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Abstract
Many mobile applications deliver and show sensitive and
private textual content to users including messages, social
network posts, account information, and verification codes.
All such textual content must only be displayed to the user
but must be strongly protected from unauthorized access
in the device. Unfortunately, this is not the case in mobile
devices today: malware that can compromise the operating
system, e.g., gain root or kernel privileges, can easily access
textual content of other applications.

In this paper, we present SchrodinText, a system solution
for strongly protecting the confidentiality of application’s se-
lected UI textual content from a fully compromised operat-
ing system. SchrodinText leverages a novel security monitor
based on two hardware features on modern ARM processors:
virtualization hardware and TrustZone. Our key contribu-
tion is a set of novel techniques that allow the operating
system to perform the text rendering without needing access
to the text itself, hence minimizing the Trusted Computing
Base (TCB). These techniques, collectively called oblivious
rendering, enable the operating system to rasterize and lay
out all the characters without access to the text; the monitor
only resolves the right character glyphs onto the framebuffer
observed by the user and protects them from the operating
system, e.g., against DMA attacks. We present our proto-
type using an ARM Juno development board and Android
operating system. We show that SchrodinText incurs no-
ticeable overhead but that its performance is usable.

“If one has left this entire system to itself for an hour,
one would say that the cat still lives if meanwhile no atom
has decayed. The first atomic decay would have poisoned
it. The psi-function of the entire system would express
this by having in it the living and dead cat (pardon the
expression) mixed or smeared out in equal parts. It is
typical of these cases that an indeterminacy originally
restricted to the atomic domain becomes transformed into
macroscopic indeterminacy, which can then be resolved
by direct observation.” - Erwin Schrödinger1

1https://en.wikipedia.org/wiki/Schrodingers cat
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1. INTRODUCTION
There are millions of mobile applications today. The tex-

tual content that many of these applications show to the
user in their UI can contain extremely sensitive and pri-
vate information, such as social security number, bank ac-
count information, private messages, passwords (in a pass-
word vault), and verification codes used for two-factor au-
thentication. Such content must only be displayed to the user
but must be otherwise protected against unauthorized access
by malware. Indeed, Zhou et al. found 644 malware samples
(in 27 families) that harvest “user’s information, including
user accounts and short messages stored on the phones” [54].
Application developers attempt to defeat this by encrypting
the raw text in their backend server and send the ciphertext
to the mobile application. However, the application needs
to decrypt the ciphertext before passing it to the operating
system for rendering and showing to the user. Therefore,
malware that compromises the operating system (or even
just its graphics stack) can access the content.

This is a growing concern as mobile operating systems are
increasingly large and unreliable. Malware hiding inside or-
dinary unprivileged applications can easily compromise the
operating system and gain root or kernel privileges [50, 53].
Such malware can then attempt to extract sensitive content
from other applications using various methods. For exam-
ple on Android, these methods include but are not limited
to the following. Malware with root privilege can (i) take a
screenshot of the device UI, which might contain the afore-
mentioned sensitive text or (ii) replace Android’s UI ren-
dering libraries; the compromised library can then leak the
textual content of victim applications. Or malware with
kernel privileges can (i) access the application’s memory in
order to read the plaintext after decryption or (ii) read the
texture buffers allocated by the graphics stack to hold the
character glyphs used in the text.

Unfortunately, as noted by Checkoway et al. [23], it is ex-
tremely difficult to fully protect an application from a com-
promised operating system. Yet, we ask ourselves: can we
at least protect the confidentiality of selected sensitive textual
content of the application’s UI in such an environment? We
care about protecting selected textual content since most, if
not all, sensitive information delivered to the user via apps
is in textual format.

In this paper, we present a system solution, called Schrod-



inText, designed to meet this goal. Our solution leverages
novel hardware features in ARM processors to create a se-
curity monitor for showing and protecting the text. The
monitor leverages both virtualization and TrustZone hard-
ware available on modern ARM processor. The monitor is
more privileged than the operating system and is used to
protect the selected textual content shown on the display.

In SchrodinText, the application’s backend server encrypts
the text with a key only available to the monitor, hence pro-
tecting it from the operating system. However, this raises
an important challenge: the text needs to be rendered by
the graphics stack in the operating system. The final pix-
els displayed to the user depend on the font type, size, and
color chosen by the app developer, all of which are available
and understandable by the operating system, and not the
monitor. The graphics stack includes several libraries and
frameworks as well as kernel device drivers and is one of
the largest and most complicated components of the oper-
ating system. Therefore, how can the monitor display the
textual content to the user given that the graphics stack is
implemented by the operating system?

At first glance, it seems like a feasible solution to this
problem is to move the graphics stack to the monitor. How-
ever, such an approach would significantly bloat the Trusted
Computing Base (TCB) of the monitor. A large TCB would
make the monitor vulnerable to attacks itself hence defeating
the original purpose. An alternative approach might then be
to support a minimal and simplified version of the graphics
stack in the monitor, in order to keep the TCB small. Un-
fortunately, with this approach, the content rendered by the
monitor would not be visually well-integrated with the rest
of the content, which are rendered by the complete graphics
stack in the operating system. Moreover, such a solution
would not be able to easily benefit from updates to the op-
erating system graphics stack, which, for example, might
introduce new fonts and effects from untrusted sources.

In SchrodinText, we introduce an alternative solution that
addresses all of these shortcomings: oblivious rendering. With
this solution, SchrodinText implements the text rendering
fully in the operating system without access to the text it-
self, hence resulting in visually well-integrated content while
minimizing the TCB of the monitor. The key idea is to
have the operating system rasterize all the possible charac-
ter glyphs given the attributes of the text selected by the
developer, e.g., font type, size, and color. The resultant
glyphs are then shared with the monitor using a simple and
low-level memory API (referred to as glyph-book API here-
after). The monitor then decrypts the ciphertext and uses
that to resolve the right glyphs onto the framebuffer ob-
served by the user2. With SchrodinText, the protected text
will be visible to the user on the display but not available to
the operating system, e.g., in a screenshot.

We address two important challenges in SchrodinText.
First, the operating system needs to perform the layout of
text (i.e., determining the location on the UI to place each
character), which not only depends on the relative size of
the font to the size of text UI widget, it also depends on
the text itself as different characters have varying widths.

2This also explains our choice of the system name. Similar
to Schrödinger’s cat (which, put in simple words, can be
dead or alive until it is observed), the actual characters in
a text protected by SchrodinText are not determined until
they are resolved (by the monitor) and displayed to the user

To address this challenge, we choose to limit SchrodinText
to monospaced fonts, in which all characters have a fixed
width. In addition, we introduce a technique for determin-
ing the line-breaks without access to the text, called oblivi-
ous line-breaking. These two techniques allow the operating
system to perform the layout in full, only needing access to
the number of characters in the text, and not the text itself.

Second, once character glyphs are rasterized and their lo-
cations are determined, they must be composited on top of
other layers in the framebuffer and displayed to the user.
Android on modern mobile devices uses the GPU for com-
positing. Exposing the resolved glyphs to the GPU makes
them vulnerable to attacks by the operating system since
the GPU is programmed by the operating system. We use
two techniques, namely multi-view pages and two-stage com-
positing, to securely perform the compositing while protect-
ing the resolved glyphs. Collectively, these two techniques
allow us to use the operating system and GPU for composit-
ing of non-protected textures and use the monitor (but not
the GPU) for compositing the protected text glyphs, all the
while protecting them from the operating system and other
DMA-capable devices.

