]

(12]

(13]

(14]
(15]

[16]

(17]

(18]
(19]
[20]

[21]

[22]
(23]

(24]

[25]

(26]

[27]
(28]

[29]

(30]

(31]

(32]

attackers to cause a denial of service. https://nvd.nist.gov/vuln/detail/
CVE-2011-2601. (2011).

2011. CVE-2011-2784: Chrome WebGL reveals local path in logs.
https://nvd.nist.gov/vuln/detail/CVE-2011-2784. (2011).

2011. CVE-2011-3653: Read of cross-origin image through Firefox
WebGL. https://nvd.nist.gov/vuln/detail/CVE-2011-3653. (2011).
2011. Firefox bug 655987 - Respond to the WebGL cross-domain
image theft vulnerability. https://bugzilla.mozilla.org/show_bug.cgi?
id=655987. (2011).

2011. Firefox bug 656752: WebGL crash in gleRunVertexSubmitlmme-
diate. https://bugzilla.mozilla.org/show_bug.cgi?id=656752. (2011).
2011. Firefox bug 659349: WebGL allows access to uninitialized graph-
ics memory. https://bugzilla.mozilla.org/show_bug.cgi?id=659349.
(2011).

2011. Firefox bug 684882 - Random video memory grabbed into
WebGL cube map textures on Mac OS, including on 10.7.1, on Intel
GPUs. https://bugzilla.mozilla.org/show_bug.cgi?id=684882. (2011).
2011. Microsoft considers WebGL harmful. http://blogs.technet.com/
b/srd/archive/2011/06/16/webg|-considered-harmful.aspx. (2011).
2011. WebGL - More WebGL Security Flaws. http://www.contextis.
com/resources/blog/webgl-more-webgl-security-flaws/. (2011).
2012. Chromium issue 145544: Security: integer overflow in gpu
process with webgl. https://bugs.chromium.org/p/chromium/issues/
detail?id=145544. (2012).

2012. Chromium issue 149904: Security: webgl - after running out
of memory, buffer can still be written. https://bugs.chromium.org/p/
chromium/issues/detail?id=149904. (2012).

2012. Chromium issue 153469: Security: Nvidia Kernel Panic. https:
//bugs.chromium.org/p/chromium/issues/detail?id=153469. (2012).
2012. CVE-2012-2896: Integer overflow in Chrome WebGL. https:
//nvd.nist.gov/vuln/detail/CVE-2012-2896. (2012).

2012. CVE-2012-5115: Bug in graphics drivers allows for “wild writes”
in Chrome. https://nvd.nist.gov/vuln/detail/CVE-2012-5115. (2012).
2013. Chromium Issue 237611: Security: Screen capture via WebGL
texture. https://bugs.chromium.org/p/chromium/issues/detail?id=
237611. (2013).

2013. CVE-2013-2874: Read of screen data through Chrome WebGL.
https://nvd.nist.gov/vuln/detail/CVE-2013-2874. (2013).

2013. NVIDIA GRID K1 and K2 Graphics-Accelerated Virtual Desk-
tops and Applications. NVIDIA White Paper. (2013).

2014. Chromium Issue 376951: Security: webgl draw buffers extension
can expose uninitialized video memory to webpage. https://bugs.
chromium.org/p/chromium/issues/detail?id=376951. (2014).

2014. CVE-2014-1502: Bug in Firefox WebGL allows for ren-
dering cross-domain content. https://nvd.nist.gov/vuln/detail/
CVE-2014-1502. (2014).

2014. CVE-2014-1556: Crafted WebGL content constructed with
Cesium JavaScript library allows for arbitrary code execution. https:
//nvd.nist.gov/vuln/detail/CVE-2014-1556. (2014).

2014. CVE-2014-3173: Read of uninitialized memory in Chrome
WebGL. https://nvd.nist.gov/vuln/detail/CVE-2014-3173. (2014).
2014. Firefox bug 1028891: WebGL app crashes Firefox. https://
bugzilla.mozilla.org/show_bug.cgi?id=1028891. (2014).

