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Lecture 7

Public Key Cryptography I:
Encryption + Signatures

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]



• Asymmetric cryptography
• Invented in 1974-1978 (Diffie-Hellman and Rivest-Shamir-

Adleman)
• Two keys: private (SK), public (PK)

– Encryption: with public key; 
– Decryption: with private key
– Digital Signatures: Signing by private key; Verification by public key. i.e., 

“encrypt” message digest/hash -- h(m) -- with private key
• Authorship (authentication)
• Integrity: Similar to MAC 
• Non-repudiation: can’t do with symmetric key cryptography

• Much slower than conventional cryptography
• Often used together with conventional cryptography, e.g., to encrypt session keys
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Public Key Cryptography



Public Key Cryptography

3

plaintext
message, m

ciphertextencryption
algorithm

decryption 
algorithm

Bob’s public key 

plaintext
messagePK  (m)

B

PK B
Bob’s private
key 

SK 
B

m = SK (PK  (m))
BB



4

Key Pre-distribution: Diffie-Hellman
“New Directions in Cryptography” 1976
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Public Key Pre-distribution: Diffie-Hellman

Secure communication
with Kab

Alice computes
Kab

Bob computes
Kab = Kba

Eve knows:
p, a, ya and yb
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Public Key Pre-distribution: Diffie-Hellman
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Public Key Pre-distribution: Diffie-Hellman

• DH Assumption: DH problem is HARD (not P)
• DL Assumption: DL problem is HARD (not P)
• DDH Assumption: solving DDH problem is HARD (not P)
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Interactive (Public) Key Exchange:
Diffie-Hellman

Eve is passive …

Secure communication
with Kab

Choose
random v

Choose
random w,
Compute

Compute
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The Man-in-the-Middle (MitM) Attack
(assume Eve is an active adversary!)

Secure communication
with Kab

Choose
random v

Choose
random w,
ComputeCompute
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RSA (1976-8)
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Why does it all work?
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How does it all work?

Example: p=17 q=13  n=221 (p-1)(q-1)=192=34*2

pick e=5, d=77     Can we pick 16? 9? 27? 185?

x=5, E(x)=3125 mod 221 = 31

D(y)=3177=

6.83676142775442000196395599558e+114 mod 221 = 5

Example: p=5 q=7  n=35 (p-1)(q-1)=24=3*23

pick e=11, d=11

x=2,  E(x)=2048 mod 35 =18=y

y=18, D(y)=6.426841007923e+13 mod 35 = 2   
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Why is it Secure?

Why: n has unique factors p, q

Given p and q, computing (p-1)(q-1) is easy:

Use extended Euclidian!

Conjecture: breaking RSA is polynomially equivalent to factoring n 
Recall that n is very, very large!   
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Exponentiation Costs

• Integer multiplication -- O(b2)  where b is bit-size of the base

• Modular reduction -- O(b2) 

• Thus, modular multiplication -- O(b2)

• Modular exponentiation (as in RSA) -- me mod n

• Naïve method:  e-1 modular products -- O(b2*e) 

• BUT what if e is large, (almost) as large as n?

• Let L= |e|  (e.g., L=1024 for 1024-bit RSA exponent)

• We can assume b and L are very close, almost the same 

• Square-and-multiply method works  in O(b3) time … O(b2*2L)
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Square-and-Multiply

•Example 1: e=100
•Example 2: e=10000000
•Example 3: e=11111111

From left to right in e
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Speeding up RSA Decryption
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More on RSA
• Modulus n is unique per user 

– 2 or more parties cannot share the same n
• What happens if Alice and Bob share the same modulus?

– Alice has (e’,d’,n) and Bob – (e”,d”,n)
– Alice wants to compute d” (Bob’s private key), but does not know phi(n)
– She knows that: e’ * d’= 1 mod phi(n)
– So:  e’ * d’ = k * phi(n) + 1 and:  e’ * d’ - 1 = k * phi(n)
– Alice just needs to compute inverse of e” mod X 

• where X = e’ * d’ – 1 = k * phi(n)
• let’s call this inverse d’” 
• and remember that:  d”’ * e” = k’ * k * phi(n) + 1
• can we be sure that: d”’ = d” ?

– Is it possible that e” has no inverse mod X?
• Yes, if gcd(e”,k)>1  but this is very, very UNLIKELY!

– For all decryption purposes, d”’ is EQUIVALENT to d”
– Suppose Eve encrypted for Bob:  C = (m)e” mod n
– Alice computes: 

Cd”’ mod n =  me”d”’ mod n = (m) k’ * k * phi(n) + 1 mod n = m
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El Gamal PK Cryptosystem (`83)
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El Gamal (Example)
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Digital Signatures
• Integrity
• Authentication
• Non-Repudiation
• Time-Stamping
• Causality
• Authorization

If you like your 
current health 
insurance plan, you 
can keep it!
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Digital Signatures

A signature scheme:

(P,A,K,Sign,Verify)

P - plaintext (msgs)

A - signatures

K - keys 

Sign - signing function: (P*K)->A

Verify - verification function: (P*A*K)  {0,1}

Usually message hash
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RSA Signature Scheme
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Use the fact that, in RSA, encryption reverses “decryption”
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RSA Signature Scheme (contd)
• The Good:

• Verification can be cheap (like RSA encryption) 
• Mechanically same as RSA decryption function
• Security based on RSA encryption
• Signing is harder but #verify-s > 1 …
• Deterministic

• The Bad:
• RSA is malleable: signatures can be “massaged”

• m1
d * m2

d = (m1*m2) d

• Phony “random” signatures
• compute Y=RSA(e,X)=Xe mod n 
• X is a signature of Y because Yd=X mod n

• The Ugly:
• Signing requires integrity!
• How to sign multiple blocks when m > n?
• Deterministic – needs additional randomization!

Plaintext SIG
Xe X
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