It is important to note that SchrodinText protects the
output text of the applications but not the input text. That
is, it protects the textual content that is shown to the user,
such as received messages, bank account information, health
records, and verification codes in two-factor authentication.
It, however, does not protect the text input by the user, in-
cluding outgoing messages and typed passwords. Protecting
the input text also requires protecting the input stack in the
operating system, which is out of the scope of this work.

We have designed SchrodinText with ease of use for de-
velopers in mind. More specifically, we provide a simple
UI widget, called SchrodinTextView, which is a modified
version of TextView used in Android to embed text in appli-
cation’s UI. The developer can simply embed this widget in
the UI, very similar to existing widgets. The cloud backend
sends the ciphertext to the application, which then binds it
to the widget by a call to a setCiphertext() function, also
passing a handle to the key needed to decrypt the text (the
key is known to the monitor but not the operating system).
SchrodinText takes care of rendering the text, showing it to
the user, and protecting it from the operating system. To
demonstrate the practicality of this API, we incorporate it
in a messaging application to show and strongly protect the
received messages.

SchrodinText does not require any changes to the mobile
device hardware; it however requires its monitor to be de-
ployed in the hypervisor and TrustZone secure world, and
requires modifications to the operating system kernel and
user space rendering libraries. Hence, we envision Schrodin-
Text to be deployed by mobile device vendors, e.g., Google,
Samsung, HTC, and Apple.

We implement SchrodinText for Android running on an
ARM Juno development board, the only board that allows
non-vendors to program the hypervisor and TrustZone se-
cure world, to the best of our knowledge. We show that
SchrodinText incurs modest memory and performance over-
heads. More specifically, depending on the font size, it can
use an additional 150 kB to 4.8 MB for storing the glyph-
books. Also, depending on the size of the framebuffer and
the number and size of the glyphs, it can use an additional
104 kB to a maximum of 15.8 MB for creating protected



views of the framebuffer. Moreover, it increases the text
rendering latency by about 30 ms to 270 ms for UI pages
having 20 to 1000 characters (of font size 14 sp) protected
by SchrodinText. Only 4 ms to 170 ms of this added la-
tency is for the monitor-based compositing, which allows
for acceptable scrolling performance especially for UI sur-
faces with smaller number of characters in them. Finally,
SchrodinText increases the overall CPU usage in this ren-
dering period by about 1 to 3 times, but does not use more
than 19% of overall CPU resources in the system. While
SchrodinText’s overhead is noticeably higher than that of
normal text, we believe that its performance is usable and
the overhead is justified given the strong protection guaran-
tees that it provides, especially for small number of protected
characters.

2. BACKGROUND & ATTACKS

2.1 Android’s Text Rendering
Here, we provide a basic overview of text rendering in

Android. For more details, we refer the interested reader
to [2].

There are three main operations in text rendering: glyph
rasterization, layout, and compositing. Rasterization gener-
ates the glyphs of characters given the selected font type and
size. The glyphs contain the pixel information of the char-
acters at the target size on the screen. They, however, do
not contain the RGB color information; they only contain
the alpha channel information (hence one byte per pixel).
The rasterized glyphs are stored in a texture buffer. This
buffer is later used in compositing.

Layout determines the location of each character on the UI
surface, and hence on the framebuffer. The location depends
on the size and location of the widget enclosing the text,
the surface size (which itself depends on the display size),
and glyph sizes, which depend on the text itself as different
character glyphs can have varying widths.

The last step is compositing. Once the character glyphs
are ready in the texture buffer and their locations on the
framebuffer are known, GPU is used (through the OpenGL
framework) to read the glyphs and composite them on the
right location in the framebuffer. The color of the text is
applied at this stage. Compositing is achieved with alpha-
blending, where the text glyphs are blended onto the surface
below them, e.g., a background image. The framebuffer is
then shared with the display controller for showing to the
user.

2.2 Attacks
In this work, we are concerned with malware that at-

tempts to steal textual content of other applications’ UIs.
Here, we explain why and how malware might perform such
an attack.

Why? There are several categories of mobile applica-
tions with important text that malware might attempt to
extract. One category is apps with user’s private and sen-
sitive information, e.g., messages in a messaging app, posts
in a social networking app, bank account information in a
banking app, or the social security number (SSN) in a fi-
nance app. Indeed, an important category of mobile mal-
ware is spyware, which attempts to monitor user’s sensitive
information, e.g., SMS messages. Some examples of such
spyware are TheTruthSpy [15] and LetMeSpy [10]. More-

over, Zhou et al. found 644 malware samples (in 27 families)
that harvest“user’s information, including user accounts and
short messages stored on the phones” [54].

Another category is apps that reveal passwords or one-
time tokens to the user. For example, a password vault
app might show user’s passwords to her on the display. As
another example, a two-factor authentication application,
such as Microsoft and Google Authenticators [9, 12], or a
messaging application might show a verification code to the
user.

How? Here, we mention a few possible methods that
malware can use to extract textual content of victim applica-
tions. For most of the attacks, malware, originally packaged
as a normal app, should exploit a vulnerability in the oper-
ating system in order to escalate its privileges for root access
or to execute code with kernel privileges. Malware can use
various methods to gain root privilege [53], e.g., rowham-
mer attack [50]. To gain kernel privileges, it can try code
injection [38] or Return-Oriented Programming [22,48].

With root privileges, malware will be able to use two
methods to access other applications’ textual content. First,
malware can simply capture a screenshot of the screen, which,
if taken at the right time, will contain sensitive information
displayed to the user. Second, it can replace text rendering
libraries in Android with a malicious one. The replacement
library can then be used to extract the text of other ap-
plications, which will load this library for text rendering.
Whenever a victim application calls setText() on a text wid-
get and passes a string, this string will be available to the
library, which can then communicate it with malware, e.g.,
by writing it to a file.

With kernel privileges, in addition to the aforementioned
attacks, malware can either access the application’s memory
in order to read the plaintext after decryption or read the
texture buffers allocated by the graphics stack to hold the
character glyphs used in the text.

3. OVERVIEW

3.1 Key Idea and Design
Our goal is to provide strong protection for sensitive and

private textual content in mobile applications’ UIs, even in
the presence of a compromised operating system. Our key
insight is that such content must be displayed to the user
only; operating system should not have access to it. To-
wards this goal, we leverage novel hardware features on mod-
ern ARM processors, including virtualization and TrustZone
hardware, to create a security monitor. Our key contribu-
tion is oblivious rendering, a set of techniques that allows
the operating system to perform all the stages of text ren-
dering without having access to the text itself. The monitor
then resolves the right text on the framebuffer.

