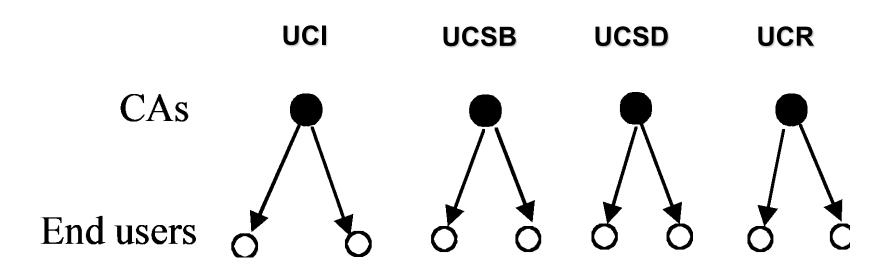
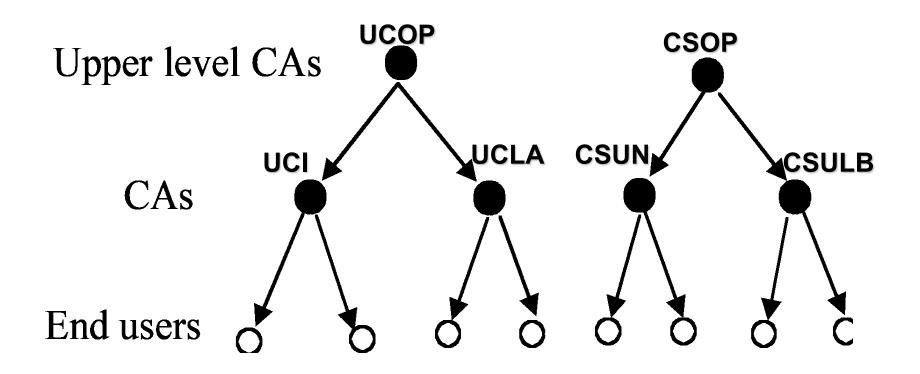
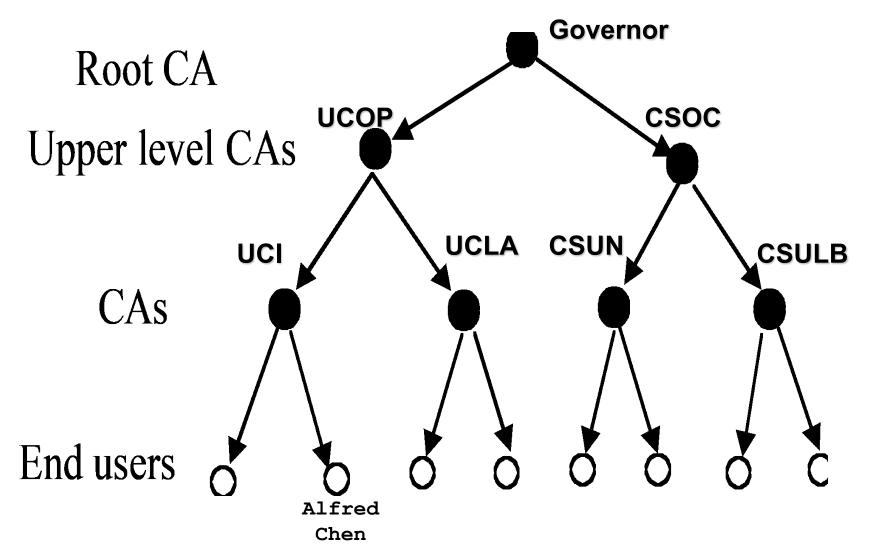
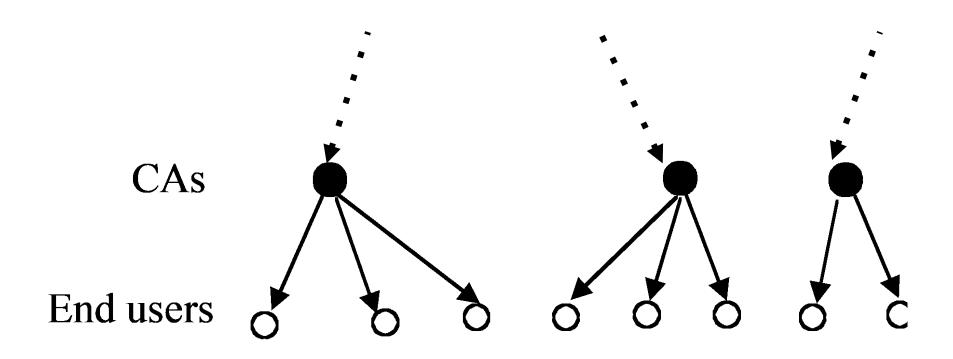

