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Abstract—Autonomous Target Tracking (ATT) systems, espe-
cially ATT drones, are widely used in applications such as surveil-
lance, border control, and law enforcement, while also being
misused in stalking and destructive actions. Thus, the security
of ATT is highly critical for real-world applications. Under the
scope, we present a new type of attack: distance-pulling attacks
(DPA) and a systematic study of it, which exploits vulnerabilities
in ATT systems to dangerously reduce tracking distances, leading
to drone capturing, increased susceptibility to sensor attacks, or
even physical collisions. To achieve these goals, we present Fly-
Trap, a novel physical-world attack framework that employs an
adversarial umbrella as a deployable and domain-specific attack
vector. FlyTrap is specifically designed to meet key desired objec-
tives in attacking ATT drones: physical deployability, closed-loop
effectiveness, and spatial-temporal consistency. Through novel
progressive distance-pulling strategy and controllable spatial-
temporal consistency designs, FlyTrap manipulates ATT drones
in real-world setups to achieve significant system-level impacts.
QOur evaluations include new datasets, metrics, and closed-loop
experiments on real-world white-box and even commercial ATT
drones, including DJI and HoverAir. Results demonstrate Fly-
Trap’s ability to reduce tracking distances within the range to be
captured, sensor attacked, or even directly crashed, highlighting
urgent security risks and practical implications for the safe
deployment of ATT systems. Video demonstrations and code can
be found at https://sites.google.com/view/av-ioat-sec/flytrap.

I. INTRODUCTION

Autonomous Target Tracking (ATT), also known as Active
Track [6] or Dynamic Track [3], allows autonomous systems to
follow a designated target (e.g., a person) while maintaining a
consistent distance [14], [15], [78], [79]. Drones [22], [21],
[97], [90] have become the leading platform for ATT due
to their versatility, supporting applications such as security
surveillance [101], [1], border control [49], and law enforce-
ment [52] beyond entertainment. Some of these applications
are already deployed in practice, e.g., U.S. police depart-
ments are using ATT drones to track individuals for law en-
forcement [52]. Conversely, this technology poses significant
security, privacy, and safety threats if misused in criminal
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scenarios, e.g., to facilitate stalking [42], or lethal/destructive
actions by carrying explosives or weapons [18], [67], [89].
All these real-world applications, whether benign or crim-
inal, make the security of ATT systems critically important.
In this work, we exploit new vulnerabilities in ATT systems
by causing drones to dangerously decrease their tracking
distance from targets, which we define as distance-pulling
attack (DPA). The DPA can lead to various severe physical
consequences by causing the drone to be: (1) physically
captured after being pulled into a reachable range (e.g., by
a net gun [32], [13], [19]); (2) made much more attackable by
a wider band of sensor attacks (e.g., camera spoofing [124],
acoustic attacks [98], [44]), which by nature has range limita-
tions [124], [98]; and (3) physically crashed, after the distance
between the drone and the tracking target is shortened close
enough to be within physically hitting distance. In contrast to
other attacks on object tracking that can be possibly applied to
ATT, such as those that can cause the model to lose track of
the target [69], [107], our proposed DPA can enable a more
fundamental elimination of the drone since the attacker can
physically capture it, reverse-engineer it [95], and/or identify
the underlying pilot as law enforcement evidence collec-
tion [50]. Thus, understanding the security challenges and
practical implications of DPA against ATT systems, especially
those that are already commercially available, is imperative.
Most modern ATT systems rely on cameras, given the cost-
efficiency and ease of deployment on drone platforms [22],
[21], [97], [90]. Specifically, Deep Neural Network (DNN)
based Single Object Tracking (SOT) [5], [57], [17], [56] is a
core step in the latest camera-based ATT systems to achieve
stable target tracking as shown in Fig. 1. Prior works have
demonstrated vulnerabilities in SOT models through pixel-
level perturbations [31], [115], [12] or physical attacks [20],
[107], [69]. However, these studies primarily focus on manipu-
lating tracking (e.g., move-in and move-out attacks [69]) while
the ATT system is composed of both tracking and distance
control. Therefore, these prior works do not address the core
challenges we identify for DPA against ATT systems below.
Specifically, first, practical entry points for real-world at-
tacks on ATT systems remain under-explored. Previous track-
ing attacks that focused on digital perturbations [31], [115],
[12], [117] often lack physical feasibility. Additionally, physi-
cal attack vectors such as TV screens [107], printed letter-size
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Fig. 1: Overview of the Autonomous Target Tracking (ATT)
system data flow and our proposed distance-pulling attack
(DPA) propagation path. We treat the camera as a physical
entry point and use the adversarial umbrella to attack the
Single Object Tracking (SOT) model and then the distance
control algorithm to cause system-level distance-pulling ef-
fects, achieving attack goals including drone capturing, range-
limited sensor attacks, or direct crashing.