3.2 SchrodinText UI Widget
In SchrodinText, we do not protect all the textual content

of an app. Only selected text, as determined by the appli-
cation developer, will be protected. We achieve this by pro-
viding a new UI widget for protected text, called Schrodin-

TextView, which is mostly similar to the existing TextView

widget in Android’s application programming framework.
The developer can position the widget on any desired loca-
tion in one of application’s UI surfaces, i.e., Android activi-
ties. The main difference is that, instead of setting a string



1 void drawText(byte[] ciphertext,
2 int keyHandle)
3 {
4 String text =
5 decrypt(ciphertext, keyHandle);
6 TextView view = (TextView)
7 findViewById(R.id.textWidget);
8 view.setText(text);
9 }

1 void drawText(byte[] ciphertext,
2 int textLen,
3 int keyHandle)
4 {
5 SchrodinTextView view = (SchrodinTextView)
6 findViewById(R.id.textWidget);
7 view.setCiphertext(ciphertext, textLen,
8 keyHandle);
9 }

Figure 1: Rendering protected text using Android’s TextView (Left) vs. SchrodinTextView (Right).

as the content of the widget (using setText(String text)),
the encrypted version of the text, i.e., ciphertext, will be set
as the content (using setCiphertext(byte[] ciphertext,

...)).
Figure 1 shows a sample code snippet for both Schrodin-

TextView and Android’s TextView. In both cases, we assume
that the developer attempts to use encryption for protec-
tion of the text. As can be seen, in the existing approach,
the application first decrypts the ciphertext (e.g., using An-
droid’s Keystore system [1]), and passes it to the operating
system for rendering by calling the setText() method with
the plaintext. While encryption of the text can protect the
text from eavesdropping in the network, it cannot protect it
from the operating system since the plaintext is available in
the application’s memory and even passed to the operating
system for rendering.

However, with SchrodinTextView, the ciphertext never
gets decrypted by the application; it is simply passed to
the operating system and eventually decrypted in the mon-
itor. However, with SchrodinTextView, the rendering API
(setCiphertext() needs two additional argument: textLen,
which is the number of characters in the text, needed for lay-
out by the operating system (see §4), and keyHandle, which
informs the monitor of the key to use to decrypt the cipher-
text. As these examples show, the amount of effort needed
for using SchrodinTextView is comparable with that for us-
ing Android’s TextView.

3.3 Workflow
The typical usage of SchrodinText is to allow the appli-

cation to show a text to the user where the text is sent to
the application from its backend server in the cloud. Fig-
ure 2 shows a basic overview of SchrodinText including the
sequence of events taking place in it. The sequence is as fol-
lows. (1) The application’s backend server exchanges a key
with the monitor (§3.5). (2) The backend then uses the key
to encrypt the text and send the ciphertext to the applica-
tion. The server also sends the length (i.e., number of char-
acters) of the encrypted text and the key handle. (3) The
application on the mobile device uses SchrodinTextView to
show this text. As arguments of this widget, it passes the
ciphertext, the length of the text, and the key handle. More-
over, the application configures the widget with the desired
font properties (e.g., type, size, and color). (4) Based on this
metadata, the operating system rasterizes all the character
glyphs and shares them with the monitor through a novel
glyph-book memory API (§4.1.1) along with the ciphertext
and the location of text characters on the framebuffer. (5)
The monitor decrypts the ciphertext and uses that to resolve
the right glyphs onto the right location on framebuffer shown

Operating system

Monitor

i) ciphertext
ii) key handle
iii) destination
    address(es)

iv) glyph-book

SchrodinTextView
ciphertext,
length: 9,

key handle,
font: Droid Sans Monospaced,

font size: 14,
font color: black.

Mobile 
device 
display

1

key 
exchange

App UI

App’s 
backend in 
the cloud

2
ciphertext,
text length,
key handle

3

4

5

Figure 2: Overview of SchrodinText’s workflow.

on the display. When resolving the glyph, the monitor also
protects the corresponding framebuffer pages from the oper-
ating system (to avoid read-back) by leveraging nested page
tables and IOMMUs provided by the virtualization hard-
ware. To do this, the monitor uses the multi-view pages
technique, in which the operating system and DMA-capable
devices see one view of a corresponding framebuffer page
without the text on it, whereas the display sees a different
version with the text on it.

To better understand these steps, consider a messaging
application. At install/login time, the application’s cloud
backend performs a handshake with the monitor to establish
a shared secret key. From then on, the backend will encrypt
all the messages with this key before delivering them to the
application. The application then uses a SchrodinTextView

to pass the ciphertext for display. The ciphertext is even-
tually passed to the monitor, which decrypts it and show it



on the display (using the glyph-book and layout information
provided by the operating system).

Note that while in most use cases of SchrodinText, the
ciphertext is sent from the application’s cloud backend, in
some use cases, the ciphertext might be retrieved from the
local storage of the mobile device. For example, a messaging
application might be used to show previously communicated
messages. Or a password vault might store the ciphertext of
a password in storage and show it to the user when needed.

The operating system performs the layout without ac-
cess to the text itself. To make this possible, in addition
to other techniques (§4.2), we limit the available fonts for
SchrodinTextView to monospaced fonts, in which all char-
acter glyphs have similar widths. This allows the operating
system to compute the relative location of each character
without knowing the actual text. While monospaced fonts
are not as common as normal fonts, they are well supported
in mobile devices. For example, Roboto, the new typeface
used in Android, provides 10 different styles of monospaced
fonts [14], while it provides 12 different styles of normal
fonts [13]. Similarly, the older typeface in Android, i.e.,
Droid Sans, supported one monospaced style [8] and two
normal styles [7].

3.4 SchrodinText’s Security Monitor
The monitor is built on top of two novel hardware security

features in modern ARM processors. The first one is the
ARM TrustZone [5, 19, 51] that divides the execution into
two worlds: normal world and secure world. The normal
world hosts the main operating system, such as Android.
The secure world hosts security critical components. More-
over, the secure world has access to a device-unique key [18],
which is not accessible to the normal world. This makes the
secure world ideal for cryptographic operations. Indeed, on
Android-based smartphones, Keystore can be implemented
in the secure world [1].

The second hardware feature, recently added to ARM pro-
cessors, is virtualization hardware [27]. It adds a new privi-
lege mode in the normal world (in addition to the user and
kernel modes). This new mode, i.e., the hyp mode, can
be used to host a hypervisor. Among others, virtualization
hardware comprises of (i) nested page tables, which map the
operating system’s physical pages to different machine pages
(hence virtualizing the memory for the operating system),
and (ii) I/O Memory Management Unit (IOMMU) compo-
nents (referred to as System MMU or SMMU in ARM’s
terminology [4]), which map the physical pages seen in Di-
rect Memory Access (DMA) operations by I/O devices, such
as the GPU and display, to different machine pages (hence
virtualizing the memory for these I/O devices).

Our monitor uses these hardware components for differ-
ent purposes. It uses the virtualization hardware to host
a hypervisor. The hypervisor is more privileged than the
operating system and hence can display the protected text
on the framebuffer, while preventing the operating system
from accessing it. It does so by creating different views of the
framebuffer pages using the nested page tables and IOMMU
(§5.1). The monitor uses the secure world for cryptographic
key management and operations.