Lecture 12

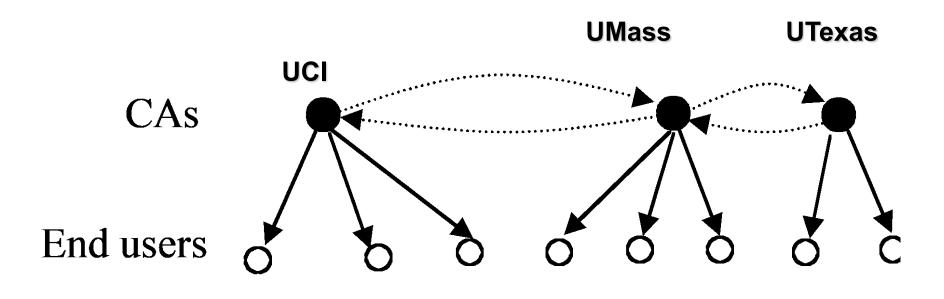

Public Key Certification and Revocation

CertificationTree / Hierarchy

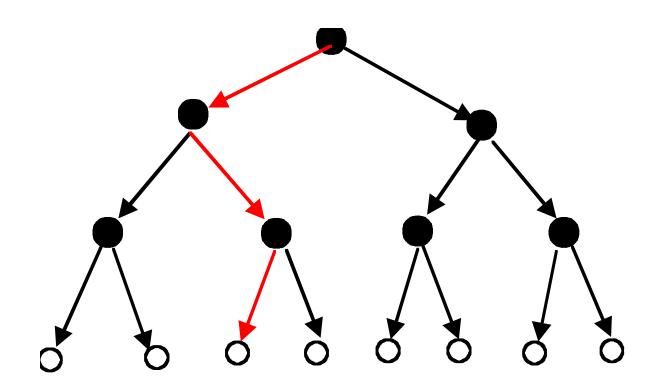

Logical tree of CA-s


Hierarchical <u>Public Key Infrastructure</u> (PKI) Example

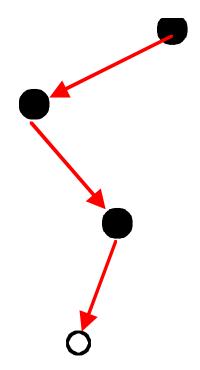

Hierarchical PKI Example


Hierarchical PKI Example

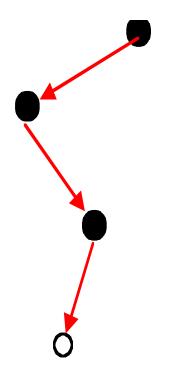
Cross Certificate Based PKI Example



Cross Certificate Based PKI Example



Certificate Paths


Derived from PKI

Certificate Paths

Certificate Paths