papers [20], or projectors [69] face significant challenges due
to their limited deployability in uncontrolled outdoor environ-
ments. Second, prior works fail to experimentally demonstrate
the generalizability of their attacks across scenarios, where a
single attack pattern is effective against unseen targets and/or
backgrounds. Third, the newly proposed DPA against the
ATT systems inherently demands closed-loop effectiveness,
where current attack results influence future frames. The
systems targeted by prior works [107], [115], [20], [69] do not
involve distance control and thus do not consider addressing
this newly raised challenge in ATT systems. Lastly, these
works [115], [69] ignore the spatial-temporal consistency
and can be defended by existing consistency checking-based
defense methods [71].

To address these critical research challenges, we present the
first systematic study on the security of camera-based ATT
under a newly defined physical-world DPA. Our approach
centers on three key design objectives to ensure the success
and stealthiness of the attack: (i) physical and real-world
deployability, where the attack vector physically misguides
the ATT system’s distance control mechanism while remaining
easy to deploy, robust to lighting conditions [69], and remains
inconspicuous; (ii) closed-loop effectiveness, where the attacks
progressively shorten the tracking distance in closed-loop
fashion, achieving system-level physical impacts; and (iii)
spatial-temporal consistency, which allows the DPA to be
consistent spatially and temporally, evading latest anomaly
detection-based defenses [71], [66], [36], [120].

To achieve the above objectives, we introduce FlyTrap,
a novel physical DPA against ATT systems. FlyTrap is the
first to systematically tackle these challenges by utilizing
adversarial umbrella as a novel domain-specific attack vec-

tor, i.e., a physical attack vector that an ATT-tracked target
can naturally and dynamically deploy for self-coverage. The
umbrella, designed for ease of carriage and inconspicuous de-
ployment, can be naturally oriented upward toward the drone.
In the ATT system context, using such an attack vector can
simultaneously offer advantages in physical realizability and
real-world deployability as desired above. Additionally, we
design a novel progressive distance-pulling strategy, enabling
continuous distance-pulling under closed-loop control. We fur-
ther design our attack to maintain spatial-temporal consistency,
which can bypass current state-of-the-art consistency cross-
checking-based defense mechanisms [71], [66], [36], [120].
Our approach combines novel attack vectors, progressive
distance-pulling, and a controllable design for spatial-temporal
consistency to achieve physical, real-world deployable, closed-
loop, effective, and spatial-temporal consistent attacks.

In evaluation, we construct new datasets and introduce
metrics to evaluate the system-level impact of the proposed
DPA, which shows high effectiveness, scenario universality,
and spatial-temporal consistency. In physical experiments, we
craft real-world adversarial umbrella prototypes optimized on
different white-box models. Then, we implement a full-stack
ATT drone from scratch. The experimental setups provide
a closed-loop evaluation to understand the physical impact
of our FlyTrap design under the white-box assumption. Our
white-box, closed-loop physical experiments show that Fly-
Trap can achieve 100% success rate in pulling the drone
close enough to induce capturing, sensor attacks, and/or direct
crashes. To further assess the real-world impacts, we conduct
black-box DPA against three commercial drones: the DJI Mini
4 Pro, the DJI NEO, and HoverAir X1. The results show that
our newly proposed DPA can indeed cause system-level DPA
attack effects on them. We further show end-to-end FlyTrap-
enabled DPA demonstrations against these commercial drones,
leading to their capture or crash, demonstrating DPA’s strong
applicability in real-world attack scenarios. We also investigate
the stealthiness of FlyTrap-optimized patterns by conducting a
user study with 200 participants, and further discuss potential
countermeasures. Video demonstrations and code can be found
on our project website at https://sites.google.com/view/av-
ioat-sec/flytrap. To summarize, our contributions include:

o Problem formulation: We are the first to define distance-
pulling attacks (DPA) of camera-based ATT drones. We
formally define the problem with domain-specific objec-
tives and introduce the adversarial umbrella as a novel,
physically deployable attack vector.

o Novel design: We propose FlyTrap, including a progres-
sive distance-pulling strategy and a controllable spatial-
temporal consistency design, encompassed by an end-to-
end optimization pipeline for attacking ATT drones.

o Evaluation: We construct a new dataset and define
system-level metrics for comprehensive evaluation. The
results highlight our design to achieve closed-loop and
spatial-temporal consistent attacks.

o Physical-world impact: We implement full-stack ATT
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drones, craft physical adversarial umbrellas, and conduct
end-to-end evaluations in real-world setups, showing di-
rect system-level impact. We further performed extensive
black-box testing on three commercial drones, showing
high real-world applicability of the proposed attacks.