3.5 Key Management
As mentioned earlier, the ciphertext is shipped from ap-

plication’s cloud backend to the mobile device. The backend

encrypts the text with a key shared with the monitor. There-
fore, before the server can use the key, it must establish and
share it with the monitor. Different methods can be used for
sharing a secret key. For example, the monitor can first gen-
erate a public and private key pair and share the public key
with the cloud so that it can generate and share a secret key
with the monitor. Alternatively, other key sharing mecha-
nisms, such as Diffie-Hellman key exchange [29], might be
used to safely share a secret key. In the rest of the paper,
we simply assume that the application’s cloud backend has
already shared a key with the TrustZone’s secure world on
the device.

Note that it is possible to use public-key encryption for
the protected text. That is, the cloud backend can encrypt
the text with a public key, for which the private key is only
known to the monitor. In SchrodinText, we use symmetric-
key encryption since it incurs less computational overhead.

3.6 Threat Model
We assume a powerful adversary. Specifically, we assume

that malware, originally disguised in an application, can
compromise the operating system and gain root or kernel
privileges (§2.2).

We assume that our monitor is protected from malware.
First, the monitor is protected by the secure boot. Used on
many modern commodity devices, secure boot performs in-
tegrity measurements of software loaded in memory at boot
time, and compares it with the expected value (available
as a signed measurement provided by the vendor). If the
measurements do not match, a notice is shown to the user
informing her that the loaded image is tampered with. We
assume that the secure boot protects the TrustZone secure
world runtime and the hypervisor. Therefore, no other en-
tity, other than the device manufacturer, can deploy or mod-
ify the hypervisor and secure world runtime. Second, we
assume that the hypervisor and the secure world are safe
against runtime attacks due to their small sizes and narrow
attack surfaces. While runtime attacks on these components
have been demonstrated in the past [21, 28], they are much
less frequent than runtime attacks on the operating system.

As mentioned in §3.5, we assume that the application’s
cloud backend can safely share a secret key with the moni-
tor and protect the key from unauthorized access (note that
the monitor protects the key on the device). If the key is
compromised, SchrodinText will be ineffective as the adver-
sary can simply decrypt the ciphertext.

In SchrodinText, we protect the text from some known
side-channel attacks. More specifically, the monitor flushes
the cache after writing to the protected view of framebuffer
pages to defeat cache side-channel attacks. Moreover, the
monitor is not easily vulnerable to timing channels as alpha-
blending in the monitor uses the same number of loop iter-
ations for all glyphs.

In SchrodinText, we protect the text in SchrodinTextView

from access by the adversary, i.e., confidentiality guarantee.
We do not, however, provide any integrity or availability
guarantees.

Integrity. There are two ways to mount integrity at-
tacks on the sensitive text. First, although an attacker does
not possess the encryption keys, he could still modify the
ciphertext arbitrarily. SchrodinText would still decrypt the
modified ciphertext, but the plaintext now will be“garbage”.
Second, the attacker could replace one ciphertext with an-



other (perhaps provided to another secure application). The
monitor cannot prevent such an attacks because it cannot
verify if the ciphertext comes from the foreground applica-
tion or not.

One might wonder how SchrodinText can provide addi-
tional defenses against these attacks. For the first attack,
SchrodinText could use a cryptographically secure hash func-
tion to detect arbitrary ciphertext modifications. For the
second attack, however, the monitor would need to be able
to detect the foreground application. This would unfortu-
nately come with significant additional bloat in the TCB.

Availability. An attacker with root or kernel privileges
can prevent the text in a SchrodinTextView to be shown
at all. It can achieve so by modifying the graphics stack so
that the rendering of text in SchrodinTextView is not fully
performed, e.g., by blocking hypercalls to the monitor.

3.7 Trusted Computing Base
We assume that the monitor is trusted. This means that

both the TrustZone secure world runtime and the hyper-
visor are trusted. If malware can compromise the secure
world, it can extract the protected keys and decrypt the
content. If it can compromise the hypervisor, it can revert
the protection of memory pages and access the final ren-
dered pixels on the framebuffer or it can simply extract the
decrypted text. We also assume that the security hardware
is trusted including the virtualization and TrustZone hard-
ware. We do not, however, trust the I/O devices, such as
GPU and display; we protect against DMA attacks by them
using IOMMUs. The SchrodinText’s monitor uses different
IOMMUs for different I/O devices. It uses one to give the
display controller read-only access to all memory pages so
that the display can show the framebuffer (but not leak its
content). It also uses other IOMMUs to prevent any access
by the GPU and other DMA-capable devices to these pro-
tected pages. Therefore, the operating system cannot abuse
these devices to access the framebuffer pages containing pro-
tected text. §5 will elaborate on these issues.

4. OBLIVIOUS RENDERING
In SchrodinText, we enable the operating system, which

controls the full graphics stack, to perform the text ren-
dering without access to the text itself. We refer to the
set of techniques that make this possible as oblivious ren-
dering. As mentioned in §2.1, rendering comprises of three
stages: rasterization, layout, and compositing. All of these
stages face important challenges in oblivious rendering. For
rasterization, our solution is to have the operating system
rasterize all printing ASCII characters. For layout, the op-
erating system determines the location of the n-th character
on the display. Finally, for compositing, the operating sys-
tem composites all the content excluding the text protected
by SchrodinText. The monitor then composites the text on
top of the rest of the content. Next, we will elaborate on
these three techniques. More specifically, in this section, we
mainly discuss rasterization and layout. In the next section,
we address compositing.

Straw-man solution 1: One option is to implement
the rasterization and layout in the cloud. For this, the ap-
plication can inform the cloud backend of the font type, size,
and color, as well as the size of the UI. The cloud backend
can then rasterize the glyphs and lay them out on a buffer
and send the encrypted pixels to the application, which can

then use the monitor to composite that on the screen. Such a
solution has important drawbacks. First, it complicates the
cloud backend implementation as it must now be able to lay
out and rasterize the text exactly as it would be done by
the mobile device. This would, for example, require access
to the right fonts on the target platform. The diversity of
mobile devices in practice will make this challenging for the
cloud backend. Second, this approach increases the network
bandwidth consumption. In this case, texts will consume
network bandwidth as much as images do.

Straw-man solution 2: The second option is to move
the graphics stack to the monitor, e.g., to the TrustZone
secure world, so that rasterization and layout (as well as
compositing) are fully performed in a trusted environment.
This approach has important shortcomings as well. First, it
significantly increases the size of the TCB. Second, if only
a minimal portion of the graphics stack were to be used in
the monitor (to keep the TCB small), the content rendered
by the monitor would not be visually well-integrated with
the rest of the content, which are rendered by the complete
graphics stack in the operating system. Third, this solu-
tion makes updates to the graphics stack more difficult. For
example, new fonts from untrusted sources cannot be used.

4.1 Glyph Rasterization
One of the key components of our oblivious rendering tech-

nique is its rasterization. Given that the operating system
does not have access to the text, the key idea behind our
solution is to have the operating system rasterize all the
character glyphs given the font type and other metadata,
e.g., size and color. The operating system can then pass all
of these glyphs to the monitor using a novel memory ab-
straction, called glyph-book. Depending on the plaintext,
the monitor can then resolve the right glyphs on the desired
location on the framebuffer (the address of which is deter-
mined by the operating system in layout and provided to
the monitor).