2014. Firefox bug 972622 - WebGL.compressedTex(Sub)Image2D
doesn’t call MakeCurrent. https://bugzilla.mozilla.org/show_bug.cgi?
id=972622. (2014).

2014. GPU Accelerated Compositing in
https://www.chromium.org/developers/design-documents/
gpu-accelerated-compositing-in-chrome. (2014).

2015. Chromium issue 483877: Bad shader can cause kernel
crash. https://bugs.chromium.org/p/chromium/issues/detail?id=
483877. (2015).

2015. Chromium Issue 521588: Security: leaking previous webpage

through webGL canvas preserveDrawingbuffer and scissor. https:
//bugs.chromium.org/p/chromium/issues/detail?id=521588. (2015).

Chrome.

(33]

(34]

(35]

(36]

(37]

(38

=

[39

-

[40]

[41]

[42]

—
wul
(=)}

=

2015. CVE-2015-7179: Incorrect allocation of memory allows attack-
ers to execute arbitrary code or cause a denial of service. https:
//nvd.nist.gov/vuln/detail/CVE-2015-7179. (2015).

2015. Firefox bug 1190526 - Overflow in VertexBufferInter-
face:reserveVertexSpace causes memory-safety bug. https://bugzilla.
mozilla.org/show_bug.cgi?id=1190526. (2015).

2016. A Mesa fix lands for the Radeon R9 290 issue.
https://www.phoronix.com/scan.php?page=news_item&px=
DRI3-Mesa-Fix-Gears-290. (2016).

2016. AMD Multiuser GPU: Hardware-Enabled GPU Virtualization
for a True Workstation Experience. AMD White Paper. (2016).
2016. Chromium Issue 593680: WebGL test "temp expressions should
not crash" freezes browser. https://bugs.chromium.org/p/chromium/
issues/detail?id=593680. (2016).

2016. [iGVT-g] [ANNOUNCE] 2016-Q3 release of KVMGT. https:
//lists.01.org/pipermail/igvt-g/2016-November/000976.html. (2016).
2016. iGVT-g Setup Guide. https://github.com/0Torg/Igvtg-kernel/
blob/2016q3-4.3.0/iGVT-g_Setup_Guide.txt. (2016).

2016. Radeon R9 290 performing poorly with Mesa 12.1-dev and
Linux 4.7. https://www.phoronix.com/scan.php?page=news_item&
px=Linux-4.7-R9-290-Regression. (2016).

2016. Unity and Facebook Collaborate on WebGL Gaming. https:
//developers.facebook.com/blog/post/2016/08/18/FB-Unity-Alpha.

(2016).
2016. Windows Defender Application Guard for Microsoft
Edge. https://blogs.windows.com/msedgedev/2016/09/27/

application-guard-microsoft-edge/#mBwrd1ATV1aluMyd.97.
(2016).

2017. A new multi-process model for Firefox. https://hacks.mozilla.
org/2017/06/firefox-54-e10s-webextension-apis-css-clip-path/.
(2017).

2017. Alexa Top 500 Global Sites. http://www.alexa.com/topsites.
(2017).

2017. Apple macOS Sierra. https://www.apple.com/macos/sierra.
(2017).

2017. Baidu Map. http://map.baidu.com. (2017).

2017. Chrome Issues. https://bugs.chromium.org/p/chromium/issues/
list. (2017)

2017. Chromium Issue 682020: Security: WebGL - Use After Free
in Buffer11::updateBufferStorage(). https://bugs.chromium.org/p/
chromium/issues/detail?id=682020. (2017).

2017. CVE-2017-5031: Use after free in Chrome ANGLE. https:
//nvd.nist.gov/vuln/detail/CVE-2017-5031. (2017).

2017. Google Maps. https://www.google.com/maps. (2017).

2017. Linux dma-buf. https://www.kernel.org/doc/html/v4.10/
driver-api/dma-buf.html. (2017).

2017. Microsoft Edge TestDrive demos. https://developer.microsoft.
com/en-us/microsoft-edge/testdrive/tags/webgl. (2017).