II. BACKGROUND AND PROBLEM FORMULATION
A. Camera-based Autonomous Target Tracking (ATT) Drone

Fig. 1 illustrates a typical camera-based ATT system [121],

[10], [51], [30], which follows a hierarchical control archi-
tecture consisting of an inner and an outer loop [10]. The
inner loop, integrated into the flight controller, handles low-
level flight stability and receives navigation commands. The
outer loop manages high-level perception and decision-making
tasks, including image processing, object tracking, distance
estimation, and flight path planning.
Single Object Tracking (SOT) algorithm. The SOT algo-
rithm is a crucial component in the ATT pipeline, primarily
responsible for generating navigation commands. Contempo-
rary SOT algorithms are predominantly based on Deep Neural
Networks (DNN) [5], [57], [17], [56]. The SOT model uses a
template frame as a reference and predicts the target’s location
in search frames, as illustrated in Fig. 2. The target tracking
task can be formulated as a conditional prediction, as shown
in the equation below:

{(C.I?j, CYj, Wy, hja SCOTGJ‘)}Jle = F(Isearch‘Ilplt)v (1)

where F' denotes the SOT model, Iyaen and Iy denote
the search frame and template frame, respectively. P; =
(cxj,cyj,w;, hj) denotes the localization results, including
the x- and y-axis center coordinates, width, and height. score;
denotes the prediction confidence. M represents the number of
prediction proposals. The proposal with the highest confidence
is regarded as the final tracking output.

Distance Control. This component estimates the relative
distance to the tracked object using the SOT output and
translates it into flight control actions (e.g., next waypoint).
The most widely adopted strategy in real-world systems today
is 2D-based distance control [10], [51], [30], which infers
navigation commands directly from the 2D object bounding
box. More specifically, in Fig. 2, the drone adjusts its yaw,
roll, and/or altitude to center the bounding box within the
current frame and moves forward or backward to maintain
the bounding box size, thereby preserving a stable tracking
distance. This system design motivates our formulation of
DPA as a fundamental system-level attack objective for ATT.
Specifically, we strategically shrink the tracking bounding box
to deceive the drone into perceiving that the object is moving
away, thus moving closer for compensation, leading to reduced
tracking distance.

B. Problem Formulation

While disrupting the SOT component to lose track of the
target can temporarily disable the ATT functionality [115],
[69], [107], it does not fundamentally prevent the system
from resuming tracking, either through manual re-selection or
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Fig. 2: Left: Single Object Tracking (SOT) depends on the
initialization as the template frame and tracks the target in
search frames. Right: The drone adjusts its position to keep
the box at the center and the same size as the template frame.

Adjust Yaw

operator intervention. As shown in the ATT system pipeline
(Section II-A), the ATT system operates based on both SOT
and distance control for maintaining a stable tracking distance.
From this system perspective, we focus on exploiting vul-
nerabilities in the position control mechanism. A particularly
compelling attack objective—and the focus of this work—is
to intentionally reduce the tracking distance, pulling the ATT
drone dangerously close to the tracked target, which we define
as the distance-pulling attack (DPA). As shown in Fig. 3, DPA
can be exploited to achieve Al: drone capturing, e.g., by using
a net gun [19] (shown in Section V-G); A2: range-limited
sensor attacks [98], [124]; or A3: causing the drone to crash
into the target (also shown in Section V-G). In either case,
this can result in a more permanent elimination of tracking
capabilities, compared to losing tracking [115], [69].