It is important to note that the glyphs resulting from ras-
terization in SchrodinText are different from those resulting
from normal Android’s rasterization (§2.1). In the latter, the
glyphs simply contain the alpha channel information (one
byte per pixel). The colors are then applied by the GPU at
compositing time. In SchrodinText, however, compositing
is performed by the monitor (see §5), which merely imple-
ments simple alpha-blending. Therefore, we apply the color
in the rasterization phase resulting in fully colored glyphs (4
bytes (RGBA) per pixel).

4.1.1 Glyph-Book
The glyph-book API is at the core of oblivious rendering

in SchrodinText. It is implemented by the monitor and ex-
posed to the operating system through three hypercalls. We
have abstracted this low-level API in a C++ class for the
convenience of integrating them with the graphics libraries.
The methods supported by this class are as follows:

1) Constructor: GlyphBook::GlyphBook(

unsigned int glyphSize, unsigned int numGlyphs,

void *ciphertext, unsigned int ciphertextSize,

int keyHandle);

The constructor allocates numGlyphs buffers of size glyph-
Size each. Each buffer will hold one of the character glyphs
rasterized by the operating system. The number of buffers is
the number of printing ASCII characters (ASCII characters
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32 to 126, a total of 95 characters). The constructor also
receives the ciphertext (ciphertext), the size of the buffer
holding the ciphertext (ciphertextSize), and a handle to a
pre-established key to be used for decrypting the ciphertext
in the monitor (keyHandle).

2) Getter: uint8_t *GlyphBook::getBuffer(

unsigned int i);

The getter simply returns a pointer to the i-th buffer in
a glyph-book. Note that the getter is handled fully in the
operating system and does not need to interact with the
monitor. The rendering library uses the getter method to
populate the glyph-book.

3) Resolver: int GlyphBook::resolve(

uint8_t *dstAddr, unsigned int textPos,

bool conditional);

The resolver blends the right glyph for the textPos-th
character of the text into the destination (dstAddr) address.
The right glyph depends on the text, which is known to the
monitor. The monitor uses the ASCII value of the textPos-
th character to compute the index into the array of buffers
containing the glyphs and alpha-blends that to the desti-
nation. The last argument of this API (conditional) is
used to ask the monitor for conditional resolve, which will
be discussed in §4.2.

For example, assume that the ciphertext encrypts the
string “CODE=1230”. Once the glyph-book is shared with
the monitor, the operating system calls the resolver API
9 times, once per character. At first, it calls the API for
the first character; the monitor then uses the plaintext, re-
trieves the ASCII value of the first character (67 for C), and
uses that as an index in the array3 to retrieve the glyph,
and blends it onto the framebuffer address provided by the
operating system.

Note that the resolver first protects the destination frame-
buffer pages before blending the content onto them. The
protection is done using the multi-view pages technique (§5.1).
It also adds this destination address to a list, needed by the
destructor.

4) Destructor: GlyphBook::~GlyphBook();

The destructor iterates through the aforementioned list of
protected pages, zeros out the content copied by the resolver,
and unprotects them.

4.1.2 Row-Decomposition of the Glyph-Book
It is critical to keep the implementation of the glyph-

book API minimal in the monitor. Therefore, we implement
the resolve API to perform alpha-blending on a contiguous
memory buffer (determined by a start address (dstAddr) and

3More specifically, (67-32) is the index since the first glyph
in the glyph-book corresponds to space with ASCII value of
32. The previous 32 ASCII values are non-printing.
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Figure 4: Oblivious line-breaking demonstration.

size (glyphSize)). However, blending a character glyph into
the framebuffer cannot simply be performed using a contigu-
ous memory buffer as the glyph comprises of multiple rows,
and these rows are not contiguous on the framebuffer.

The first solution that we considered was to update the
implementation of the resolve API so that it could take a
glyph, iterate over its rows, and blend them onto the right
addresses in the framebuffer (derived from a single address
pointing to the location of the first row of the glyph in the
framebuffer and the widths of the framebuffer). However, we
rejected this solution since it would complicate the monitor’s
implementation.

To address this challenge, we decompose the glyphs into
their rows and store them in separate glyph-books. In this
case, the operating system creates one glyph-book consisting
of the first rows of all glyphs, another including the second
rows, and so on. The operating system then issues multiple
resolve API calls on all of these glyph-books passing the des-
tination address of corresponding rows in these calls. Since
the pixels in a row are contiguous in memory, the monitor’s
resolve API blends them on a contiguous destination address
in the framebuffer. Figure 3 illustrates this technique.

4.2 Layout
In SchrodinText, we also perform the layout in the op-

erating system without access to the text. Note that the
operating system knows the number of the characters in the
string to be shown in the widget as this is one of the argu-
ments of setCiphertext() in SchrodinTextView. Moreover,
we limit the SchrodinTextView to monospaced fonts. With
monospaced fonts, the operating system can compute the
location of each character relative to the previous one with-
out knowing the exact characters since all character glyphs
have equal widths.

However, even with monospaced fonts, we face an impor-
tant challenge: determining the line-breaks and consequent
hyphenation. The first straw-man approach that we consid-
ered was to inform the operating system of the lengths of
the words in the text, e.g., a 4 character word followed by
a 5 character word for a total of 10 characters (including
the space). This way, the operating system could deter-
mine appropriate line breaks and hyphenation. However,
this approach would enable the operating system to gain
side-channel information about the text using word-length
frequency analysis.

Our solution to solve this challenge is called oblivious
line-breaking that determines the line breaks without word-
length information. In this solution, the operating system
reserves the last character spot in the line for either a space
or a hyphen. For that spot, it issues a conditional resolve to
the monitor (§4.1.1). More specifically, it asks the monitor



to leave that spot empty if either the preceding or proceed-
ing characters in the plaintext is a space (ASCII #32) and
to fill it with a hyphen (ASCII #45), otherwise.

Figure 4 illustrates a sample text laid out over 4 lines
using this technique. As can be seen, this technique has
two limitations: erroneous indentation and double spacing.
The former happens when the first character in the line is
a space. The latter happens when the character before the
last in the line is a space. While less elegant compared to
more advanced layout algorithms, SchrodinText performs
adequately well, resulting in fully readable text (the errors
are at most two character glyphs wide).

Finally, note that SchrodinText’s layout does not support
tab spaces or newlines. For the former, multiple spaces must
be used. For the latter, separate SchrodinTextViews need
to be utilized.

5. SECURE COMPOSITING
In this section, we focus on compositing in SchrodinText

and its challenges. Once rasterized glyphs are ready and
their locations are determined, the next stage is to com-
posite the right glyphs on top of other graphics layers, e.g.,
background image in the app, and generate the framebuffer
to be displayed to the user. Compositing the protected text
in SchrodinText must meet the following requirements: the
text on the framebuffer must be visible to the display con-
troller so that it can be shown to the user. It, however,
must not be available to the operating system for read-back
(either with direct access or through DMA). Also, the oper-
ating system must be able to composite all the unprotected
content with the GPU as it normally does for performance.

We use two techniques to meet these goals: multi-view
pages and two-stage compositing. The former technique uses
the CPU MMU and various IOMMUs in the ARM SoC to
provide different views of the framebuffer pages containing
protected text pixels. The latter technique allows the oper-
ating system to perform its own compositing using the GPU
and enables the monitor to composite the protected text in
CPU. Below, we describe these two techniques in more de-
tails.