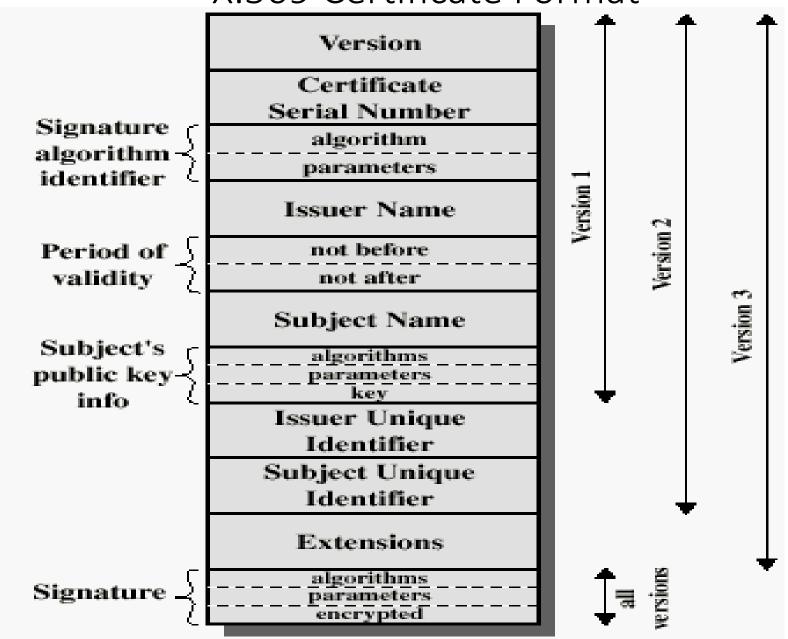
- Verifier must know public key of the first CA
- Other public keys are 'discovered' one by one
- All CAs on the path must be (implicitly) trusted by the verifier

X.509 Standard

- X.509v3 is the current version
 - ITU standard
 - ISO 9495-2 is the equivalent ISO standard
- Defines certificate format, not PKI
- Supports both hierarchical model and cross certificates
- End users cannot be CAs

X.509 Service

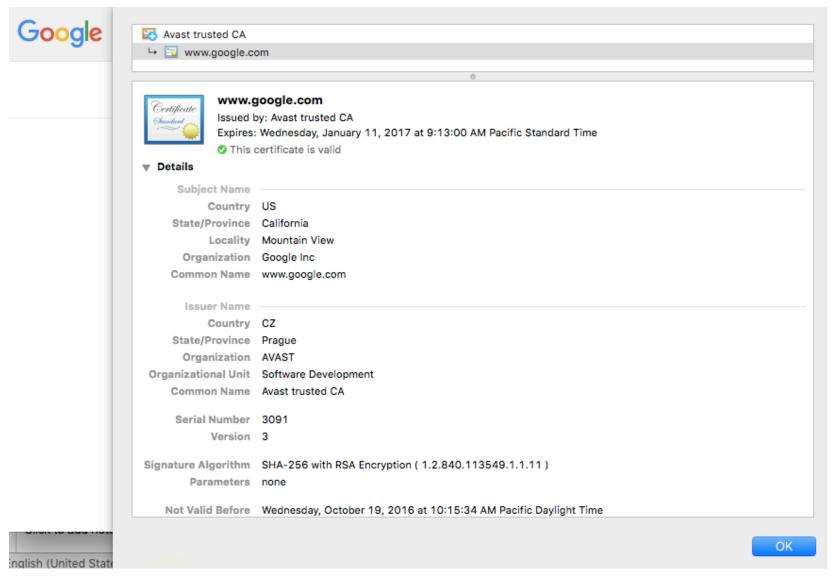
 Assumes a distributed set of servers maintaining a database about certificates