2017. NASA Experience Curiosity. https://eyes.nasa.gov/curiosity.
(2017).

2017. National Vulnerability Database. https://www.nist.gov/
programs-projects/national-vulnerability-database-nvd. (2017).
2017. NIST Digital Library of Mathematical Functions. http://dImf.
nist.gov. (2017).

2017. The Chromium Projects: GN build configuration. https://www.
chromium.org/developers/gn-build-configuration. (2017).

2017. The Common Vulnerability Scoring System version 2. https:
/Iwww first.org/cvss/v2/. (2017).
2017. Thingiverse Customizer.
customizer. (2017).

2017. Unity WaveShooter OpenGL benchmark. https://github.com/
unity3d-jp/WaveShooter. (2017).

2017. WebGL Animometer benchmark. http://kenrussell.github.io/
webgl-animometer/Animometer/tests/3d/webgl.html. (2017).

https://www.thingiverse.com/

https://nvd.nist.gov/vuln/detail/CVE-2011-2601
https://nvd.nist.gov/vuln/detail/CVE-2011-2601
https://nvd.nist.gov/vuln/detail/CVE-2011-2784
https://nvd.nist.gov/vuln/detail/CVE-2011-3653
https://bugzilla.mozilla.org/show_bug.cgi?id=655987
https://bugzilla.mozilla.org/show_bug.cgi?id=655987
https://bugzilla.mozilla.org/show_bug.cgi?id=656752
https://bugzilla.mozilla.org/show_bug.cgi?id=659349
https://bugzilla.mozilla.org/show_bug.cgi?id=684882
http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
http://www.contextis.com/resources/blog/webgl-more-webgl-security-flaws/
http://www.contextis.com/resources/blog/webgl-more-webgl-security-flaws/
https://bugs.chromium.org/p/chromium/issues/detail?id=145544
https://bugs.chromium.org/p/chromium/issues/detail?id=145544
https://bugs.chromium.org/p/chromium/issues/detail?id=149904
https://bugs.chromium.org/p/chromium/issues/detail?id=149904
https://bugs.chromium.org/p/chromium/issues/detail?id=153469
https://bugs.chromium.org/p/chromium/issues/detail?id=153469
https://nvd.nist.gov/vuln/detail/CVE-2012-2896
https://nvd.nist.gov/vuln/detail/CVE-2012-2896
https://nvd.nist.gov/vuln/detail/CVE-2012-5115
https://bugs.chromium.org/p/chromium/issues/detail?id=237611
https://bugs.chromium.org/p/chromium/issues/detail?id=237611
https://nvd.nist.gov/vuln/detail/CVE-2013-2874
https://bugs.chromium.org/p/chromium/issues/detail?id=376951
https://bugs.chromium.org/p/chromium/issues/detail?id=376951
https://nvd.nist.gov/vuln/detail/CVE-2014-1502
https://nvd.nist.gov/vuln/detail/CVE-2014-1502
https://nvd.nist.gov/vuln/detail/CVE-2014-1556
https://nvd.nist.gov/vuln/detail/CVE-2014-1556
https://nvd.nist.gov/vuln/detail/CVE-2014-3173
https://bugzilla.mozilla.org/show_bug.cgi?id=1028891
https://bugzilla.mozilla.org/show_bug.cgi?id=1028891
https://bugzilla.mozilla.org/show_bug.cgi?id=972622
https://bugzilla.mozilla.org/show_bug.cgi?id=972622
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://bugs.chromium.org/p/chromium/issues/detail?id=483877
https://bugs.chromium.org/p/chromium/issues/detail?id=483877
https://bugs.chromium.org/p/chromium/issues/detail?id=521588
https://bugs.chromium.org/p/chromium/issues/detail?id=521588
https://nvd.nist.gov/vuln/detail/CVE-2015-7179
https://nvd.nist.gov/vuln/detail/CVE-2015-7179
https://bugzilla.mozilla.org/show_bug.cgi?id=1190526