5.1 Multi-View Pages
Normally, a memory page (determined by its physical ad-

dress from the operating system’s perspective) is available
to the operating system and all I/O devices for access. That
is, reading a page either directly from the operating system
(using CPU’s load instructions) or reading it using I/O de-
vices (with DMA) will return the same values. A multi-view
page changes this paradigm. With this technique, access to
the same page by the operating system and I/O devices can
return different values.

We implement this technique using the nested page tables
and IOMMUs in the ARM SoC. Using the nested page ta-
bles and IOMMUs, the monitor can map a physical address
seen by the operating system and DMA-capable devices, re-
spectively, to different pages in memory. Figure 5 shows an
overview of this technique. For a given page of interest, the
monitor maintains two underlying pages (i.e., views), a pro-
tected view and an unprotected view. The two have similar
content except that the protected text pixels are blended on
the protected view only. The monitor then maps the pro-
tected view in the IOMMU in front of the display controller;
it maps the unprotected view for the operating system (us-
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Figure 5: Multi-view pages.

ing the MMU) and the rest of DMA-capable devices (using
the IOMMUs in front of them). When calling the resolve

API of the glyph-book abstraction on a given page for the
first time, the monitor creates the protected view, copies
the content of the unprotected view into it, blends the right
glyph buffers to the protected view, and then maps it to the
display’s IOMMU at the same physical address. For the fol-
lowing resolve API calls on the page, the monitor simply
performs alpha-blending on the protected view, but not the
unprotected one.

5.2 Two-Stage Compositing
In Android and on all modern smartphones equipped with

GPUs, the compositing is performed by the GPU for best
performance. GPU compositing creates an important chal-
lenge for SchrodinText as it requires the GPU to have read-
access to the resolved text glyphs. Given that the GPU
is programmed by the operating system, GPU compositing
would create a channel for the operating system to access
the resolved glyphs.

We considered different solutions for this problem. The
first option was to perform all compositing by the GPU and
perform sanity checks in the monitor on the GPU instruc-
tions issued by the operating system to guarantee that the
resolved glyphs are only copied to the framebuffer (which is
protected from the operating system). However, this solu-
tion would significantly bloat the monitor’s TCB as it would
require it to parse and understand the GPU instructions.
Moreover, this solution would make the monitor highly spe-
cific to the GPU model, which would make it challenging
to port to other devices with different GPUs. The second
solution that we considered was to execute the compositing
fully by the CPU. This solution would however significantly
degrade the graphics performance even for contents that are
not protected.

We thus adopted a third solution, called two-stage com-
positing, which is a middle ground between these two so-
lutions. In this solution, in the first stage, the operating
system composites the unprotected layers using the GPU.
In the second stage, the monitor composites the protected
text using the CPU. Figure 6 illustrates this approach.

Once the application’s UI surface is moved out of the vis-



ible region, e.g., pushed to the background or obscured by
the dragged notification bar, the operating system must re-
place the content of the framebuffer including the protected
pages in it. To do this, the operating system can simply call
the destructor of the glyph-books. The destructor will wipe
the rendered text and unprotect the protected page (visually
resulting in the text disappearing from the display). In or-
der to improve the performance, if the surface will be used
in the future, the operating system can keep the current
framebuffer in memory, replace it with another framebuffer,
and replace it back when the previous surface needs to be
shown. We have not implemented this optimization.

Compositing requires the monitor to implement alpha-
blending. We currently implement this in software in the
monitor with less than 20 lines of code. Note that while
simple, our current alpha-blending implementation incurs
noticeable computational overhead as it loops over all the
pixels in the character glyphs and blends them on top of the
background pixels. In §8.5, we evaluate the CPU overhead
of SchrodinText, which includes the computational overhead
of alpha-blending. In the future, we plan to investigate using
alpha-blending hardware support in the display controller to
accelerate this operation in the monitor [49].

5.3 Security Analysis
Display controller and its driver. The display has

access to the protected view of the page. This raises an im-
portant concern: since the display controller is programmable
by the operating system (through the display controller driver),
it can be compromised by the operating system and then
used to access the protected view. To address this concern,
we map all the memory pages as read-only in the IOMMU
of the display. Therefore, the display hardware is not able to
leak out the protected content to any other locations in the
memory. Moreover, a compromised display controller driver
cannot access the content using CPU instructions since it is
limited by the nested page tables. It cannot trigger a DMA
request on its own either; it needs to program the display
controller to do so, which is then limited by the IOMMU.

GPU. One might wonder whether the GPU can be
abused by the operating system to access the protected views.
To protect against this, the monitor maps the unprotected
view of the pages into the IOMMU in front of the GPU. That
is, SchrodinText programs this IOMMU to prevent the GPU
to have any access (whether read or write) to the memory
pages holding the protected text. This IOMMU is set in this
restricted mode before the protected text is composited on
the framebuffer by the monitor and is disabled after zeroing
out the pages holding the text.

6. APPLICATION INTEGRATION
To demonstrate practicality and ease-of-use of Schrodin-

Text, we have used it in a messaging application. More
specifically, we have modified the open source Xabber appli-
cation (an XMPP client) [17] so that all the received mes-
sages are displayed to the user using the SchrodinTextView

widget. This only required us to modify a few lines of code,
in order to use SchrodinTextView instead of TextView.

7. IMPLEMENTATION
We have implemented SchrodinText on an ARM Juno r0

development board [20]. To the best of our knowledge, ARM

Layer 
prepared by 

the OS

Text composited 
by the monitor

Figure 6: Secure two-stage compositing.

Juno boards are the only devices that allow us to program
both the hypervisor and the TrustZone secure world run-
time, both of which are needed for our prototype. The Juno
r0 development board incorporates 6 CPUs (2 Cortex-A57
and 4 Cortex-A53 in the big.LITTLE architecture).

In our prototype, we use Android Marshmallow (version
6.0-16.04) for the normal world operating system, which uses
the Linux kernel version 3.18. The operating system is con-
figured with 1 GB of memory. We use Xen version 4.6 for
the hypervisor and Open-TEE version 16.04 for the secure
world runtime. We use AES encryption for the ciphertext
and use the mbed TLS library [11] in the secure world to
decrypt it.

Our multi-view page approach requires controlling the
IOMMUs (i.e., SMMUs in ARM) for various DMA-capable
devices. On the Juno board, we leverage four SMMUs: one
MMU-400 in front of the GPU, one MMU-401 in front of
the display, one MMU-401 in front of the DMA engine, and
one MMU-401 in front of the USB devices. Note that the
board incorporates SMMUs for other components such as
the PCI interface. However, we disable these components in
our prototype.

We implement our oblivious rendering in two parts. First
is the implementation of the glyph-book abstraction in the
hypervisor. We also implement a proxy layer in the operat-
ing system kernel to enable the user space rendering libraries
to invoke the hypercalls provided by the glyph-book in the
hypervisor. Second is the implementation of the Schrod-

inTextView in Android. This requires modifications to the
text rendering libraries in Android including the Java-based
implementation of the text widget and its corresponding na-
tive layer, the Minikin layout library, and the hardware-
accelerated UI rendering library.