Used in S/MIME, PEM, IPSec, SSL/TLS, SSH

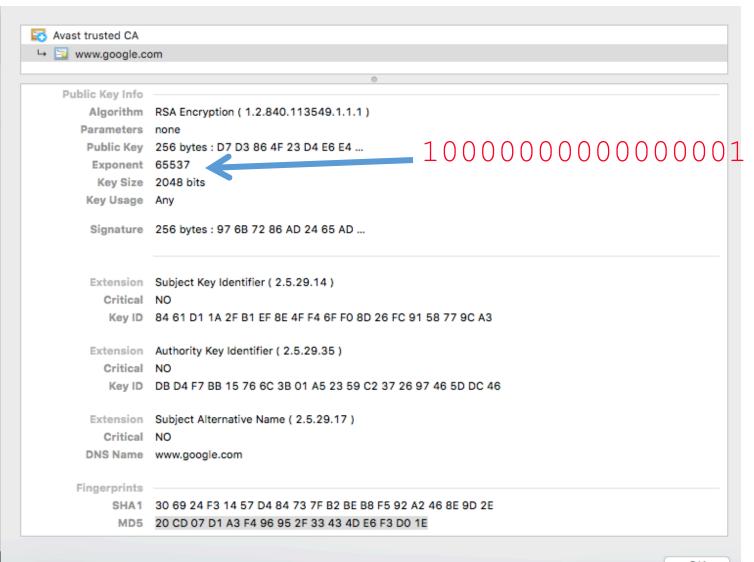
RSA, DSA, SHA, MD5 are most commonly used algorithms

X.509 Certificate Format

- version
- serial number
- signature algorithm ID
- issuer name(X.500 Distinguished Name)
- validity period
- subject(user) name (X.500 Distinguished Name)
- subject public key information
- issuer unique identifier (version 2 and 3 only)
- subject unique identifier (version 2 and 3 only)
- extensions (version 3 only), e.g., revocation info
- signature on the above fields


X.509 Certificate Format

A Sample X.509v3 Certificate


```
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
           10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
        Signature Algorithm: sha256WithRSAEncryption
        Issuer: C=BE, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation CA - SHA256 - G2
        Validity
           Not Before: Nov 21 08:00:00 2016 GMT
           Not After: Nov 22 07:59:59 2017 GMT
        Subject: C=US, ST=California, L=San Francisco, O=Wikimedia Foundation, Inc., CN=*.wikipedia.org
        Subject Public Key Info:
           Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                    00:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:
                    af:c0:02:ea:81:cb:65:b9:fd:0c:6d:46:5b:c9:1e:
                    9d:3b:ef
               ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
           X509v3 Key Usage: critical
               Digital Signature, Key Agreement
           Authority Information Access:
               CA Issuers - URI:http://secure.qlobalsiqn.com/cacert/gsorganizationvalsha2q2r1.crt
               OCSP - URI:http://ocsp2.globalsign.com/gsorganizationvalsha2g2
           X509v3 Certificate Policies:
               Policy: 1.3.6.1.4.1.4146.1.20
                 CPS: https://www.globalsign.com/repository/
               Policy: 2.23.140.1.2.2
           X509v3 Basic Constraints:
                CA: FALSE
           X509v3 CRL Distribution Points:
                 URI: http://crl.globalsign.com/gs/gsorganizationvalsha2g2.crl
           X509v3 Subject Alternative Name:
               DNS:*.wikipedia.org, DNS:*.m.wikimediafoundation.org, DNS:*.m.wikibooks.org, DNS:*.m.wikimedia.org, DNS:*.m.wikimediafoundation.org, DNS:*.m.wikinews.org,
DNS:*.m.wikipedia.org, DNS:*.m.wikiquote.org, DNS:*.m.wikisource.org, DNS:*.m.wikiversity.org, DNS:*.m.wikivoyage.org, DNS:*.m.wiktionary.org, DNS:*.mediawiki.org,
DNS:*.planet.wikimedia.org, DNS:*.wikidota.org, DNS:*.wikidota.org, DNS:*.wikimedia.org, DNS:*.wikimedia.org, DNS:*.wikinews.org, DNS:*.wikiquote.org, DNS:*.wikisource.org,
DNS:*.wikiversity.org, DNS:*.wikivoyage.org, DNS:*.wikiionary.org, DNS:*.wikipedia.org, DNS:*.wikipedia.org, DNS:wikiionary.org, DNS:wikibooks.org,
DNS:wikidata.org, DNS:wikimedia.org, DNS:wikimediafoundation.org, DNS:wikinews.org, DNS:wikiguote.org, DNS:wikisource.org, DNS:wikiversity.org, DNS:wikivoyage.org, DNS:wikitonary.org,
DNS:wmfusercontent.org, DNS:wikipedia.org
           X509v3 Extended Key Usage:
                TLS Web Server Authentication, TLS Web Client Authentication
           X509v3 Subject Key Identifier:
                28:2A:26:2A:57:8B:3B:CE:B4:D6:AB:54:EF:D7:38:21:2C:49:5C:36
           X509v3 Authority Key Identifier:
                keyid:96:DE:61:F1:BD:1C:16:29:53:1C:C0:CC:7D:3B:83:00:40:E6:1A:7C
   Signature Algorithm: sha256WithRSAEncryption
         8b:c3:ed:d1:9d:39:6f:af:40:72:bd:1e:18:5e:30:54:23:35:
```