https://bugzilla.mozilla.org/show_bug.cgi?id=1190526
https://www.phoronix.com/scan.php?page=news_item&px=DRI3-Mesa-Fix-Gears-290
https://www.phoronix.com/scan.php?page=news_item&px=DRI3-Mesa-Fix-Gears-290
https://bugs.chromium.org/p/chromium/issues/detail?id=593680
https://bugs.chromium.org/p/chromium/issues/detail?id=593680
https://lists.01.org/pipermail/igvt-g/2016-November/000976.html
https://lists.01.org/pipermail/igvt-g/2016-November/000976.html
https://github.com/01org/Igvtg-kernel/blob/2016q3-4.3.0/iGVT-g_Setup_Guide.txt
https://github.com/01org/Igvtg-kernel/blob/2016q3-4.3.0/iGVT-g_Setup_Guide.txt
https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.7-R9-290-Regression
https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.7-R9-290-Regression
https://developers.facebook.com/blog/post/2016/08/18/FB-Unity-Alpha
https://developers.facebook.com/blog/post/2016/08/18/FB-Unity-Alpha
https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/#mBwrd1ATV1aluMyd.97
https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/#mBwrd1ATV1aluMyd.97
https://hacks.mozilla.org/2017/06/firefox-54-e10s-webextension-apis-css-clip-path/
https://hacks.mozilla.org/2017/06/firefox-54-e10s-webextension-apis-css-clip-path/
http://www.alexa.com/topsites
https://www.apple.com/macos/sierra
http://map.baidu.com
https://bugs.chromium.org/p/chromium/issues/list
https://bugs.chromium.org/p/chromium/issues/list
https://bugs.chromium.org/p/chromium/issues/detail?id=682020
https://bugs.chromium.org/p/chromium/issues/detail?id=682020
https://nvd.nist.gov/vuln/detail/CVE-2017-5031
https://nvd.nist.gov/vuln/detail/CVE-2017-5031
https://www.google.com/maps
https://www.kernel.org/doc/html/v4.10/driver-api/dma-buf.html
https://www.kernel.org/doc/html/v4.10/driver-api/dma-buf.html
https://developer.microsoft.com/en-us/microsoft-edge/testdrive/tags/webgl
https://developer.microsoft.com/en-us/microsoft-edge/testdrive/tags/webgl
https://eyes.nasa.gov/curiosity
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
http://dlmf.nist.gov
http://dlmf.nist.gov
https://www.chromium.org/developers/gn-build-configuration
https://www.chromium.org/developers/gn-build-configuration
https://www.first.org/cvss/v2/
https://www.first.org/cvss/v2/
https://www.thingiverse.com/customizer
https://www.thingiverse.com/customizer
https://github.com/unity3d-jp/WaveShooter
https://github.com/unity3d-jp/WaveShooter
http://kenrussell.github.io/webgl-animometer/Animometer/tests/3d/webgl.html
http://kenrussell.github.io/webgl-animometer/Animometer/tests/3d/webgl.html

[61]
[62]
(63]
[64]

65]

(68]
[69]

[70]

(71]

[72]

(73]

(74]

[75]

[76]

(77]

(78]

(79]

(80]

(81]

(82]

2017. WebGL Blob benchmark. http://webglsamples.org/blob/blob.
html. (2017).

2017. WebGL Cubemap benchmark. http://webglsamples.org/
dynamic-cubemap/dynamic-cubemap.html. (2017).

2017. WebGL Many-Planets benchmark. http://www.khronos.org/
registry/webgl/sdk/demos/webkit/ManyPlanetsDeep.html. (2017).
2017. WebGL San-Angeles benchmark. http://www.khronos.org/
registry/webgl/sdk/demos/google/san-angeles/index.html. (2017).
2017. WebGL Security. http://www.khronos.org/webgl/security/.
(2017).