8. EVALUATION
In this section, we evaluate the protection and TCB re-

duction provided by SchrodinText as well its rendering over-
head. More specifically, for the latter, we measure the added
memory usage and latency compared to using existing TextView

widgets supported by Android. Note that we conduct our
experiments in a freshly installed Android operating system
with no applications installed other than the default ones.
Moreover, we reboot the operating system before every ex-
periment. In practice, however, the overhead of Schrodin-
Text can affect other apps running concurrently in the sys-
tem as well. To capture such an effect, we also measure and
report the CPU usage incurred by SchrodinText.

8.1 Protection
As mentioned in §2.2, there are various ways for an at-

tacker to extract other applications’ textual content. In this
section, we experimentally demonstrate how SchrodinText
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Figure 7: SchrodinText protects the text against
framebuffer read-back attacks.

will protect against framebuffer read-back attack (e.g., tak-
ing a screenshot). SchrodinText’s protection against the rest
of the attacks is simple to explain as it never decrypts the
ciphertext in the operating system. As a result, extraction
through a compromised graphics stack (including text ren-
dering libraries) and memory dumping is ineffective.

SchrodinText protects against framebuffer read-back at-
tack due to its protection of the framebuffer pages (using
the multi-view page technique). To evaluate this, we use
SchrodinTextView to show a text on the application’s UI,
and then attempt to extract the text by taking a snapshot of
the framebuffer content (we have root privilege, mimicking
an attacker with such a privilege). Figure 7 illustrates the
outcome of this experiment. Figure 7 (a) is a photo of what
is seen on the display, taken by an external camera. Figure 7
(b) is a screenshot resulting from reading the framebuffer in
the operating system. As can be seen, the text shows up
on the screen but not on the screenshot. Everything else is
the same including the white background, Android’s notifi-
cation bar on the top, and Android’s virtual buttons on the
bottom of the screen. The size of the screen is large since
our Juno development board uses an external display.

8.2 TCB Reduction
SchrodinText eliminates large swaths of code that would

otherwise have to be trusted. Without SchrodinText, we
would have to trust a large portion of the operating sys-
tem including its kernel (which itself contains various device
drivers such as the GPU driver) and the user space graphics
stack (including UI related frameworks and libraries). We
tried to measure the size of the latter. The components that
we identified contain about half a million lines of code (not
including closed source libraries such as OpenGL).

SchrodinText does add additional code, but this codebase
is small. Notably, it requires a hypervisor, which is much
smaller than the operating system kernel. Moreover, the
hypervisor is not only specific to SchrodinText and can be
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used for other security purposes in the system as well [26,41].
The part of the hypervisor that we developed for Schrodin-
Text is only approximately a thousand lines of code. Fi-
nally, SchrodinText does not add any new functionality to
the TrustZone secure world other than what is already avail-
able in it in commodity devices, i.e., key management and
decryption of a ciphertext (§3.4).

8.3 Memory Usage
There are two sources of memory overhead in Schrodin-

Text: memory used for the glyph-book (§4) and for multi-
view pages (§5.1).

Glyph-book. The operating system needs to render the
colored glyphs for all the characters given the font type, size,
and color. We measure the size of the glyph-book for the
default monospaced font in Android installed on our board
(Droid Sans Monospaced) for varying font sizes. Figure 8
shows the results. It shows that the size of the glyph-book is
small for normal font sizes (a few hundreds of kB, e.g., 150
kB for font size 8 sp). The glyph-book size does however
become exponentially large for larger fonts, e.g., about 4.8
MB for font size 48 sp. The exponential growth is due to
glyphs being two dimensional.

Multi-view pages. The monitor needs to create a pro-
tected view of every framebuffer page that contains pro-
tected text pixels. The amount of memory used for this
depends on the number of characters and their size. A single
character glyph affects several memory pages. For example,
a single glyph in Droid Sans Monospaced font at sizes 8 sp
and 48 sp affect 26 and 146 pages, respectively, resulting
in 104 kB and 584 kB of memory needed for the protected
views. However, two consecutive glyphs will not use twice
as much as they mostly affect the same memory pages on
the framebuffer.

At most, multi-view pages can result in as much mem-
ory as the size of the framebuffer, which depends on the
screen size and its resolution. For example, the size of the
framebuffer in the Juno board (which is connected to a 27”
display) is about 15.8 MB. The size of the framebuffer is
however often smaller on commodity devices. For example
on a Nexus 5 smartphone, the framebuffer size is about 8
MB.

8.4 Rendering Latency
SchrodinText increases the rendering latency. We mea-

sure this latency from the time that the text widget (either
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Figure 9: (a) Overall text rendering latency. (b)
Monitor compositing latency in SchrodinText.

SchrodinTextView or TextView) is created until when the
renderer is finished rendering the text. We perform exper-
iments with application’s UI pages with a varying number
of characters in them. We use four different numbers: 20
characters representing a small text such as SSN, account
information, and password; 100 and 200 characters repre-
senting messages; and 1000 characters representing a UI full
of text. We use font size 14 sp in the experiments and di-
vide the text into maximum 35 character lines, each line in a
separate widget. A major contributor to the latency is the
time needed for monitor-based compositing, which results in
one hypercall per row of each glyph used in the text. We
measure this latency as well.

8.5 CPU Usage
Figure 9 shows the results. We have repeated each exper-

iments three times and shown the average and standard de-
viation. There are three observations. First, SchrodinText
adds modest latency to the overall text rendering (about 30
ms to 270 ms for 20 to 1000 protected characters). This
impacts the latency incurred when a UI surface is first cre-
ated, e.g., at application’s launch time. We believe that this
latency is usable given that mobile application’s launch la-
tency has an average of 2 seconds [42] and can be as high as
20 seconds [52]. Moreover, predictive app preloading can be
used with SchrodinText to further hide this latency [42,52].
Second, for small number of characters on the screen, the
latency is small. Only when the screen is full of text, e.g.,
with 1000 characters, the latency becomes noticeable. Fi-
nally, SchrodinText can support scrolling text pages with
adequate framerate. More specifically, the scrolling perfor-
mance is determined by the compositing latency. As the fig-
ure shows, SchrodinText’s compositing incurs small latency
(4 ms to 170 ms for 20 to 1000 protected characters). At
200 characters, compositing takes about 35 ms, which can
support scrolling at near 29 (= 1000/35) Frames Per Sec-
ond (FPS). At 1000 characters, however, compositing takes
about 170 ms, which would cap the scrolling framerate to
about 5 (= 1000/170) FPS. As can be seen in Figure 9,
the latency in the monitor increases exponentially with the
number of characters. This is due to the alpha-blending
in the monitor, which operates on each pixel, resulting in
exponential latency increase for two dimensional character

 0

 10

 20

 30

 40

 50

 60

 70

 80

20 100 200 1000

R
aw

 C
P

U
 u

sa
g
e 

(j
if

fi
es

)

Number of characters

Normal text

SchrodinText

(a)

 0

 5

 10

 15

 20

 25

 30

20 100 200 1000

S
y
st

em
 C

P
U

 u
ti

li
za

ti
o
n
 (

%
)

Number of characters

Normal text

SchrodinText

(b)

Figure 10: (a) Raw CPU usage. (b) System CPU
utilization during rendering.

glyphs.
We also measured the time needed to construct the glyph-

book for various font sizes. Regardless of the font size, con-
structing the glyph-book does not take more than 30 ms,
often much less. Although small, this time can be removed
from the rendering latency by proactively creating the glyph-
book or caching it for future use.

