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ABSTRACT

An Autonomous Driving System (ADS) is a complex software sys-
tem often composed of multiple modules, each responsible for its
own set of tasks. The ADS planning module is responsible for plan-
ning the autonomous vehicle’s future driving trajectories and has
historically been the most buggy ADS module. In recent years,
many approaches have been proposed to test an ADS in complex
virtual scenarios through simulation, and these scenarios have been
effective in revealing the ADS’s suboptimal decisions. However,
due to the randomness of events that occur during the real-time ex-
ecution of an ADS, test scenarios tend to produce varying outcomes
and, in turn, make ADS testing non-deterministic, flaky, and unpre-
dictable. To address this challenge, we propose and evaluate DeFT,
an approach that extracts deterministic test cases for the ADS plan-
ning module from non-deterministic system-level scenario tests.
DeFT monitors the messages exchanged by ADS modules during
the execution of system-level scenario tests and reconstructs inputs
to reproduce the planning module’s execution. By using DeFT, we
find that planning module tests can (1) more accurately reproduce
planning module executions that occurred during system-level sce-
nario tests, (2) be used to deterministically detect the same 658
collision failures revealed by system-level scenario tests, and (3)
reduce the time needed to reproduce failures by 43.69% to 77.64%.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

Autonomous vehicles (AVs) have gained popularity in recent years,
as demonstrated bymore than 50 companies developing autonomous
driving systems (ADSes) [1, 2]. Examples include Tesla’s Autopi-
lot, which aims to achieve full self-driving capability [3]; Waymo,
formerly the Google self-driving car project, becoming the first
in the world to provide an autonomous ride-hailing service [4]
and expanded its service to Los Angeles as of 2024 [5]; and Torc,
a self-driving tech company focusing on autonomous trucks [6].
Self-driving cars are expected to bring many benefits: Safety may
be improved because 94% of accidents are caused by human error
(e.g., due to distraction or intoxication); for those who cannot drive
due to age, disability, or lack of experience, self-driving cars can be
a convenient traveling method [7]. Despite well-known companies
making advances in autonomous driving and the potential benefits
that we may have, the technology itself is not as safe as it should
be at the current stage. For example, in 2018, a pedestrian died in a
crash that involved a self-driving vehicle from Uber [8]; in 2023, a
pedestrian was seriously injured after being hit by a human driver
and then trapped under an autonomous car operated by GM Cruise
[9].

Field-operational tests have been a common method to ensure
the safety and quality of ADSes, typically performed by a safety
driver sitting in the driver seat of an AV ready to take over in case
of emergencies. However, AV companies are required to acquire
the necessary permits before conducting this type of testing. In the
state of California, where most AV testing occurs at the production
level, only 36 companies have permits for testing with a driver [10].
To address some of the limitations of field-operational tests, virtual
testing of ADSes in simulations has become a viable option, as
such testing can significantly reduce costs by eliminating expenses
associated with field-operational testing, including vehicle mainte-
nance, fuel, insurance, and permit acquisition. In addition, virtual
testing also allows developers to simulate diverse and potentially
hazardous scenarios that are hard to replicate in the physical world
without endangering human lives.

Apollo [11] is an open-source version ADS developed by Baidu,
who recently deployed its commercial version in Wuhan, China
[12], and many ADS testing approaches proposed in recent years
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have been predominately validated using this ADS [13–20]. Those
approaches focus on automatically generating test cases in the form
of complex virtual scenarios, and many of them have been shown to
be effective in finding challenging scenarios for the ADS. The work-
flow of those approaches involves specifying a scenario according
to the simulator’s specification and then simulating the scenario
with the ADS controlling a vehicle in simulation. Based on events
that occur during the simulation, different oracles are implemented
to detect safety or comfort violations. However, ADSes are observed
to be non-deterministic, as they take diverging paths even when
repeating the same scenario [21]. While this non-determinism may
not impact the key functionality of an ADS (i.e., driving a vehicle),
it causes scenario tests to become inherently flaky (i.e., the same
version of the ADS non-deterministically passes or fails). For in-
stance, after a violation has been observed in a simulated scenario,
there is no guarantee that re-simulating the same scenario test will
yield the same violation in the future.

We studied the implementations of the state-of-the-art open-
source ADSes (i.e., Apollo [11] and Autoware [22]) to identify if
the implementation of ADS modules is the main source of non-
determinism. We observed for both systems that the software mod-
ule responsible for deciding the ADS’ behavior (i.e., the planning
module) is deterministic, as they produce identical output when
processing the same input. However, during real-time simulation of
system-level scenario tests, it becomes difficult to precisely control
when and what inputs are being processed by the planning mod-
ule, thus leading to variations in the planning module’s outputs
when repeating the same scenario test and ultimately leading to the
system non-deterministically passing or failing. To obtain a deter-
ministic set of test cases that reproduce failing planning decisions,
we introduce Deterministic Frame-based Testing (DeFT), a testing
approach that divides existing system-level scenario tests into a
sequence of frames where each frame corresponds to the input of
a planning module test. By isolating ADS testing to a single mod-
ule, we demonstrate that while scenario tests may not be able to
deterministically reproduce violations, DeFT can deterministically
reproduce planning decisions and leverage this ability to determin-
istically detect faulty planning decisions that led to system-level
violations. Further, module tests extracted by DeFT can achieve
substantial time savings when attempting to reproduce collision
violations that are not deterministically reproducible by simply
rerunning system-level scenario tests.

The main contributions of this work are as follows:
• We propose DeFT (Deterministic Frame-based Testing), an ap-
proach that creates high-quality module-level tests for ADS plan-
ning from existing system-level scenario tests.
• We demonstrate that DeFT can extract realistic module tests that
reproduce planning trajectories from existing system-level tests.
• We demonstrate that planning module tests share the same
failure-finding capability as scenario tests by deterministically
detecting 658 failures revealed by 8 scenario test generators.
• We provide an implementation of DeFT on a widely-used open-
source ADS and a benchmark set of test scenarios exhibiting
non-deterministic collisions to facilitate the reproduction of our
work [23].

2 BACKGROUND

2.1 Autonomous Driving System

An autonomous driving system (ADS) is a complex software system
consisting of multiple modules, each responsible for its sub-tasks
and, in the end, achieving the overall goal of driving a vehicle. The
Society of Automotive Engineers (SAE) defines different levels of
autonomy ranging from level-0 (no driving automation) to level-5
(full driving automation) [24]. Apollo [11] and Autoware [22] are 2
open-source ADSes that aim for level-4 autonomous driving, where
a human driver is not required to operate the vehicle when certain
conditions are met. Some example features include local driverless
taxis and traffic jam chauffeurs [25]. The state-of-the-art ADSes
consist of multiple modules and utilize the publish-subscribe archi-
tecture, where each module retrieves its input from the message
bus by subscribing to one or more topics and publishes its output
to the message bus [26]. Each module operates asynchronously at
a certain frequency and accomplishes a specific task, for example
(1) Localization detects the location of the autonomous vehicle
itself; (2) Perception detects traffic light statuses and road traffic
participants; (3) Prediction predicts the movement of dynamic
obstacles; (4) Planning computes the optimal driving trajectory;
(5) Control realizes the planned trajectory through lateral and
longitudinal control. The executions of these modules are man-
aged through high-performance middleware (i.e., CyberRT [27],
ROS [28]) during runtime [29]. In our study, we select Apollo [11]
as our subject ADS because (1) it is the open-source version of a
production-grade level-4 ADS developed by Baidu, (2) it is capable
of performing autonomous driving functionality in various scenar-
ios [30], (3) it is selected by Udacity to teach state-of-the-art AV
technology [31], (4) it can be directly deployed on real-world AVs
such as Lincoln MKZ, Lexus RX 450h, GAC GE3, and others [32],
and (5) it has mass production agreements with Volvo and Ford
[33]. More recently, Apollo has started serving the general public
in cities (e.g., a robo-taxi service in Wuhan, China [12]).