Considering both the benign and criminally motivated ap-
plications of ATT (Section I), the incentives for this overall
attack goal can also be either benign or malicious. For ex-
ample, when used against benign applications (e.g., security
surveillance [101], border control [49], and law enforce-
ment [52]), the attack incentives are malicious and can directly
threaten public security by capturing the drone and exploiting
vulnerabilities for future counter-measures. However, when
used for criminally-motivated scenarios (e.g., stalking [42] or
lethal actions [18], [67], [89]), the attack incentives may be
benign, empowering individuals to defend themselves, e.g.,
by capturing unauthorized drones, identifying the pilot, and
extracting flight logs to uncover malicious intent [77], [76].
Thus, although we generally call it an “attack” in this paper,
the security problem studied can be exploited for social good,
and the “attacker” may be non-malicious individuals who just
want to protect their privacy and safety.

C. Threat Model

In this paper, we mainly target ATT drone setups that
perform tracking within 20 meters, which is the most typical
ATT operation range for person tracking for consumer drones
today (e.g., DJI Mini [25], Potensic [81], Autel [4], Skydio
2 [26]) and also is a range that can more easily allow the
attacker to notice the tracking and thus launch the attack.
Note that our attack is not limited to this range by design; the
attack distance and angle practicality are further discussed in
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Fig. 3: Mllustration of distance-pulling attack (DPA) and attack
goals targeted in this work. We target to dangerously shorten
the tracking distance of ATT drones, which can be exploited
to cause the drone to be A/: captured; A2: under range-limited
sensor attacks; or even A3: crashed into the attack umbrella.

Appendix B. We start with a white-box attack design setup,
i.e., we assume that the attacker has full knowledge of the
SOT model used in the victim ATT system. This can be
accomplished by first collecting information about the targeted
drones with the ATT feature [22], [21], [97], [90] and then
purchasing the same model and reverse engineering it, which
is feasible given recent advances in reverse-engineering such
systems [95] and machine learning models [108], [62]. We
also assume that the attacker can collect videos of different
tracking scenarios, but these videos are not necessarily for the
same tracking scenario during the attack (i.e., for the same
tracking target instance and/or background location when the
attack is launched), as we show in the scenario universality
evaluation (Section V-C).

Although our method is developed under a white-box as-
sumption, it can potentially be extended to black-box settings
by leveraging the transferability of adversarial patterns [61].
As black-box settings are more practical, we also evaluate
them by performing (1) attack transferability evaluation across
open-source models (Section V-D), and (2) direct black-box
testing on commercial ATT drones (Section V-G).

III. RELATED WORKS AND DESIGN CHALLENGES
A. Related Works and Comparisons

Autonomous systems security. Security research on au-
tonomous systems primarily falls into two categories: sensor
security and Al security. For sensor security, prior work has
examined threats to commonly used sensors in autonomous
systems, including cameras [44], [8], [116], LiDAR [92],
[80], [9], [8], gyroscopic [98], IMU [102], etc. In contrast,
autonomous Al security research has primarily targeted self-
driving vehicles, such as traffic sign recognition systems [123],
[47], [105], [94], automatic lane centering [93], [48], high-
autonomy autonomous driving systems [8], [92], [104], [122],
etc. Recently, Zhou et al. were among the first to investigate
autonomous Al security in drone contexts, with a focus on
stereo camera-based collision avoidance [124]. To the best
of our knowledge, we are the first to propose and conduct
a system-level security analysis of DPA in camera-based ATT.
Adversarial attacks on SOT. While we are the first to
propose DPA in ATT systems, prior work has examined
vulnerabilities in SOT models individually [31], [115], [12],
[117], [58], [46], [72], [107], [20], [11], [69]. Specifically,
various prior works explored using pixel perturbation to attack

SOT models [31], [115], [12], [117], [58], [46], [72]. However,
these studies focus on offline video processing rather than real-
time ATT systems, and therefore do not address: (1) physical-
world deployment, (2) effective attack across closed-loop ATT
control, and (3) spatial-temporal consistency.

Some more recent prior works have started to consider
physical-world attack vectors [107], [20], [11], [69]. However,
their attack vectors: TV screen [107], printed paper [20],
[11], and projectors [69] face serious challenges for practi-
cal deployment for the following reasons: printed paper is
barely visible from an aerial perspective; TV screen [107]
has limitations during the carrying phase; and projectors used
in AttrackZone are subject to lighting conditions and require
a close enough flat surface for projection, as acknowledged
by the authors [69]. Moreover, ATT systems generally op-
erate in well-lit, outdoor environments where attackers have
limited control, making projection-based attacks difficult to
execute reliably. Moreover, these works were not designed
with DPA and closed-loop ATT systems in mind. As a result,
these approaches overlook the closed-loop dynamics critical
to achieving better distance-pulling effects. Last but not least,
the advanced consistency-checking defense can already detect
these attacks [71], given their insufficient spatial-temporal
consistency considerations.