2017. WebGL Statistics. http://webglstats.com. (2017).

2018. Intel with Radeon Graph-
ics. https://www.anandtech.com/show/12220/
how-to-make-8th-gen-more-complex-intel-core-with-radeon-rx
-vega-m-graphics-launched. (2018).

A. Amiri Sani. 2017. SchrodinText: Strong Protection of Sensitive
Textual Content of Mobile Applications. In Proc. ACM MobiSys.

A. Amiri Sani, K. Boos, S. Qin, and L. Zhong. 2014. I/O Paravirtual-
ization at the Device File Boundary. In Proc. ACM ASPLOS.

A. Amiri Sani, L. Zhong, and D. S. Wallach. 2014. Glider: A GPU
Library Driver for Improved System Security. Technical Report 2014-
11-14, Rice University (2014).

J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. 2011. Cells: a
Virtual Mobile Smartphone Architecture. In Proc. ACM SOSP.

A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazieres, and C.
Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU
Features. In Proc. USENIX OSDIL

A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E.
Bugnion. 2014. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proc. USENIX OSDIL

M. Ben-Yehuda, O. Peleg, O. Agmon Ben-Yehuda, I. Smolyar, and D.
Tsafrir. 2013. The nonkernel: A Kernel Designed for the Cloud. In
Proc. ACM Asia-Pacific Workshop on Systems (APSys).

S. Birr, J. MAtinch, D. Sommerfeld, U. Preim, and B. Preim. 2013.
The LiverAnatomyExplorer: A WebGL-Based Surgical Teaching Tool.
IEEE Computer Graphics and Applications (2013).

S. Boyd-Wickizer and N. Zeldovich. 2010. Tolerating Malicious Device
Drivers in Linux. In Proc. USENIX ATC.

R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. 2006. A Safety-
Oriented Platform for Web Applications. In Proc. IEEE Symposium on
Security and Privacy (S&P).

U. Dey, P. K. Jana, and C. S. Kumar. 2016. Modeling and Kinematic
Analysis of Industrial Robots in WebGL Interface. In IEEE Interna-
tional Conference on Technology for Education.

J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. 2008. Leveraging
Legacy Code to Deploy Desktop Applications on the Web.. In Proc.
USENIX OSDIL

K. Elphinstone and G. Heiser. 2013. From L3 to seL4 What Have We
Learnt in 20 Years of L4 Microkernels?. In Proc. ACM SOSP.

D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. 1995. Exokernel:
an Operating System Architecture for Application-Level Resource
Management. In Proc. ACM SOSP.

A. Forin, D. Golub, and B. N. Bershad. 1991. An I/O System for Mach
3.0. In Proc. USENIX Mach Symposium.

(83]

(84

[l

(85

=

86

=

(87

—

(88]

(89]

[90]

[91

—

[92]

(93]

[94]
[95]

[96]

[97]
(98]

[99]

[100]

[101]

V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and S.
Jha. 2008. The Design and Implementation of Microdrivers. In Proc.
ACM ASPLOS.

David B. Golub, Guy G. Sotomayor, and Freeman L. Rawson, III. 1993.
An Architecture for Device Drivers Executing As User-Level Tasks.
In Proc. USENIX MACH III Symposium.

J. Howell, B. Parno, and J. Douceur. 2013. Embassies: Radically Refac-
toring the Web. In Proc. USENIX NSDIL

B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gétz, C. Gray, L. Macpherson,

D. Potts, Y. Shen, K. Elphinstone, and G. Heiser. 2005. User-Level
Device Drivers: Achieved Performance. Journal of Computer Science

and Technology 20, 5 (2005).

I. Lesokhin, H. Eran, S. Raindel, G. Shapiro, S. Grimberg, L. Liss, M.
Ben-Yehuda, N. Amit, and D. Tsafrir. 2017. Page Fault Support for
Network Controllers. In Proc. ACM ASPLOS.