2.2 Simulation-based Testing

Simulation-based ADS testing approaches [13–20] produce scenario
tests that are executed through a simulator. During test execution,
the simulator controls the actors (e.g., pedestrians, vehicles) based
on the specification and generates the corresponding inputs for the
ADS. After processing data generated by the simulator, the ADS
produces control commands, which the simulator processes to drive
theAV in the simulator. The outcome of the scenario can be recorded
in different ways. When the simulator provides a data recorder (e.g.,
Carla recorder [34]), the user can obtain scenario-level information
from the perspective of the simulator (e.g., positions of ground-
truth road traffic participants and traffic light status at different
timestamps). Alternatively, the user can record messages that are
being exchanged on the message bus of the ADS (e.g., Apollo’s
cyber_recorder [35], Autoware’s ros2 bag [36]) to analyze the
output of each ADS module. Following test execution, test oracles
analyze the driving trajectory of the ADS and determine if any
traffic violations occurred (e.g., colliding with another vehicle).
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Figure 1: Visualization of two simulations of the same sce-

nario test for the same version of the ADS. The red vehicle is

the AV, the yellow vehicle is a static obstacle and the green

vehicle is an intelligent obstacle waiting for the traffic signal

to turn green. In Simulation 1, the AV cuts off and collides

with the green vehicle; in Simulation 2, the AV follows traffic

rule and drives behind the green vehicle.

2.3 Motivation

Laurent et al. [21] discussed the inherent non-determinism of AD-
Ses through their observation of an ADS taking diverging paths
in repeated simulations of the same scenario, and we observed
that ADS taking diverging paths can also lead to variances in test
outcomes. Figure 1 depicts 2 simulations of the same scenario test
generated by a state-of-the-art ADS test generation technique [18].
In the scenario, the AV is the red vehicle, blocked by a static yel-
low vehicle; the green vehicle is a dynamic obstacle waiting for
the traffic signal to turn green. The AV sometimes turns left from
a through lane, cuts off the green vehicle waiting for the traffic
signal to turn green, and eventually collides with that vehicle. This
fault occurs non-deterministically, and the ADS avoids the collision
by stopping at a far distance behind the green vehicle most of the
time (16 times in 20 simulations). In both passing and failing simu-
lations, the AV drives around the static yellow obstacle. However,
a critical difference in behavior planning leads to a difference in the
overall scenario outcomes for passing and failing simulations. In
Simulation 1, the AV plans to drive side-by-side with the green
vehicle waiting for the red light and eventually turns left from a
through lane while cutting off the green vehicle. In Simulation

2, the AV produces a critical alternative planning trajectory at a
similar position and time to follow the green vehicle and avoids
both traffic rule violations and safety violations. We extended our
pilot study to 6,158 scenarios generated by 8 testing approaches,
and observed 187 scenarios that reveal collision violations have
non-deterministic outcomes, as either violations disappear or new
violations arise during repetitions of the same scenario test. We
will further elaborate on the details in Section 5.2.

3 PROBLEM STATE SPACE

While the inherent non-determinism of ADS inevitably leads to
non-determinism in executions of scenario tests, the module re-
sponsible for deciding the ADS’s behavior in the state-of-the-art
open-source ADS, the planning module, is deterministic (i.e., pro-
cessing the same input produces the same output) [37]. However,
this determinism diminishes during real-time simulation because it
is hard to ensure each of the modules is executed under identical
conditions, as every simulation can produce a different outcome
due to different combinations of software and hardware conditions
[38]. To that end, our insight into obtaining a deterministic test
suite for ADS planning is to isolate testing a single module and
produce module-level tests that capture and reproduce executions
that occurred during system-level scenario tests. In the remainder
of this section, we present a formal specification of the problem
state space, which DeFT utilizes to extract planning module tests.

Definition 1. During the execution of a scenario test, individual
modules of the ADS publish their outputs to the message bus at
varying times. Messages that can be observed on the message bus
are represented by a list M = [𝑚1,𝑚2, ...𝑚 |M | ], each𝑚𝑖 is observed
at time 𝑡𝑚𝑖

and can be one of
• 𝑚𝑟𝑜𝑢𝑡𝑖𝑛𝑔 is an output produced by the routing module, rep-
resenting the start and destination location of the AV in the
given scenario at time 𝑡𝑀 .
• 𝑚𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is an output produced by the localization mod-
ule, representing the location of the AV observed at time
𝑡𝐿 .
• 𝑚traffic_light is an output produced by the perception module,
representing the traffic light status of all detected traffic
lights at time 𝑡𝑇 .
• 𝑚𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 is another output that the perception mod-
ule produces, representing the positions of all obstacles that
have been detected at time 𝑡𝐷 .
• 𝑚𝑝𝑟𝑒𝑑 is an output produced by the prediction module, rep-
resenting the predicted trajectories of detected obstacles at
time 𝑡𝑃𝐷 .
• 𝑚𝑝𝑙𝑎𝑛 is an output produced by the planning module, repre-
senting the planned future trajectory of ADS at time 𝑡𝑃𝐿 .

Definition 2. A single execution of the ADS planning module
processes a frame 𝐹 at time 𝑡𝐹 , where a frame is defined as the
tuple 𝐹 = ⟨𝑚𝑟𝑜𝑢𝑡𝑖𝑛𝑔,𝑚𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,𝑚traffic_light ,𝑚𝑝𝑟𝑒𝑑 ⟩, representing a
snapshot of messages from other modules that serve as inputs to
the planning module. For each execution of the planning module
that occurred during system-level testing, DeFT tries to construct
the input frame 𝐹 that was processed for the execution.

Definition 3. A single execution of an ADS planning module
produces output𝑚𝑝𝑙𝑎𝑛 , which we refer to as a planning trajectory
and later denote as 𝑃 , at time 𝑡𝑚𝑝𝑙𝑎𝑛

where 𝑃 is a sequence of
path points [𝑝1, 𝑝2, ..., 𝑝 |𝑃 | ] and each path point 𝑝 is a tuple ⟨𝑥,𝑦, 𝑡⟩
representing the planning module plans to reach position ⟨𝑥,𝑦⟩
at timestamp 𝑡 . Since the planning module is deterministic (i.e.,
processing the same input yields the same output), DeFT compares
the output of the planning module during system-level testing and
module-level testing to determine the correctness of the extracted
input 𝐹 .
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Given all observed messagesM during the execution of a system-
level scenario test where P is a subset ofM representing all outputs
of the planning module (i.e., P = [𝑃1, 𝑃2, ..., 𝑃 |P | ]), the goal of DeFT
is to find all input frames F = [𝐹1, 𝐹2, ..., 𝐹 |F | ] such that the output
produced by the planning module 𝑃 ′𝑖 given input 𝐹𝑖 reproduces the
original output 𝑃𝑖 .