B. Design Challenges

Based on the above analysis, we identify key challenges in
designing DPA against ATT systems.
C7: Physical and real-world deployable attack vectors
for ATT systems. Designing effective attacks against ATT
systems requires physical, highly deployable vectors. Prior
attack vectors, while effective in controlled environments,
face significant limitations when deployed in real-world ATT
settings [107], [69], [20] as discussed in Section III-A. The
attackers often have minimal control over environmental fac-
tors, especially when they are unwillingly tracked outdoors.
This highlights the need for a more versatile, inconspicuous,
and deployable physical attack vector.
C5: Closed-loop distance-pulling effects. A successful DPA
must sustain closed-loop distance-pulling effects. In the con-
text of ATT systems, this means the attack at the current frame
will influence the drone’s behavior in subsequent frames,
reducing the tracking distance in a feedback loop. How-
ever, existing works adopt an open-loop' approach, where
attacks are optimized independently from the ATT system’s
response [107], [69], [20]. Such methods fail to address the dy-
namic and autonomous nature of drone tracking, where attacks
must continuously pull the drone closer in response to reduced
tracking distances. The motion model in DRP [93], designed
for lane-centering in ground vehicles, does not generalize to
the aerial dynamics of drone tracking.
Cs: Spatial-temporal consistency. Attacking object track-
ing introduces additional challenges compared to object de-

'The open-loop concept in this paper is a similar concept from control the-
ory. By open-loop, we mean the attacker conducts attacks without considering
the control feedback loop from the victim systems.
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Fig. 4: FlyTrap overall pipeline. We design an adversarial
umbrella as a domain-specific and deployable attack vector.
The progressive distance-pulling (PDP) achieves the closed-
loop distance-pulling effects while the attack target generation
(ATG) constrains the spatial-temporal consistency.

tection due to the inherent spatial-temporal consistency of
tracking algorithms [69]. Additionally, recent state-of-the-art
consistency-based defenses have demonstrated promising per-
formance in securing vision-based autonomous systems [66],
[71], [36], [114], [120], further increasing the difficulty of
maintaining consistency in attacks. Although prior work has
considered the spatial-temporal-based defense [69], their meth-
ods primarily target simplistic approaches, such as Kalman
filters, leaving them detectable to more advanced anomaly
detection mechanisms [71]. Addressing this challenge requires
developing adversarial attacks under the constraint of main-
taining spatial-temporal consistency in both the tracking model
and auxiliary consistency-checking mechanisms.

IV. FLYTRAP

This section introduces FlyTrap, the first physical and
system-level DPA targeting camera-based ATT drones. As
shown in Fig. 4, to achieve the attack goal and address design
challenges (Section III-B), our FlyTrap attack introduces novel
designs: attack vectors, a progressive distance-pulling strategy,
and controllable spatial-temporal consistency.

A. Design Overview

Adversarial umbrella: A domain-specific, physically de-
ployable attack vector. We propose adversarial umbrellas as
a novel class of physical attack vectors tailored for camera-
based ATT drones. An umbrella is an ideal medium for
adversarial patterns because: (1) it offers a large, nearly flat,
rigid surface for pattern printing; (2) it naturally fits outdoor
scenarios, requiring minimal setup and offering ease of trans-
port and deployment; and (3) it offers fine control, allowing
the attacker to maximize exposure and obscure themselves.
Additionally, umbrellas do not require elaborate directional
alignment or power sources, directly addressing challenge C
in the ATT drone context. In deployment, the attackers only
need to cover their upper bodies and point the umbrella at the
drone. While standing still is sufficient, crouching and hiding
the entire body can further increase success by occluding any
visible parts. Note that we don’t mean to claim the physical
adversarial patch as the major scientific contribution, but rather
a practical delivery mechanism to support our design below.
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Fig. 5: Design for progressive distance-pulling via physical
modeling. We propose to leverage computer graphics to simu-
late the closed-loop dynamics of the DPA process. We further
derive the upper bound to set the shrink rate for each stage.

Progressive distance-pulling via physical modeling. To
address the challenge of closed-loop effectiveness (Cs), we
proposed modeling the appearance of adversarial patterns
as the drone gradually approaches, simulating the effects
of reducing distance under DPA. By incorporating camera
geometry, physical rendering, and our proven upper-bound
shrink rate setups, our design ensures that the attack remains
effective as the drone approaches, ensuring consistent distance-
pulling effects.