A Sample Certificates in Practice (1/3)

A Sample Certificates in Practice (2/3)

A Sample Certificates in Practice (3/3)

----BEGIN CERTIFICATE----

MIIDTzCCAvmqAwIBAqIBATANBqkqhkiG9w0BAQQFADBcMSEwHwYDVQQKExhFdXJv cGVhbiBJQ0UtVEVMIHByb2plY3QxIzAhBqNVBAsTGlYzLUNlcnRpZmljYXRpb24q OXV0aG9vaXR5MRIwEAYDVQQHEwlEYXJtc3RhZHQwHhcNOTcwNDAyMTczNTU5WhcN OTqwNDAyMTczNTU5WjBrMSEwHwYDVQQKExhFdXJvcGVhbiBJQ0UtVEVMIHByb2pl Y3QxIzAhBqNVBAsTGlYzLUNlcnRpZmljYXRpb24gQXV0aG9yaXR5MRIwEAYDVQQH EwlEYXJtc3RhZHQxDTALBqNVBAMTBFVTRVIwWTAKBqRVCAEBAqICAANLADBIAkEA qKhTY0kbk8PDC2yIEVXefmri+VKq3GklxMi/VeExqM7kqSmFmYoVmt72L+G0UF9e BHWm9HbcPA453Dq+PqRhiwIDAQABo4IBmDCCAZQwHwYDVR0jBBqwFoAUfnLy+DqG nEKINDRmdcPU/NGiETMwHQYDVR0OBBYEFJfc4B8qjSoRmLUx4Sq/ucIYiMrPMA4G A1UdDwEB/wQEAwIB8DAcBqNVHSABAf8EEjAQMAYGBCoDBAUwBqYECQqHBjBDBqNV HREEPDA6qRV1c2VyQGRhcm1zdGFkdC5nbWQuZGWGIWh0dHA6Ly93d3cuZGFybXN0 YWR0LmdtZC5kZS9+dXNlcjCBsQYDVR0SBIGpMIGmgQxnbWRjYUBnbWQuZGWGEWh0 dHA6Ly93d3cuZ21kLmRlghdzYXR1cm4uZGFybXN0YWR0LmdtZC5kZaRcMSEwHwYD VQQKExhFdXJvcGVhbiBJQ0UtVEVMIHByb2plY3QxIzAhBqNVBAsTGlYzLUNlcnRp ZmljYXRpb24gQXV0aG9yaXR5MRIwEAYDVQQHEwlEYXJtc3RhZHSHDDE0MS4xMi42 Mi4yNjAMBqNVHRMBAf8EAjAAMB0GA1UdHwQWMBQwEqAQoA6BDGdtZGNhQGdtZC5k ZTANBgkqhkiG9w0BAQQFAANBAGkM4ben8tj76GnAE803rSEGIk3oxtvxBAu34LPW DIEDzsNqPsfnJCSkkmTCg4MGQlMObwkehJr3b2OblJmD1qQ=

----END CERTIFICATE----

Certificates in Practice

- X.509 certificate format is defined in Abstract Syntax Notation 1 (ASN.1)
- ASN.1 structure is encoded using the Distinguished Encoding Rules (DER)
- A DER-encoded binary string is typically base-64 encoded to get an ASCII representation (previous slide)

Certificate Revocation Scenarios

What if:

- Bob's CA goes out of control?
- Bob left the company?
- Bob forgets his private key?
- Someone steals Bob's private key?
- Bob willingly discloses his private key?
 - Eve can decrypt/sign while Bob's certificate is still valid ...
 - Bob reports key loss to CA (or CA finds out somehow)
 - CA issues a Certificate Revocation List (CRL)
 - Distributed in public announcements
 - Published in public databases
 - When verifying Bob's signature or encrypting a message for Bob, Alice first checks if Bob's certificate is still valid!
 - IMPORTANT: what about signatures "Bob" generated before he realized his key is lost?