4 APPROACH

DeFT produces module tests for ADS planning by extracting frames
from system-level scenarios that can reproduce the module’s execu-
tions. Elbaum et al. [39] proposed the carving technique that incor-
porates instrumentation code into the program to record system
states or method invocations during system-level testing [40]. How-
ever, each of the ADS modules is expected to perform time-critical
tasks, and such a system usually does not tolerate instrumentation-
induced overhead [41]. To record necessary information that fa-
cilitates reproducing executions of the planning module without
instrumenting any part of the ADS, our key insight is to leverage
the design of the ADS architecture and rely on messages that are
being exchanged on the ADS’ message bus. This insight is based on
the following two intuitions: (1) The message bus is a non-invasive
communication channel that can be used to obtain the outputs of
each ADS module (e.g., the simulator subscribes to the output of
the control module to obtain control commands produced by the
ADS). Therefore, a subscriber can be added to the message bus to
record additional information without affecting the execution of
other ADS modules, and the state-of-the-art ADSes typically pro-
vide such a capability [35, 36]. (2) The planning module subscribes
to messages that are available on the message bus and processes a
combination of them to produce a planning trajectory. As a result,
we can reconstruct the necessary conditions to reproduce each
execution of the planning module after a real-time simulation of a
scenario test by finding the combination of messages recorded from
the message bus instead of instrumenting the planning module to
record the internal states and arguments for each execution.

Figure 2 shows an overview of how DeFT extracts module tests
from system-level scenario tests. DeFT achieves this goal as fol-
lows: (1) the Planning IO Filter observes messages that are being
exchanged on the message bus and identifies candidate messages
that could have been processed by the planning module, since dur-
ing real-time simulation, the planningmodule is known to subscribe
to a set of topics and process messages obtained from those topics;
(2) for each planning trajectory produced during real-time simu-
lation, the Time-Sensitive Input Search Engine searches for (a) the
time at which the planning module processed data and (b) what
data was processed, and executes the planning module based on
the reconstructed input to reproduce a planning trajectory; (3) the
Trajectory Validator compares the planning trajectory produced
during real-time simulation with the reproduced planning trajec-
tory by isolating the execution of the planning module to validate
the result of Time-Sensitive Input Search Engine.

4.1 Planning IO Filter

For each planning trajectory produced by the planning module
during a system-level scenario test, the goal of the Planning IO
Filter (PIF) is to identify candidate messages observed from the

message bus that the planning module could have processed. To
achieve that, PIF leverages the fact that if the planning module
produced a planning trajectory 𝑃 at time 𝑡𝑃 , then the input frame
for this planning execution cannot consist of messages that are
published after 𝑡𝑃 .

The planning module tracks the most recently received message
from each subscribed topic and creates a snapshot of thosemessages
(i.e., the input frame 𝐹 ) at a certain frequency for processing. Given
a planning trajectory 𝑃 produced at time 𝑡𝑃 , the input frame 𝐹

must have been created at some time 𝑡𝐹 = 𝑡𝑃 − 𝛼 , where 𝛼 is the
processing time of the planning module. Since the processing time
of the planning module is lower bounded by 0 (i.e., the hypothetical
case where the planning module instantly produces a result), 𝑡𝐹
must be earlier than 𝑡𝑃 . Considering the input frame 𝐹 created at
𝑡𝐹 can only consist of messages that have been received before 𝑡𝐹 ,
messages that are published after 𝑡𝑃 cannot be received before 𝑡𝐹 ,
and they cannot be part of candidate messages for the input frame
𝐹 . Figure 3 shows what PIF considers as candidate messages for the
input frame of a planning trajectory observed on the message bus.
PIF maps each planning trajectory with a set of candidate messages
M𝑐𝑎𝑛𝑑 , defined as follows:

M𝑐𝑎𝑛𝑑 → 𝑃 : {𝑚 :𝑚 ∈ M ∧ 𝑡𝑚 <= 𝑡𝑃 ∧ 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑠𝑇𝑜 (𝑚)} (1)

whereM represents all messages observed on the message bus, 𝑡𝑚 is
the time at which message𝑚 was published, and 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑠𝑇𝑜 (𝑚)
is a function that determines if the planning module subscribes to
message𝑚. For each planning trajectory 𝑃 , the candidate messages
for the input frame of this planning trajectory are messages from
the message bus that are published before 𝑡𝑃 .

4.2 Time-Sensitive Input Search Engine

The goal of the Time-Sensitive Input Search Engine (TISE) is to re-
construct inputs for the planning module to reproduce planning tra-
jectories observed during system-level scenario tests. For each plan-
ning trajectory 𝑃𝑖 ∈ P, TISE reconstructs the input of the planning
module 𝐹𝑖 (recall Definition 2) so that the planning module process-
ing 𝐹𝑖 created at time 𝑡𝐹𝑖 produces 𝑃 ′𝑖 such that 𝐸𝑄_𝑡𝑟𝑎 𝑗 (𝑃𝑖 , 𝑃 ′𝑖 , 𝜃 ).

While the upper bound of frame creation time 𝑡𝐹 is specified to
be 𝑡𝑃 by PIF, the first step of TISE is to specify the lower bound of
𝑡𝐹 . The state-of-the-art ADS architecture models the execution of
each module as callbacks that are triggered by events [42, 43]. Once
the triggering event is received by the planning module, it creates
a frame consisting of the most recently received messages and
computes a planning trajectory based on the frame. Therefore, we
have Heuristic 1: Given a planning trajectory 𝑃 observed at time
𝑡𝑃 , 𝑡𝐹 is upper bounded by 𝑡𝑃 , and lower bounded by the planning
module’s triggering event. Figure 4 shows how TISE determines
the bound for 𝑡𝐹1 given a planning trajectory 𝑃1 and a prediction
message𝑚3 that is expected to trigger the execution of the planning
module. In this example, message𝑚3 is published at 𝑡𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , making
(𝑡𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , 𝑡𝑃1 ) the bounds of 𝑡𝐹1 .

Now that the range of 𝑡𝐹1 has been specified, TISE uniformly
assigns a random value to 𝑡𝐹1 and begins searching for messages
that should be part of the input frame 𝐹1. Based on the value of 𝑡𝐹 ,
we have Heuristic 2: Messages published after 𝑡𝐹 cannot be part
of the input frame 𝐹 ; when multiple messages of the same type are
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Figure 2: An overview of how DeFT extracts module-level unit tests from system-level scenario test.

published before 𝑡𝐹 , more recently published messages are more
likely to be part of 𝐹 .

The planning module subscribes to messages from different top-
ics and keeps track of the most recently received messages from
each topic as part of the planning module’s internal states. After the
triggering event is received, the planning module creates the frame
𝐹 with the most recently received message from each subscribed
topic and processes this frame to produce a planning trajectory.
However, due to the message passing delay in publish-subscribe
architectures, it is not possible to predict how and when a sub-
scriber receives messages [21], and, therefore, does not guarantee
the planning module will always process the most recently pub-
lished message on the message bus. Hence, TISE assigns a high
probability to newer messages but still considers older messages
with lower probabilities.