Controllable spatial-temporal consistency. To address the
spatial-temporal consistency challenge (C's3), we introduce an
attack target generator for adaptive attacks that jointly con-
strain spatial and temporal features across models and frames.
The attack target generator explicitly encodes the spatial-
temporal constraint by manipulating features like box shape,
key points, or pose estimation within the adversarial region,
simulating human-like motion and appearance. This enables
us to bypass consistency-based defense systems, which are
receiving growing attention in securing autonomous vehicles.

B. Progressive Distance-Pulling via Physical Modeling

In this section, we introduce our solution to challenge Cs.
As shown in Fig. 5, via progressive distance-pulling (PDP),
we simulate the effect through physical modeling in computer
graphics, including (1) distance estimation, (2) closed-loop
simulation, (3) rendering and composition, and our proven
(4) shrink rate bound. The initial inputs are the camera
model, the search frame I° € REXWX3 where H and W
represent the height and width, the initial adversarial pattern
A € RHaxWax3 where H, and W, represent the height and
width of the adversarial pattern, and the umbrella 3D mesh
M = (V, &, F), defining vertices, edges, and faces. The output
is a set of simulated images {I4,T},...,I%, } and maximum

shrink rates {r ., rl o Thax t- The shrink rate is defined

max’ ' max?’ **



as the ratio between the attacked bounding box area and the
umbrella’s visible area.

In step (1), we adopt a pinhole camera model with focal
length f. The relationship between the pixel length p and the
actual length s is defined by: d = %. The focal length can
be retrieved from the camera’s specifications, and with the
pixel length in each image I°, we can estimate the distance
between the drone and the object. This estimate serves as the
initial distance d° for the subsequent closed-loop simulation.

In step (2), we simulate distance-pulling behavior as the
drone incrementally approaches the target. Starting from the
initial distance d°, we iteratively reduce it using a user-defined
interval: d* = d° — tAd, where t denotes the time step and
Ad the distance decrement per step. Given each distance,
we estimate the corresponding pixel length and synthesize a
sequence of progressively zoomed-in images from I°, denoted
as {I',... I'}. We assume the camera is oriented directly
toward the tracked object, an assumption justified by the
attacker’s ability to aim the umbrella at the drone.

Then, we simulate the umbrella geometry with high physical
fidelity. In the rendering step, we first construct a UV mapping,
which projects a 2D adversarial pattern A onto the 3D model.
The UV mapping function ® : R? — R3 maps 2D coordinates
u; € R? of the adversarial pattern to the corresponding
3D positions v; € R? on the mesh vertices V. This allows
the seamless attachment of the adversarial pattern onto the
umbrella’s surface, accounting for its curvature and topology,
which is essential for maintaining real-world fidelity during
optimization. We render the umbrella by placing a virtual
camera at the estimated positions {d°,d',... d'} from the
mesh. The camera is oriented toward the umbrella’s center,
with elevation angle # = 0 and azimuth angle ¢ = 0. We
detail how camera angle randomization improves real-world
robustness in Section IV-D3. After rendering, we apply image
processing steps, including grayscale conversion, binarization,
and morphological dilation, to perform edge segmentation and
remove background margins, which produces a tightly cropped
rendered image A’ € RHa*xWax3_ facilitating seamless com-
position in the next stage. H) and W/ represent the height
and width of the rendered and cropped adversarial patterns.
The overall process can be expressed as:

A’ = TightCrop(Render(®(A), d, 0, ¢)). (2)

In the composing step, we compose the rendered adver-
sarial pattern A’ to the target location in the simulated
image {I°,I',...,T'} and get the final adversarial images
{1%,I4,....,I4 }. This is achieved by computing a projection
matrix followed by an affine transformation.

Finally, in step @, we formally derive Theorem IV-B, which
establishes the relationship between the shrink rate and the
resulting pulling distance. Thus, given a distance d' in the
closed-loop simulation, to ensure the attack can pull the drone
into the next simulated distance dt!, the maximum shrink
rate at step ¢ should be 7t = Lzl multiplied by a constant

A, serving as the upper bound when setting the shrink rate for
each distance. While one could trivially set all shrink rates to

zero, doing so fails to control the spatial-temporal consistency,
which is detailed in the next section.