Certificate is a **capability**

- Certificate revocation needs to occur when:
 - certificate holder key compromise/loss
 - CA key compromise
 - end of contract (e.g., certificates for employees)
- Certificate Revocation List (CRL) lists certificates that are not yet naturally expired but revoked
- CRL should be reissued periodically, even there if no new revocation activity! WHY?

Requirements for Revocation

Timeliness

 Before using a certificate, must check most recent revocation status

Efficiency

- Computation
- Bandwidth and Storage
- Availability

Security

Types of Revocation

Implicit

- Each certificate is frequently/periodically re-issued
- Alice has a current valid certificate → Alice is not revoked
- No need to distribute/publish revocation info

• Explicit

- Only revoked certificates are periodically announced
- Alice's certificate is not listed among the revoked → Alice is not revoked
- Need to distribute/publish revocation info

Revocation Methods

Explicit:

- CRL Certificate Revocation List
 - Sources: CRL-DP, indirect CRL, dynamic CRL-DP
 - Delta-CRL, windowed CRL, etc.
 - Certificate Revocation Tree (CRT) and other Authenticated Data Structures
- OCSP On-line Certificate Status Protocol

Implicit:

CRS - Certificate Revocation System

Certificate Revocation List (CRL)

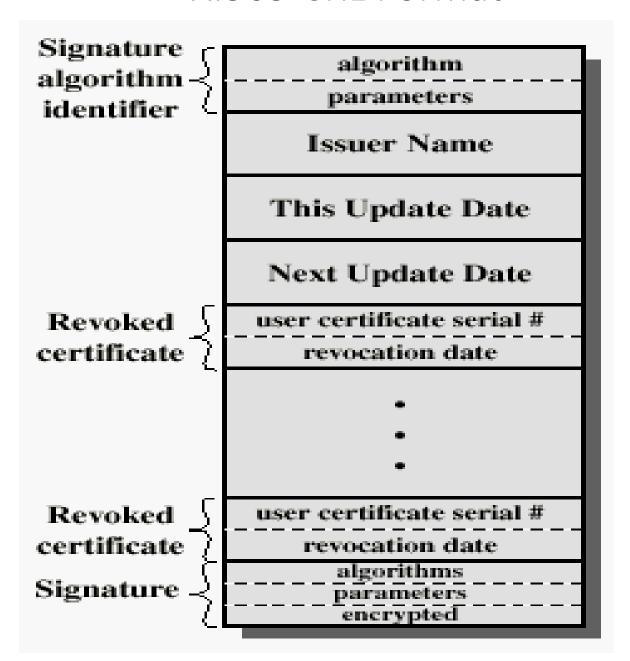
Off-line mechanism

 CRL = list of revoked certificates (e.g., SNs) signed by a revocation authority (RA)

RA not always CA that issued the revoked PKC

Periodically issued: daily, weekly, monthly, etc.