Figure 3: A visualization of messages that are observed on

the message bus. 𝑃1 is a planning trajectory produced by the

planning module at time 𝑡𝑃1 , messages 0 to 4 are published

earlier than 𝑡𝑃1 , and messages 6 and 7 are published later

than 𝑡𝑃1 . Messages published later than 𝑡𝑃1 cannot be part

of the candidate messages for 𝑃1’s input frame. Green mes-

sage𝑚0 is produced by the routing module, purple messages

{𝑚1,𝑚2,𝑚4,𝑚7} are produced by the localizationmodule, blue

messages {𝑚3,𝑚6} are produced by the prediction module,

and red messages {𝑃1, 𝑃2} are planning trajectories produced

by the planning module.

Figure 4: A visualization of messages from the message bus

and howTISE determines the range of 𝑡𝐹1 . Given the planning

module is subscription-triggered by receiving𝑚3, which is

published at 𝑡𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , and the output of the planning module

𝑃1 is published at 𝑡𝑃1 , 𝑡𝐹1 is lower bounded by 𝑡𝑡𝑟𝑖𝑔𝑔𝑒𝑟 and upper

bounded by 𝑡𝑃1 .

Figure 5: Visualization of messages on the message bus with

respect to time 𝑡𝐹1 . After TISE estimates the frame creation

time 𝑡𝐹1 , it then assigns the probability of eachmessage being

part of the input frame 𝐹1 based on its relative location from

𝑡𝐹1 .

Figure 5 shows a visualization of messages on the message bus
with respect to 𝑡𝐹1 . Although message𝑚4 is published before plan-
ning trajectory 𝑃1 was produced,𝑚4 cannot be part of the input
frame for 𝑃1 because𝑚4 was published after the estimated frame
creation time 𝑡𝐹1 . Multiple messages {𝑚1,𝑚2} from the localization
module were published before 𝑡𝐹1 , and message𝑚2 has a higher
probability of being on the input frame because it was published
at a time closest to 𝑡𝐹1 . Message𝑚0 appeared the earliest on the
message bus, but it must be part of the input frame 𝐹1 because it
is the only message from the routing module. Since the execution
of the planning module is triggered upon receiving message𝑚3,
then𝑚3 must be part of the input for the planning module that
produced 𝑃1.

The planning module subscribes to messages published by other
modules and sequentially processes messages that become avail-
able on the message bus. Based on this domain-specific knowledge,
we can have Heuristic 3: Each input frame cannot consist of a
message that is older than the message of the same type from the
previous frame. Figure 6 shows a visualization of candidate mes-
sages for a subsequent input frame. Using the previous heuristics,
TISE estimates the routing message𝑚0, the prediction message𝑚3,
and the localization message with the highest probability𝑚2 should
be part of the first input frame 𝐹1. Hence, localization message𝑚1
is excluded from the set of candidate messages for the second input
frame 𝐹2 because a newer localization message is expected to be
already processed by the previous frame. However, the routing mes-
sage𝑚0 remains in the set of candidate messages for 𝐹2 because
no newer routing message has been published before 𝑡𝐹2 and the
same routing message is reused for a subsequent frame.
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Figure 6: Visualization of candidate messages for the second

input frame 𝐹2 after TISE estimates the messages that are

expected to be part of the first input frame 𝐹1. Messages in

𝐹2 can either be the same as the previous frame or newer for

each message type.

Algorithm 1: Time-sensitive Input Search Engine
Input:

𝑃 ← Planning trajectories
𝐶𝑀 ← Map of Candidate Messages

Result: Frames (i.e. inputs) for planning module
𝐹_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Empty list;
for 𝑖 = 0; 𝑖 < 𝑃 .𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1 do

𝑓 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑓 𝑟𝑎𝑚𝑒 (𝑃 [𝑖],𝐶𝑀 [𝑃 [𝑖]], 𝐹_𝑐𝑢𝑟𝑟𝑒𝑛𝑡);
𝐹_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 );

end

// Initialize ADS Planner
𝑃𝑙𝑎𝑛𝑛𝑒𝑟 ← Initialize Planner;
for 𝑖 = 0; 𝑖 < 𝑃 .𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1 do

𝑡𝑟𝑎 𝑗 = 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 (𝐹_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑖]);
𝐹_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑖] .𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 (𝑃 [𝑖], 𝑡𝑟𝑎 𝑗);

end

return 𝐹_𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Algorithm 1 shows the main algorithm of DeFT. After the Plan-
ning IO Filter identifies candidate messages processed by the plan-
ning module, the aforementioned heuristics are leveraged to es-
timate a list of frames F = [𝐹1, 𝐹2, ..., 𝐹 | P | ] and DeFT executes
the planning module sequentially with these frames to produce
[𝑃 ′1, 𝑃 ′2, ..., 𝑃 ′| P | ]. TISE then uses Trajectory Validator to evaluate the
correctness of each estimated frame based on the similarity be-
tween the actual planning trajectory 𝑃 ′ is to the expected planning
trajectory 𝑃 .

4.3 Trajectory Validator

The Trajectory Validator (TV) is the final step in DeFT’s pipeline, and
its main function is to assess whether the frames extracted by TISE
are accurate enough to be converted into module tests. Recall that
each frame extracted by TISE represents the input of the planning
module that was processed during the simulation of a scenario test.
TV directly feeds the input frames into the planning module to
obtain the reproduced outputs and compares the newly generated
planning trajectories with the original planning trajectories.

Given an original planning trajectory 𝑃 and a reproduced plan-
ning trajectory 𝑃 ′, TV first interpolates 𝑃 ′ based on timestamps in
𝑃 so that two trajectories have the same number of data points, and
then uses Equation 2 to compute the lock-step Euclidean distance

(LSED) [44] between the two trajectories.

𝐸𝑢 (𝑃, 𝑃 ′) =

√√√ |𝑃 |∑︁
𝑖=1
((𝑥𝑃

𝑖
− 𝑥𝑃 ′

𝑖
)2 + (𝑦𝑃

𝑖
− 𝑦𝑃 ′

𝑖
)2) (2)

LSED measures how similar 2 trajectories are by comparing the
spatial distance between corresponding locations (e.g., the first 2
points of each trajectory, the second 2 points, etc.). Note that TV can
also be configured to use other trajectory similarity measurement
algorithms as appropriate. If the distance between them is less than
or equal to a threshold 𝜃𝑀 (i.e., 𝐸𝑢 (𝑃, 𝑃 ′) ≤ 𝜃𝑀 ), TV considers the
input frame to be accurate enough to reproduce a planning module
execution and produces a corresponding planning module test. We
further elaborate on how we empirically obtain appropriate values
for 𝜃𝑀 in Section 5.1.

4.4 Module Tests Execution

In the previous subsections, we discussed how DeFT filters mes-
sages based on the input modules specified by the planning module,
and reconstructs frames based on a list of heuristics to aggregate
messages from different modules into inputs for the planning mod-
ule. Based on our observation of how the planning module operates
during system-level testing, DeFT produces 𝑁 planning module
tests from one run of a system test, each corresponding to a planning
module execution. These tests are then executed sequentially to
ensure that the internal states of the planning module are restored.

4.5 Oracle Transformation

The difference in semantics between the test output during system-
level scenario testing andmodule-level testing makes directly apply-
ing existing scenario oracles challenging. Oracles in the context of
system-level testing for ADSes detect violations based on the actual
recorded behavior of the system during simulation. For example,
the collision oracle checks if the AV has collided with any obsta-
cles by comparing the AV’s positions with the obstacles’ positions
at different time points. In contrast, when testing an ADS at the
planning module level, the focus shifts to evaluating the planning
trajectories, which outline the planned paths of the AV, including
its intended positions and timings.