To formally justify this relationship, we provide the fol-
lowing theorem based on the pinhole camera model, which
establishes a mathematical link between the shrink rate and
the resulting change in physical distance.

Theorem 1. Let dy be the initial distance between the drone
and the target, and let d, be the final distance. Let r, be the
target shrink rate under a pinhole camera model with focal
length f, and assume the area ratio between the umbrella and
the human is a constant \ = ‘Z—: Ifr, = %, then the drone
can be pulled to a distance of d,, which is shown in Fig. 5.

Proof. Under a pinhole camera model, the pixel length p of
an object of length s at distance d is p = % Initially, the
umbrella’s pixel length is p,o = % During the attack, the
bounding box size is shrunk by a factor r,, making its pixel
length Lsny.  The drone compensates by advancing until the

d
boundingobox size equals the original human pixel length:
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Solving for d yields d = Ar, dy. Consequently, if r, = /\dg

we have d = d,,. OD

C. Controllable Spatial-Temporal Consistency

Table I summarizes key spatial-temporal consistency de-
fenses proposed to detect adversarial perception attacks. These
defenses share a common principle: cross-validating the victim
models’ predictions against auxiliary estimations derived from
independent features or models. Therefore, we design the
FlyTrap to be a highly spatial-temporal controllable DPA
against ATT drones by introducing the attack target gen-
erator (ATG), shown in Fig. 4. ATG enables the attack to
explicitly encode both spatial and temporal consistency dur-
ing optimization, thereby allowing FlyTrap to bypass diverse
spatial-temporal defense mechanisms. ATG formulates model-
specific constraints to preserve spatial consistency as part of
the optimization objective, ensuring intra-model consistency.
For instance, we constrain the predicted box to maintain a
human-like shape and appear within semantically plausible
locations [66], [120]. Additionally, ATG can embed adversarial
feature points to mislead feature extractors [114] or craft
deceptive human poses to fool pose estimators [71]. These
manipulations are feasible due to the attacker’s full control
over the umbrella pattern in FlyTrap. To ensure inter-model
spatial consistency, ATG jointly optimizes multiple perception
models, such as SOT, object detector, and pose estimator, such
that their outputs align coherently. This coordination ensures
spatial consistency within and across perception models.

In addition to spatial alignment, ATG enforces temporal
consistency by aligning features across simulated frames.
In the simulated images in PDP: {I4 I},...,I4}, ATG
determines the shrink rates {r®,r! ... 7'} for each frame,
constrained by the upper bounds specified in Theorem IV-B.
By selecting conservative shrink rates, ATG ensures a stable
drone trajectory, minimizing abrupt changes that might trigger



TABLE I: Overview of existing representative defense methods leveraging spatial and temporal features to secure perception
models in autonomous vehicles. This table excludes sensor-level attacks, as it focuses solely on adversarial attacks targeting
machine learning-based perception models. Therefore, sensor attacks (e.g., GPS Spoofing in PhyScout [114]) are not summarized
here. OD and MOT refer to Object Detection and Multi-Object Tracking, respectively. ATG represents the attack target generator.

Defense | Victim Model | Attack Goal |  Spatial Feature | Temporal Feature | ATG
PercepGuard [66] OD Misclassification Box Shape Box Behavior, Ego Vehicle States Inject Box Aspect Ratio
PhyScout [114] OD Hiding, Appearing, Misclassification Box Feature Point Box Behavior, Ego Vehicle States Inject Feature Point
VOGUES [71] MOT Move-In, Move-Out, Hiding Component Position Component Behavior Inject Human Pose
PhySense [120] OD, MOT Misclassification 3D Shape, Texture Object Behavior, Object Interaction | Inject Human Behavior
VisionGuard [36] oD Hiding, Appearing, Misclassification N/A Ego Vehicle States Multi-Stage Shrink Rate

anomaly detectors. The gradual shrink rate design allows DPA
to mimic benign scenarios in which the tracked object moves
away at a plausible speed. This can prevent sudden box move-
ment [66] or sudden drone movement afterwards [36]. Finally,
ATG enforces temporal feature alignment across frames. For
instance, it can inject a consistent human pose throughout the
PDP simulated attack sequence {I4, I}, ...,I% }, thus evading
defenses that monitor temporal behavior [71], [66], [120].