Pros & Cons of CRLs


Pros

- Simple
- Does not need secure channels for CRL distribution

Cons

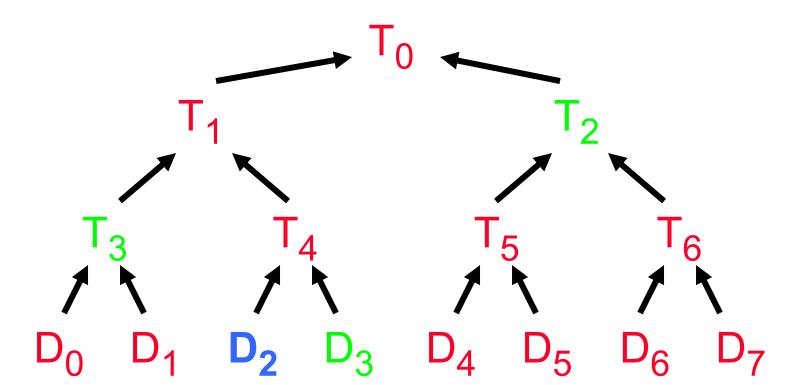
- Timeliness: "window of vulnerability"
- CRLs grow and can become huge
- How to distribute CRLs reliably?

X.509 CRL Format



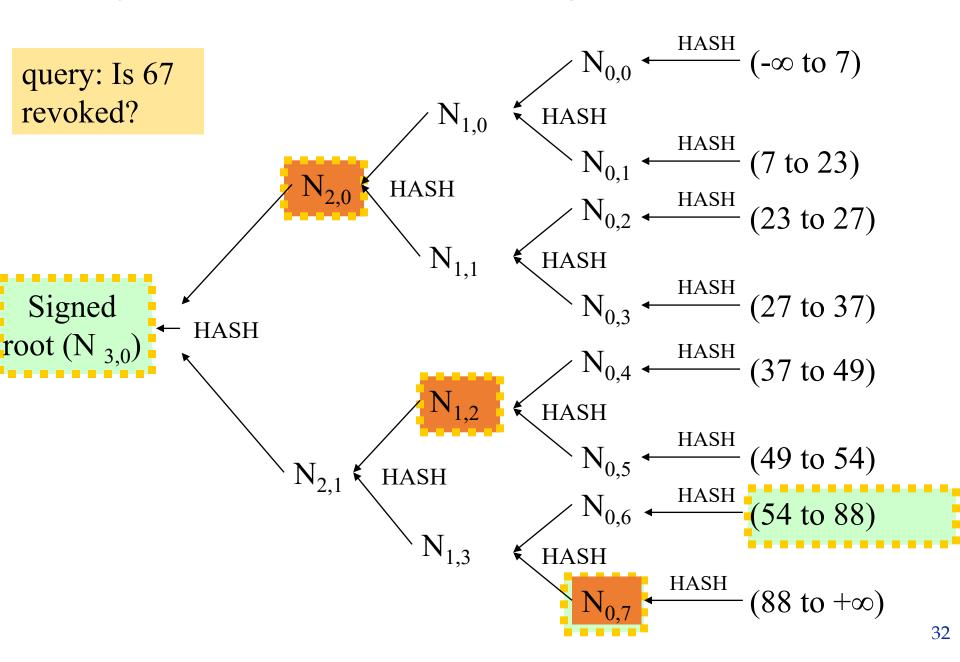
Certificate Revocation Tree (CRT)

- Proposed by in 1998 by P. Kocher
- Based on so-called hash trees
 - Hash trees first proposed by R. Merkle in another context in 1979 (one-time signatures)


Merkle Hash Tree Example

- Need to authenticate a sequence of values: D_0 , D_1 , ..., D_N
- Construct binary tree over data values
- Arrows represent hashing, e.g., $T_4 = H (D_2, D_3)$