For planning module tests extracted by DeFT to detect the same
failures as system tests, we propose an oracle transformation ap-
proach. Given an ADS violation was detected during a simulation
of a scenario test, DeFT first determines whether the planning mod-
ule is the culprit of the violation by checking if the AV’s behavior
followed the outputs of the planning module. The condition for
DeFT to determine the planning module being faulty is defined as
∃𝑝 ∈ 𝑃 ∈ P : 𝑉 (𝑝), where 𝑉 (𝑝) evaluates whether a violation is
detected when the AV reaches path point 𝑝 in a planning trajectory
𝑃 of the output planning modules message P. Morever, DeFT deter-
mines if the planning module is faulty by finding a faulty planning
trajectory 𝑃 , later denoted as 𝑃faulty, that includes path point 𝑝 ,
where a violation is known to occur if AV actually reaches 𝑝 at the
planned time.

With the faulty planning trajectory identified, DeFTmodule tests
for this scenario are considered failing if they accurately reproduce
the faulty planning trajectory since the same violation is expected
to occur again if the scenario test can be repeated under identical



DeFT ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

conditions. The condition for the planning module test to fail is
defined as

∃𝐹 ∈ F : 𝑅𝑢𝑛𝑇𝑉 (RunPlanner (𝐹 ), 𝑃faulty) ≤ 𝜃𝑀 (3)

where 𝐹 is a single frame from all frames F extracted by DeFT,
RunPlanner (𝐹 ) represents the planning trajectory reproduced from
running the ADS planning module on input 𝐹 , and 𝑅𝑢𝑛𝑇𝑉 repre-
sents running the trajectory validator, which evaluates whether the
reproduced planning trajectory is sufficiently similar to the faulty
planning trajectory 𝑃faulty. When DeFT module tests can no longer
reproduce the faulty planning trajectories, this state indicates that
the planning module’s implementation has changed to avoid the
same violation if identical conditions occur when repeating the
same scenario test.

5 EVALUATION

To evaluate DeFT, we implemented a prototype for Apollo [11], an
open-source ADS that has been widely used in prior work [13–20].
We selected 8 generators (i.e., AV-FUZZER [13], SAMOTA [45], Be-
hAVExplor [20], DriveFuzz [46], scenoRITA [19], DoppelTest [18],
and DeepCollision [17]) that focus on finding safety-critical scear-
ios to produce an initial system-level scenario test suite. Note that
some of the approaches were originally implemented on another
ADS, and some of them used an external simulator that is no longer
available from its official maintainer [47]. Given those limitations,
we chose the best available implementation to date [48] that ensured
the aforementioned approaches generate scenarios for the same
ADS using the same built-in simulator that has been recommended
by the ADS’ official developer [49].

As shown in Table 1, 8 approaches generated a total of 6,158 sce-
narios, and 658 of them are safety-critical (i.e., a collision occurred).
For each generated scenario 𝑆 , we simulated the test case 10 times
to produce 𝑆0, ..., 𝑆9, where 𝑆0 represents the initial execution of the
scenario test. We then used DeFT to extract a set of module tests
𝑈 from simulation 𝑆0 and rerun those module tests to determine
whether module tests are deterministic and capable of detecting
the same failure as 𝑆0.

Table 1: Safety-critical scenarios generated to evaluate.

Approach Venue Year Repo. No Collision Collision

AV-FUZZER ISSRE 2020 [50–52] 255 99
BehAVExplor ISSTA 2023 [52, 53] 63 214
Decictor ICSE 2025 [52] 290 11
DeepCollision TSE 2023 [52, 54] 399 56
DoppelTest ICSE 2023 [55] 2,824 43
DriveFuzz CCS 2022 [52, 56] 185 115
SAMOTA ICSE 2022 [52, 57] 71 93
scenoRITA TSE 2023 [58] 1,413 27

Total 5,500 658

Given those generated test suites, we focus on studying the
following research questions:

RQ1 (Planning Reproducibility) To what extent do scenario
tests and module tests reproduce planning-module exe-
cutions?

Re-executing scenario tests often do not precisely reproduce execu-
tions of the planning module as the simulator converts abstractions

of scenarios into actual inputs for ADS modules. However, mod-
ule tests precisely control what inputs are being processed by the
planning module, making such tests potentially more accurate at
reproducing planning-module executions. At the same time, DeFT
aims for the failures that occur in a scenario when rerun at the sys-
tem level to be reflected by DeFT’s resulting module tests, leading
us to study the following RQ:

RQ2 (Failure Reproducibility) To what extent can scenario
tests and module tests reproduce failures detected by test
generation approaches?

Prior work (e.g., from the selected scenario-generation approaches)
has shown that system-level scenario testing is effective in revealing
ADS failures. While DeFT’s module testing aims to maintain the
determinism of the planning module by reducing testing to that
module, they should also reproduce failures that were revealed by
system-level scenario tests as much as possible. Nevertheless, DeFT
aims to reproduce planning output and failures efficiently, leading
us to our final RQ:

RQ3 (Efficiency)What is the run-time efficiency of DeFT and
the produced module tests?

DeFT aims to achieve determinism in testing ADS planning at the
cost of ignoring executions of other modules. If less code of the ADS
is being tested, we should expect DeFT to take less time to execute.
In addition, we should also expect DeFT to produce module tests
that require fewer reruns compared to system-level scenario tests
when reproducing failures that are non-deterministic.

5.1 RQ1: Planning Reproducibility

In this research question, we study to what extent module tests ex-
tracted byDeFT reproduce planning trajectories that were produced
during system-level scenario tests. The degree of reproduction
serves as an indicator of how realistic the module tests are, reflect-
ing their ability to capture behaviors that occur during system-level
tests. To determine a reasonable similarity threshold 𝜃𝑀 for the
trajectory validator, we analyze how closely trajectories from re-
runs that reproduce specific failures match those from the initial
execution of the same system-level scenario.

Table 2: Summary statistics of planning trajectory edit dis-

tances across reruns of a system-level scenario test.

Measure FR Planning Edit

Distances (m)
FN Planning Edit

Distances (m)

1st Quartile 0.10 1.62
2nd Quartile 0.23 17.15
3rd Quartile 6.99 308.71
min 0.0 0.0
mean 29.56 139.51
max 2,320.81 1,453.06

Table 2 shows the summary statistics of lock-step Euclidean
distance (recall Section 4.3), measured in meters, between plan-
ning trajectories in reruns and the initial execution of system-level
scenario tests. Lower edit distances indicate the planning trajecto-
ries from a rerun are more similar to the initial run. Since not all
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Table 3: Number of planning trajectories reproduced by DeFTmodule tests compared to rerunning scenario tests under different

thresholds 𝜃𝑀 (meters).