J. LeVasseur, V. Uhlig, J. Stoess, and S. G6tz. 2004. Unmodified De-
vice Driver Reuse and Improved System Dependability via Virtual
Machines. In Proc. USENIX OSDL

J. Mickens and M. Dhawan. 2011. Atlantis: robust, extensible execu-
tion environments for web applications. In Proc. ACM SOSP.

P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. 2012. AdDroid: Privi-
lege Separation for Applications and Advertisers in Android. In Proc.
ACM Symposium on Information, Computer and Communications Se-
curity (AsiaCCS).

S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T.
Anderson, and T. Roscoe. 2014. Arrakis: The Operating System is the
Control Plane. In Proc. USENIX OSDL

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
2011. Rethinking the Library OS from the Top Down. In Proc. ACM
ASPLOS.

D. S. Ritchie and G. W. Neufeld. 1993. User Level IPC and Device
Management in the Raven Kernel. In USENIX Microkernels and Other
Kernel Architectures Symposium.

F. Roesner and T. Kohno. 2013. Securing Embedded User Interfaces:
Android and Beyond. In Proc. USENIX Security Symposium.
A.S.Rose and P. W. Hildebrand. 2015. NGL Viewer: a web application
for molecular visualization. Nucleic Acids Res (2015).

S. Shekhar, M. Dietz, and D. S. Wallach. 2012. AdSplit: Separating
Smartphone Advertising from Applications. In Proc. USENIX Security
Symposium.

M. M. Swift, B. N. Bershad, and H. M. Levy. 2003. Improving the
Reliability of Commodity Operating Systems. In Proc. ACM SOSP.

S. Tang, H. Mai, and S. T. King. 2010. Trust and Protection in the
Illinois Browser Operating System. In Proc. USENIX OSDL

K. Tian, Y. Dong, and D. Cowperthwaite. 2014. A Full GPU Vir-
tualization Solution with Mediated Pass-Through. In Proc. USENLX
ATC.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. 2009. Native Client: A Sandbox for
Portable, Untrusted x86 Native Code. In Proc. IEEE Symposium on
Security and Privacy (S&P).

F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer. 2006. SafeDrive: Safe and Recoverable
Extensions Using Language-Based Techniques. In Proc. USENIX OSDL

http://webglsamples.org/blob/blob.html
http://webglsamples.org/blob/blob.html
http://webglsamples.org/dynamic-cubemap/dynamic-cubemap.html
http://webglsamples.org/dynamic-cubemap/dynamic-cubemap.html
http://www.khronos.org/registry/webgl/sdk/demos/webkit/ManyPlanetsDeep.html
http://www.khronos.org/registry/webgl/sdk/demos/webkit/ManyPlanetsDeep.html
http://www.khronos.org/registry/webgl/sdk/demos/google/san-angeles/index.html
http://www.khronos.org/registry/webgl/sdk/demos/google/san-angeles/index.html
http://www.khronos.org/webgl/security/
http://webglstats.com
https://www.anandtech.com/show/12220/how-to-make-8th-gen-more-complex-intel-core-with-radeon-rx
https://www.anandtech.com/show/12220/how-to-make-8th-gen-more-complex-intel-core-with-radeon-rx
-vega-m-graphics-launched

	Abstract
	1 Introduction
	2 Current State of WebGL
	2.1 Adoption
	2.2 Security

	3 Sugar's Design
	3.1 Threat Model
	3.2 Trusted Computing Base

	4 vGPU Driver as a Library
	4.1 Attaching a vGPU to an Operating System Process
	4.2 Reusing the vGPU Driver Code
	4.3 Surface Management for vGPU

	5 Browser's Support for Sugar
	5.1 GPU Thread vs. GPU Process
	5.2 Rendering Synchronization

	6 Implementation and Prototype
	7 Evaluation
	7.1 Security
	7.2 Performance

	8 Related Work
	9 Limitations and Future Work
	10 Conclusions
	References