We measure the CPU usage overhead of rendering in Schrod-
inText. We measure the CPU usage overhead by measuring
the amount of CPU used in the system from the beginning
to the end of the text rendering period. Some of the CPU
usage in this period might be due to other processes running
in the background. We make sure to minimize this effect by
not installing any other apps than the one under experiment
and a few default ones available in the system. Also, the ap-
plication itself is simple and does nothing but showing the
text.

Figure 10 shows the results. Figure 10 (a) shows the raw
CPU usage in jiffies (a unit of time used in Linux). It shows
that the total amount of CPU usage has increased by 1-3×.
This is because SchrodinText incurs computational overhead
when creating the glyph-book as well as blending all the
pixels in software (§5.2). In contrast, normal text in Android
is blended fully in GPU, reducing the CPU usage.

Despite the overall increase in CPU usage, SchrodinText
does not saturate the CPUs available in the system. Fig-
ure 10 (b) shows the CPU utilization in the system (the
ratio of time when CPU is used to when it is idle). The
SchrodinText’s rendering components run mostly in a single
thread incurring no more than 19% CPU utilization during
the rendering period, slightly more than that of the normal
text rendering.

9. RELATED WORK

9.1 Untrusted Operating System
Research on untrusted operating systems shares our moti-

vation: modern commodity operating systems are too large
and complex to be safe. Hence, many systems have at-
tempted to protect the applications from the operating sys-
tem assuming that the operating system can easily gets com-
promised by other malicious applications. Overshadow [25]
and Inktag [35] were some of the early such systems. They



use the hypervisor to protect the application. Recently, Intel
added the Software Guard Extensions (SGX) [40] allowing
the application to to create an isolated execution environ-
ment, i.e., an enclave, and protect itself, e.g., its memory,
from the operating system. Unfortunately, the job of full
protection of an application from its operating system is a
daunting task. Checkoway et al. showed that the operat-
ing system has many ways to attack an application, e.g., by
controlling the random number generator [23].

Dealing with untrusted operating systems in mobile de-
vices has been an active line of work as well. Mobile so-
lutions often use the TrustZone hardware for this purpose.
They allow sensitive frameworks to be offloaded to the secure
world and hence isolated from the operating system. For ex-
ample, AdAttester [36] pushes the display and touchscreen
drivers to the secure world allowing it to provide guaran-
tees for ad providers, e.g., that the ad is shown correctly
and that the click on the ad is not fake. TLR [46] provides
a managed runtime (based on .NET) to run the security
sensitive parts of application in the secure world. Trusted
sensors [33,34,39,47] use a trusted hardware component (ei-
ther TrustZone or Mobile Trusted Module (MTM) [16]) to
provide authenticity guarantees for sensor readings. More
specifically, the trusted sensor framework in [39] moves the
sensor driver to the secure world and use the cryptographic
operation support in it to sign the sensor readings. And
YouProve [34] uses the trusted hardware to provide signed
statements about transformed sensor readings generated in
the device. Finally, SIMlet [43] uses the TrustZone to pro-
vide a trustworthy framework to monitor a mobile device’s
network traffic in order to enable content providers and mo-
bile users to co-pay for the cost of network traffic.

In pocket hypervisors [26], Cox et al. envisioned the hy-
pervisor to be used for providing security services in mobile
devices. SchrodinText is one realization of this decade-old
mobile computing vision.

There exists solutions for building a trusted path between
an application (or an Internet service) and the user, assum-
ing that the operating system is untrusted [37,55]. Zhou et
al. [55] use a hypervisor to give an application direct, ex-
clusive, and protected access to I/O devices, e.g., keyboard
and display. In contrast, SchrodinText does not give any
applications exclusive access to the display. It allows the
operating system to manage the display as it normally does.
It, however, protects selected textual content that the appli-
cation shows to the user. Li et al. [37] use the secure world to
protect the framebuffer and enforce background/foreground
colors for it (to match the LED colors also enforced by the
secure world) in order to protect against a framebuffer over-
lay attack. Their work, however, does not protect selected
textual content on the UI.

Virtual Machine Introspection (VMI) uses the hypervisor
for intrusion detection [30–32] and for detection of malicious
activities in the operating system. SchrodinText is related to
VMI as it uses the hypervisor to protect the textual content
on the UI against a malicious operating system.

Finally, unlike these systems, SchrodinText leverages both
the hypervisor and the TrustZone secure world.

9.2 Digital Rights Management
Digital Rights Management (DRM) is a framework that

allows mobile devices to protect the digital media (such as
video and audio) from unauthorized access. This frame-

work allows the application’s cloud backend, e.g., Netflix
cloud service, to encrypt the content and share them with
the application. Current implementation of DRM in An-
droid decrypt the content in user space system services and
hence are also vulnerable to the attacks by a compromised
operating system. Future devices, however, are starting to
embrace full hardware implementation for DRM, such as
ARM Mali-V500 video processor [3]. In such a device, the
encrypted content is delivered to a video processor hardware
(integrated with the TrustZone secure world), which decodes
the content and passes it to the display, all hidden from
the operating system. It is however important to note that
protecting digital video in this manner is relatively simpler
than textual content for two reasons: First, the video does
not need to be rendered; it already comes with all the pixel
information available. All the video decoder hardware has
to do is to decrypt the content and show it on the display.
Hence, the operating system role is minimal. Second, the
video is often full-screen and not fully integrated with the
app UI. In contrast for text, the exact pixels to be rendered
depend on the selected font type, size, and color as well as
the size of the UI, text widget, and the display, most of them
are not known to the cloud backend. Moreover, textual con-
tent is embedded in the app UI and highly integrated with
it. However, we note that once such video processors are
available in commodity devices, SchrodinText can use them
for accelerating its software-based compositing.

9.3 Others
Unfortunately, protecting the UI integrity in Android has

been challenging allowing an attacker to hijack the UI, which
has triggered research into finding mitigations [24,44,45]. As
mentioned in §3.6, SchrodinText does not provide integrity
guarantees. Instead, it provides strong confidentiality guar-
antee for selected textual content on the UI.

CAPTCHA [6] attempts to identify human users (vs. com-
puters) by showing a distorted text on the display and asking
the user to type the text (a task difficult for a computer to
do). Unlike SchrodinText, CAPTCHA does not protect the
confidentiality of content shown on the display.

10. CONCLUSIONS
We presented SchrodinText, a system solution for strongly

protecting application’s sensitive textual content from mal-
ware that has compromised the operating system. Schrodin-
Text leverages modern security hardware features on ARM
platforms to protect and display the text. Our key contri-
bution was oblivious rendering, a set of novel techniques to
allow the operating system to perform the rendering without
having access to the text, allowing us to keep the monitor,
and hence the TCB, small. Our evaluation on the ARM
Juno development board shows that SchrodinText incurs
noticeable overhead but that its performance is usable. We
believe that SchrodinText can be used to safely display var-
ious sensitive textual information to mobile users.
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