𝜃𝑀 (m) Rerun 1 Rerun 2 Rerun 3 Rerun 4 Rerun 5 Rerun 6 Rerun 7 Rerun 8 Rerun 9 Average

DeFT 𝑆1 DeFT 𝑆2 DeFT 𝑆3 DeFT 𝑆4 DeFT 𝑆5 DeFT 𝑆6 DeFT 𝑆7 DeFT 𝑆8 DeFT 𝑆9 DeFT 𝑆

0 224,888 1,637 224,888 1,814 224,888 922 224,888 660 224,888 620 224,888 1,162 224,888 898 224,888 1,165 224,888 1,166 224,888 1,116
0.1 228,956 42,335 228,956 58,139 228,956 60,758 228,956 56,340 228,956 53,423 228,956 50,780 228,956 54,640 228,956 50,817 228,956 46,040 228,956 52,586
0.23 228,975 95,235 228,975 130,405 228,975 117,932 228,975 106,483 228,975 110,196 228,975 111,036 228,975 108,124 228,975 104,387 228,975 98,794 228,975 109,177
1.62 229,108 127,258 229,108 164,746 229,108 156,662 229,108 138,186 229,108 144,765 229,108 146,757 229,108 145,928 229,108 139,745 229,108 139,209 229,108 144,806
6.99 229,915 154,467 229,915 187,401 229,915 177,544 229,915 157,952 229,915 166,200 229,915 167,281 229,915 165,952 229,915 161,241 229,915 162,522 229,915 166,729
17.15 230,637 173,282 230,637 207,360 230,637 198,619 230,637 175,469 230,637 183,989 230,637 185,747 230,637 184,890 230,637 181,799 230,637 181,156 230,637 185,812
29.56 230,852 184,047 230,852 216,283 230,852 210,330 230,852 188,635 230,852 199,503 230,852 197,119 230,852 195,049 230,852 192,756 230,852 193,055 230,852 197,420
139.51 231,463 199,883 231,463 223,743 231,463 221,096 231,463 210,528 231,463 214,079 231,463 211,353 231,463 209,424 231,463 206,069 231,463 205,251 231,463 211,270
308.71 231,463 210,818 231,463 227,003 231,463 226,841 231,463 219,923 231,463 222,473 231,463 219,285 231,463 217,702 231,463 217,016 231,463 215,246 231,463 219,590
1453.06 231,463 231,463 231,463 231,436 231,463 231,338 231,463 231,174 231,463 231,338 231,463 231,338 231,463 231,463 231,463 231,463 231,463 231,312 231,463 231,369
2320.81 231,463 231,463 231,463 231,463 231,463 231,462 231,463 231,463 231,463 231,463 231,463 231,463 231,463 231,463 231,463 231,463 231,463 231,463 231,463 231,463

collisions were reproduced in the reruns, we distinguish between
Failure-Reproducing (FR) reruns (i.e., failure from the initial execu-
tion is reproduced in a rerun) and Failure-Non-Reproducing (FN)
reruns (i.e., failure from the initial execution is not reproduced in a
rerun). We observe that planning trajectories in FR reruns generally
exhibit lower edit distances across all statistical measures, with
the interquartile range (IQR) spanning from 0.10 meters to 6.99
meters, indicating they are highly consistent with the planning
trajectories in the initial execution. In contrast, FN reruns show
higher edit distances, with the interquartile range (IQR) spanning
from 1.62 meters to 308.71 meters, suggesting their planning tra-
jectories deviate more from the initial execution. This distinction
indicates that failures revealed by system-level scenario tests tend
to be reproduced when planning trajectories remain similar to the
original (i.e., the initial execution), and significant deviations in
planning trajectories lead to non-reproduction of failures.

To assess the effectiveness of our approach in reproducing plan-
ning trajectories, we use the statistical measures from Table 2 as
thresholds to determine whether one planning trajectory is suffi-
ciently similar to another. As shown in Table 3, which summarizes
the number of planning trajectories reproduced by DeFT com-
pared to rerunning the scenario test, we observe that under a very
strict threshold (i.e., 𝜃𝑀 = 0.0 meters), DeFT can accurately repro-
duce 123.97 to 362.72 times more planning trajectories compared
to rerunning the scenario test. At a more moderate threshold of
𝜃𝑀 = 6.99 meters, where 75% of planning trajectories from FR re-
runs reproduced planning trajectories in the initial execution of a
system-level scenario test, DeFT can accurately reproduce 1.23 to
1.49 times more planning trajectories.

Finding 1: The results indicate that DeFT generates realistic
module tests, as evidenced by their ability to closely reproduce
planning trajectories that occurred during system-level tests.
With a strict threshold (𝜃𝑀 = 0.0 meters), DeFT can reproduce
224,888 planning module executions, whereas rerunning the
system test only reproduces 1,636 executions.

5.2 RQ2: Failure Reproducibility

In this research question, we focus on evaluating DeFT’s effective-
ness in terms of its capability to deterministically reproduce failures
compared to repeating scenario tests. Figure 7 shows the number
of failures (i.e., collisions) detected in each rerun for scenario test

and DeFT. We observe that among the 658 collisions that were
initially detected, repeating these scenario tests only reproduced
564 to 598 (85.71% to 90.88%) in each rerun, whereas DeFT was
capable of reproducing the faulty planning trajectory 𝑃faulty for all
failing scenarios across all reruns. When considering determinism
in scenario testing, only 471 (71.58%) failures were reproducible in
all reruns.

Figure 7: Number of collision violations reproduced in each

rerun.

Figure 8: Illustration of (a) the input and (b) the output of a

module test for the planning module, and (c) the expected

system-level outcome when the planning trajectory repro-

duced by this module test is executed. The red box illustrates

the position of the AV, the green box illustrates the position

of an obstacle, and the blue line represents the planned tra-

jectory produced by the planning module.
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Figure 8 shows an example of a module test extracted by DeFT
that reproduces a faulty planning trajectory. Figure 8(a) visualizes
the input frame 𝐹 extracted by DeFT from the initial execution of
a scenario test, and Figure 8(b) visualizes the planning module’s
output given input frame 𝐹 . If the ADS executes this planning tra-
jectory, the AV will become involved in a head-on collision with an
obstacle as shown in Figure 8(c). The expected outcome of execut-
ing this faulty planning decision is consistent with the collision that
occurred in the original system-level scenario test. As DeFT module
tests accurately reproduce planning trajectories, especially faulty
ones, we conclude that module tests extracted from system-level
scenario tests can be as effective as those system-level scenario
tests in terms of finding the same failure with the additional benefit
of being deterministic.

Finding 2: DeFT outperforms simple scenario test reruns by
successfully reproducing the faulty planning trajectory for all
failing scenarios across all reruns, whereas scenario test reruns
only reproduced 85.71% to 90.88% of the 658 initially detected
failures per rerun. When considering deterministic failure repro-
duction, only 471 failures (71.58%) were consistently reproduced
in all reruns, whereas DeFT module tests consistently repro-
duced all failures, resulting in a 28.42 pp gain.

5.3 RQ3: Efficiency

We evaluate the efficiency of DeFT along two key dimensions.
First, we measure the time required to extract each module test
using DeFT and compare it to a traditional baseline technique, i.e.,
carving [39]. Second, we assess the runtime performance of DeFT ’s
extracted module tests by comparing their execution time to that
of the original system-level scenario tests.

Table 4: Comparison between DeFT and carving [39].

Dimension DeFT Carving [39]

ADS Modification Required No Yes
Input Source Message bus Instrumented Calls
Granularity Module Function
Intrusiveness Non-intrusive Intrusive
Runtime Overhead (per frame) 0 ms 49.97 ms
Post-hoc Overhead (per frame) 51.75 ms 0 ms

DeFT shares conceptual similarities with test carving, as both
extract concrete inputs from real executions for the purpose of
testing or analysis. However, while traditional carving typically
targets fine-grained program units—such as individual functions
or methods, DeFT operates at the module level by reconstructing
message-level inputs from inter-module communication. A further
distinction lies in the performance tradeoff. We implemented carv-
ing for the planning module by recording input messages to local
storage at runtime. As shown in Table 4, traditional carving intro-
duced an average runtime overhead of 49.97ms per frame. Although
this overhead might appear modest, the planning module in our
system typically responds in 219.65 ms, meaning carving increased
its latency by 22.75%, which is nontrivial in latency-sensitive en-
vironments. In contrast, DeFT introduces zero runtime overhead,
ensuring the planner’s real-time responsiveness remains unaffected.