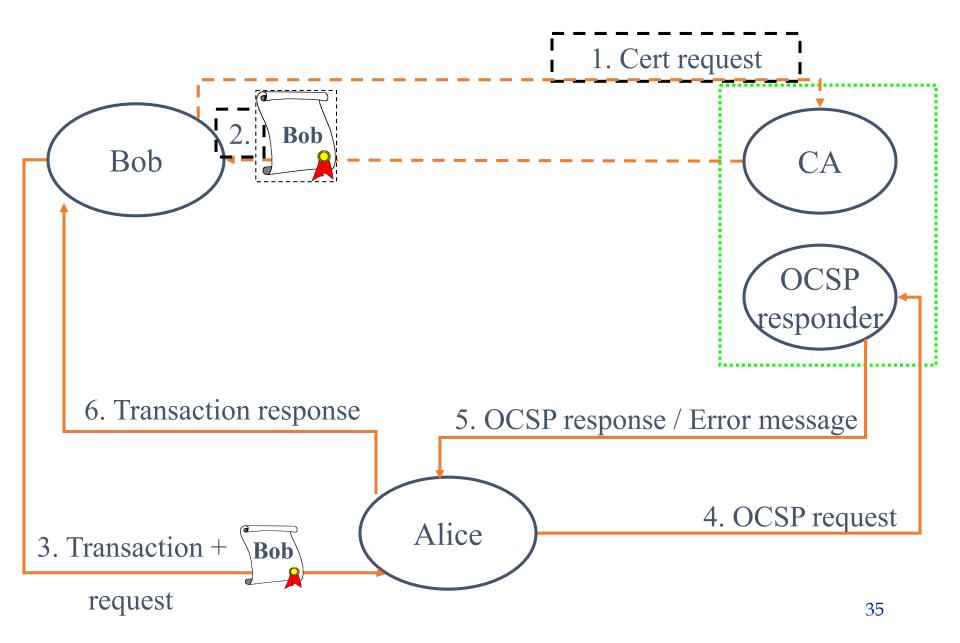
Merkle Hash Trees: II


- Verifier knows T₀
- How can verifier authenticate tree leaf D_i?
- Solution: re-compute T₀ using D_i
- Example: to authenticate D_2 , send D_2 and $\underline{\text{co-path}} = [D_3, T_3, T_2]$
- Verify $T_0 = H(H(T_3 || H(D_2 || D_3)) || T_2)$

CRT Contd.

- Express ranges of SN of PKC's as tree leaf labels:
 - E.g., (5—12) means: 5 and 12 are revoked, those larger than 5 and less than 12 are okay
 - Place the hash of the range in the leaf
- Response includes the corresponding tree leaf, the necessary hash values along the path to the root, the signed root
- The CA periodically updates the structure and distributes to untrusted servers called Confirmation Issuers

Example of CRT: each leaf = range of valid certificates


Characteristics of CRT

- Each response (leaf + co-path) represents a proof
- Length of proof is: O(log n)
 - Much shorter than CRL which is O(n)
 - Where n is # of revoked certificates
- Only one "real" signature for the whole tree over the root

Explicit Revocation: OCSP

- OCSP = On-line Certificate Status Protocol (RFC 2560) - June 1999
- Used in place of or, as a supplement to, checking CRLs
- Conveys instantaneous status of a PKC
- Especially suitable for sensitive, volatile settings, e.g., stock trades, electronic funds transfer, military

OCSP Players

OCSP Definitive Response

- All definitive responses have to be signed:
 - either by issuing CA
 - or by a Trusted Responder (OCSP client trusts the TR's PKC)
 - or by a CA Authorized Responder which has a special PKC (issued by the CA) saying that it can issue OCSP responses on CA's behalf

Responses for Each Certificate

- Response format:
 - target PKC SN
 - PKC status:
 - good positive answer
 - revoked permanently/temporarily (on-hold)
 - unknown responder doesn't know about the certificate being requested
 - response validity interval
 - optional extensions

Special Timing Fields

- A response contain three timestamps:
 - thisUpdate time at which the status being indicated is known to be correct
 - nextUpdate time at or before which newer information will be available
 - producedAt time at which the OCSP responder signed this response. Useful for response preproduction

Security Considerations

On-line method

- DoS vulnerability
 - flood of queries + generating signatures!
 - unsigned responses → false responses
 - pre-computing responses offers some protection against DoS, but...
- Pre-computing responses allows replay attacks (since no nonce included)
 - but OCSP signing key can be kept off-line

Open Questions

- Consistency between CRL and OCSP responses
 - It is possible to have a certificate with two different statuses.
- If OCSP is more timely and provides the same information as CRLs, do we still need CRLs?
- Which method should come first OCSP or to CRL?