Input reconstruction is instead deferred to an offline phase, with
an average cost of 51.75 ms per frame.

Finding 3: DeFT improves upon traditional test carving by re-
constructing inputs offline at the module level, avoiding runtime
overhead. While traditional carving increased planning latency
by 22.75%, DeFT maintains real-time responsiveness with zero
impact during execution, making DeFT a more practical and
safer option for latency-sensitive, safety-critical systems.

Table 5: Run-time cost of running DeFT compared to system-

level scenario tests.

Approach

DeFT
System Test (s) Reduction

Extraction Execution Total

AV-FUZZER 21.11 54.23 75.34 86.33 12.73%
BehAVExplor 44.54 86.03 130.57 138.43 5.67%
Decictor 22.50 54.55 77.05 84.85 9.19%
DeepCollision 13.84 39.23 53.07 60.90 12.86%
DoppelTest 12.77 18.69 31.46 35.77 12.04%
DriveFuzz 22.11 57.17 79.27 88.47 10.40%
scenoRITA 14.70 21.88 36.57 34.79 -5.14%

Table 5 compares runtime efficiency of DeFT with system tests.
The DeFT columns break down the cost of the approach into ex-
traction and execution times. As shown, DeFT consistently reduces
test execution time across most generators, with reductions rang-
ing from 5.67% to 12.86%. Only one case, scenoRITA, resulted in a
slight increase in runtime (5.14%). The highest time savings were
observed for DeepCollision and AV-FUZZER, with reductions ex-
ceeding 12%. Importantly, time savings achieved by DeFT become
more substantial as the number of reruns increases, particularly
when reproducing non-deterministic failures.

Finding 4: Overall, the results demonstrate that DeFT offers a
more efficient alternative to system-level testing in terms of run-
time cost while crucially maintaining the deterministic property
of the planning module.

Table 6: Total time needed to reproduce failures from each

test generator by rerunning system tests and module tests.

Approach System Test (s) DeFT Module Test (s) Time Reduction

AV-FUZZER 104.67 56.54 45.98%
BehAVExplor 152.19 79.33 47.87%
Decictor 334.46 74.78 77.64%
DeepCollision 123.14 58.11 52.81%
DoppelTest 59.68 15.38 74.23%
DriveFuzz 132.09 71.87 45.59%
SAMOTA 94.06 52.97 43.69%
scenoRITA 56.79 20.54 63.83%

To demonstrate these substantial time savings, we evaluate sys-
tem tests and DeFT module tests in terms of Time-To-Reproduce-
Failure (TTRF), i.e., the total time in seconds needed to rerun a test
case before the expected failure is reproduced. As an example, if
a system test always takes precisely 30 seconds to execute, and
3 reruns are needed to reproduce the failure that occurred in the
initial execution, then the TTRF of the system test for this scenario
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is 3 × 30 = 90 seconds; if DeFT module tests extracted from this
system test take 20 seconds to execute, and one of these module
tests deterministically reproduces the faulty planning trajectory,
then the TTRF of module test for this scenario is 20 seconds. As
shown in Table 6, rerunning system tests took, on average, 56.79
to 334.46 seconds to reproduce failures that were initially detected,
whereas module tests took, on average, 15.38 to 79.33 seconds. DeFT
achieves substantial time savings when reproducing failures, espe-
cially ones that are non-deterministic, by extracting module tests
that reduce TTRF by 43.69% to 77.64% compared to system tests.

Finding 5: Compared to rerunning system-level scenario tests,
DeFT can reduce the time needed to reproduce failures (TTRF)
by 43.69% to 77.64%.

6 DISCUSSION

6.1 Generalization of the approach

To strengthen the generalizability of our approach beyond a single
ADS, we extended our evaluation to Autoware [22] to assess the
applicability of DeFT in a different system context. Due to the lack
of available test generators for the current Autoware release, we
used version 0.45.0 [59] along with the Autoware Evaluator test
suite [60], an official Autoware Foundation platform that collects
datasets and test suites.

For each scenario, we executed the system test 10 times to capture
the effects of non-determinism. We then applied DeFT to extract
corresponding module-level tests from the initial system-level exe-
cution. Table 7 reports the planning trajectory edit distances across
reruns of each scenario in the Autoware test suite. We compare
two types of variation: (1) the edit distances between rerun system-
level executions and the initial execution (S in Table 7), and (2) the
distances between the DeFT-extracted module-level test executions
and the same initial execution.

The system-level results show moderate variation, with median
edit distances ranging from 0.31 to 0.87 and maximum distances
reaching up to 1527.37. These findings indicate the presence of non-
determinism in Autoware’s planning output during system-level
test execution. However, the relatively low median values suggest
that Autoware’s planning trajectories remain largely consistent
across reruns. This consistency is likely influenced by the nature
of the evaluated scenarios, many of which involve the ego car
traveling in a straight path with minimal interaction or complexity.
In contrast, DeFT demonstrates highly accurate reproduction of

Table 7: Planning trajectory edit distances (meters) across

reruns of Autoware test suite.

Rerun

min 1st Quartile median 3rd Quartile max

S DeFT S DeFT S DeFT S DeFT S DeFT

Rerun 1 0.0 0.0 0.02 0.0 0.53 0.0 6.37 0.0 615.37 10.37
Rerun 2 0.0 0.0 0.02 0.0 0.85 0.0 7.11 0.0 615.38 10.37
Rerun 3 0.0 0.0 0.01 0.0 0.33 0.0 5.81 0.0 363.66 10.37
Rerun 4 0.0 0.0 0.01 0.0 0.77 0.0 5.94 0.0 130.80 10.37
Rerun 5 0.0 0.0 0.02 0.0 0.31 0.0 6.45 0.0 404.41 10.37
Rerun 6 0.0 0.0 0.02 0.0 0.87 0.0 6.17 0.0 539.59 10.37
Rerun 7 0.0 0.0 0.02 0.0 0.40 0.0 6.05 0.0 1527.37 10.37
Rerun 8 0.0 0.0 0.02 0.0 0.84 0.0 6.86 0.0 1121.67 10.37
Rerun 9 0.0 0.0 0.02 0.0 0.86 0.0 7.25 0.0 474.34 10.37

the planning module’s outputs, with edit distances consistently at
or near 0.0 and a maximum of only 10.37. This indicates that DeFT
effectively captures the execution trace from the initial system-
level run with minimal deviation. Moreover, the extracted module-
level tests are deterministic, producing consistent outputs across
all reruns.

These findings reinforce our three key observations: (1) Au-
toware exhibits non-deterministic behavior at the system level,
consistent with other ADSes; (2) DeFT faithfully reproduces the
planning module’s execution traces; and (3) the resulting module
tests are deterministic and reliable, providing a robust foundation
for downstream analysis and debugging.

6.2 Practical Usefulness

While DeFT is not a solution to eliminate non-determinism in
system-level testing, it serves as a practical means to harness the
value of flaky system tests. Non-determinism in ADSes is largely
unavoidable due to real-time simulation and the inherent non-
determinism of the ADS itself. Prior work has addressed this chal-
lenge by analyzing the impact of flaky simulators [61], using multi-
ple simulation backends to isolate simulator-agnostic failures [62],
or discarding non-reproducible results entirely [63]. In contrast,
DeFT demonstrates that even flaky system tests can be valuable:
They can serve as a foundation for generating deterministic and
failure-revealing module tests.

Our evaluation empirically demonstrated two key points: (1)
system tests often exhibit non-deterministic outcomes, as repeated
executions may not consistently reproduce failures; and (2) DeFT
can extract deterministic module tests that reliably reproduce the
faulty behavior from a specific failing run. This determinism is
especially important for rare or intermittent failures. For instance,
the scenario shown in Figure 1 revealed an ADS failure, but the
same failure only manifested once after 18 reruns of the same test
scenario. As a result, such a test might be perceived as unreliable,
leading practitioners to treat it as passing or discard it entirely. DeFT
addresses this challenge by capturing the precise failure condition
in a deterministic module test—one that fails consistently regardless
of the ADS’ non-determinism, unless the system itself is modified.

In addition to facilitating failure reproduction and aiding debug-
ging, DeFT provides benefits for regression testing and mutation
testing. Since module tests extracted by DeFT maintain the deter-
minism of the planning module, their outputs remain the same as
long as the planning module remains unchanged. This determin-
istic characteristic enables precise identification of which system
or module tests need to be rerun following modifications to the
planning module. Furthermore, DeFT enhances mutation testing.
In this context, a mutant is "killed" if a test case reveals a behavioral
difference between the original program and the mutant. While
the inherent non-determinism of ADS complicates mutant killing
at the system level, DeFT ’s deterministic module tests provide a
stable and controlled environment for mutation analysis.

7 THREATS TO VALIDITY

External Threats. One external threat to our study is related to
whether ADS planning is deterministic in general. Motion planning
is PSPACE-hard and a problem belongs to PSPACE complexity if it
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can be solved by a deterministic Turing machine [64, 65], and deter-
ministic motion planning is favored in highway motion planning
[66]. To mitigate this threat, we have verified with the developers
of 2 state-of-the-art open-source ADSes [11, 22] that the planning
modules from both ADSes are deterministic.

Another potential threat to the validity of our study is the use of
a limited number of autonomous driving software systems. To mit-
igate this threat, we applied DeFT to two widely used, open-source
ADSes, both of which support high levels of autonomy. In both
cases, we observed that the extractedmodule-level tests successfully
reproduce planning trajectories and maintain determinism.

Internal Threats.One potential threat to our internal validity is
related to whether recording data from the message bus affects the
real-time performance of the ADS. The architecture adopted by the
state-of-the-art ADSes [27, 28] is highly optimized for performance,
latency, and data throughput. Although recording heavy messages,
such as raw sensor data, can cause performance issues for the ADS,
we further confirmwith professional ADS developers that messages
subscribed by the planning module are lightweight and recording
them, like what DeFT is doing, will not affect the performance of
the ADS.

Another potential threat to our internal validity is the selection
of the simulator and the implementation of prior testing approaches.
Some of the test generators selected in our study [13, 17, 20] were
originally implemented in a simulator [67] that is no longer main-
tained [47]. To mitigate the threat, we selected high-quality reim-
plementations from the authors of a paper recently accepted to the
International Conference on Software Engineering (ICSE) [48]. The
simulator used by these implementations (i.e., SimControl) has also
been recommended by an official maintainer of the ADS [49].

8 RELATEDWORK

ADS Testing. A number of recent studies focus on testing ADSes
in simulated environments using simulators. AC3R [68] virtually re-
constructed crashes based on police reports. Calo et. al [69] applied
search-based testing to discover driving violations (e.g., collision, vi-
olation of traffic rules) in ADS. Gambi et al. [70] generated different
road networks to discover failure in ADS lane-keeping in simulation.
Along the lines of those work, AV-FUZZER [13], AutoFuzz [14],
LawBreaker [71], DeepCollision [17], and BehAVExplor [20] use
different strategies to generate scenarios but use a common setup
of testing the same ADS (i.e., Apollo [11]) with the same simulator
(i.e., SVL [67]). Some other works, such as DoppelTest [18] and
scenoRITA [19], also choose Apollo [11] but a different simula-
tion environment [49] to focus testing on ADS planning. Because
those approaches generate tests that are executed through real-
time simulation, non-determinism has been a common threat to
validity. PlanFuzz [72] was the first ADS testing approach that
focused on mutating the input frame of the planning module to de-
tect high-level behavior planning changes (e.g., cruising, stopping).
PlanFuzz achieved this goal by modifying the implementation of
the planning module to enable recording and restoring states and
manually selecting frames that are suitable for mutation. Different
from PlanFuzz, DeFT reconstructs the input frame of the planning
module without modification of its implementation and automat-
ically creates unit tests that reproduce each planning trajectory

produced by the planning module during a real-time simulation.
STRaP [73] is a test reduction and prioritization that discussed the
notion of frames by making copies of messages produced by differ-
ent ADSmodules and aligning themwith respect to the module that
has the highest output frequency. DeFT focuses on reconstructing
the input frames for the planning module, while STRaP-aligned
frames are not intended to be reused to reproduce the execution of
any ADS module.
Unit Test Generation. Fraser et al. [74] proposed EvoSuite, which
automatically generates unit tests for Java code. Soltani et al. [75]
proposed EvoCrash, which uses a guided genetic algorithm to cre-
ate unit tests that reproduce crashes based on stack traces. These
approaches cannot reproduce the executions of the planning mod-
ule because of the complexity of the input space (e.g., requiring
realistic obstacle trajectories). Orso et al. [75] discussed selective
capture and replay of program executions, and Elbaum et al. [39]
discussed carving differential unit tests from system tests; both
techniques instrument the software under test to collect internal
states or method invocation arguments so that they can be replayed
later to reproduce the execution of the program. While DeFT is
inspired by aforementioned approaches and indeed akin to carv-
ing, we demonstrate how carving can be used to solve one of the
main challenges in testing robotics systems (i.e., non-determinism)
[21, 76, 77], and how we overcome carving’s key deficiency of re-
quiring instrumentation since real-time systems are sensitive to
instrumentation-induced execution overhead [41, 78, 79]. Alcon
et al. [80] discussed ADS unit testing and demonstrated that indi-
vidual ADS modules are deterministic when their executions are
isolated. However, significant modifications to the implementations
of the ADS were needed, and despite multiple attempts to contact
the authors, we have not received the scripts developed to achieve
deterministic execution.
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10 CONCLUSION

The inherent non-determinism of ADSes poses challenges for soft-
ware testing and analysis, as scenario tests yield non-deterministic
outcomes due to the nature of the software under test. Instead of
generating new scenario tests, our approach treats the execution
of a system-level scenario test as a process of generating valid
and realistic inputs for the planning module and extracts inputs
for module tests to reproduce executions of the planning module
that occurred during real-time simulation. Given that the planning
module is deterministic in the state-of-the-art open-source ADS,
we demonstrated that a deterministic planning module test suite
can be obtained from non-deterministic system tests. Further, we
demonstrated planning module tests are more effective in terms
of deterministically reproducing failures, and taking less time to
execute compared to rerunning system tests.
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