To demonstrate ATG’s generalizability, we categorize ex-
isting spatial-temporal consistency defenses into three classes
and show how ATG can bypass each class, shown in Table L.
For future defense, ATG can also potentially bypass them
if they fall within the categorized classes below. (1) Box
feature-based defenses inspect properties of the bounding
box predicted by the victim model (e.g., SOT in our case),
such as shape, location, and feature points. Representative
examples include PercepGuard [66] and PhyScout [114]. Both
approaches examine box-level features. The ATG can set the
attack target by manipulating the aspect ratio and feature point
within the prediction box accordingly. (2) Extra visual feature-
based defenses analyze visual features beyond the primary
victim model, such as those extracted from additional detectors
or pose estimators. Examples include VOGUES [71] and
PhySense [120]. These defenses validate the spatial-temporal
consistency of auxiliary visual cues, such as human pose
and motion behavior, using modules like auxiliary detectors
and temporal models. ATG can constrain the inter-model
consistency to attack extra models simultaneously to bypass
them. (3) Ego vehicle state-based defenses detect anomalies
by monitoring the smoothness of ego vehicle dynamics, such
as velocity and acceleration. VisionGuard [36] is a represen-
tative example. However, unlike object detectors studied in
VisionGuard, SOT models inherently exhibit spatial-temporal
consistency, reducing abrupt vehicle movement changes af-
terwards [57], [17]. Second, ATG can generate a multi-stage
shrink rate to make the drone movement even smoother, thus
bypassing defenses relying on vehicle state checking. It should
be noted that although PercepGuard also uses vehicle states, it
is mainly for assisting the box behavior prediction. PhyScout
uses vehicle states for the reconstruction of 3D feature points.
Neither of them uses ego states as major or direct evidence
for detecting the underlying perception attacks. Therefore, we
don’t include them in this category.

D. Overall Optimization Pipeline

After introducing FlyTrap’s key novel designs, we present
the comprehensive optimization process from data collection
to real-world robustness in this section, as shown in Fig. 4.

1) Dataset Construction: We first introduce the dataset con-
struction process to train the adversarial pattern. Specifically,
we collect aerial videos that depict common deployment areas
for ATT drones. Each video is split into two segments, the
template video and the search video: V' = {Vipi, Vicarcn }. The
first segment tracks a person, corresponding template videos
Vi = {Tpit, » Lipiey » --- }» where Iy € RFXW>3 represent n-
th template frame in the video. The template frames are used
to initialize the tracker. The second segment records the same
subject deliberately opening an umbrella and pointing it at
the drone to simulate adversarial behavior, resulting in search
frames Vsearch = {IsearchlaIsearchga } Isearchn € Rwaxg
represents the n-th search frame, where the tracker makes
predictions. These search frames serve as inputs to the PDP
(Section IV-B), which simulates adversarial umbrellas and
distance-pulling dynamics. We further perform automated la-
beling and down-sampling to pre-process the dataset.

2) Adversarial Objective Function: We leverage the attack
target from the ATG as our optimization goal. Specifically, for
each PDP time step ¢, we guide the SOT model to predict a
bounding box of size w! and h! and centered at cx?, and cy!,
represented as a tuple P! = (czt,, cyl, wl, ht). We set all cz,
and cy! to the center of the umbrella by default:
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where N, M, and T are the overall number of search video
frames, tracking candidate proposals, and PDP time steps.
Additionally, the control algorithms are designed to react to
tracking results only if their confidence scores are sufficiently
high to ensure safe autonomous flight [23]. Thus, we maximize
the predicted confidence score; to ensure that our injected
tracking results can propagate throughout the ATT drones:
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Beyond SOT, we also co-optimize across multiple models
to satisfy spatial-temporal consistency constraints for adaptive
attacks. For example, to achieve spatial consistency, we assign
the same location and confidence objectives (Eq. 3 and 4) to
an object detector. For those defenses that use auxiliary pose



estimation model [71], we assume the attackers can control
their pose right before launching the attack, and preserve the
temporally consistent pose by injecting it in consecutive attack
frames. Specifically, we optimize the pose estimation heat map
H' at each time step to remain close enough to a benign
reference map Hyenign, Which is averaged across the last few
frames in the template video before umbrella deployment:

1 N T
£pose = ﬁ Z Z HH; - HbenignH . (5)

i=1 t=1

Lastly, to maintain physical-world realizability, we regular-
ize the adversarial patterns with a total variation (TV) loss:

H,—1W,—1
Lov(A) = > D Ay — Al + 1A — Al
i=1  j=1

(6)
where A, ; represent pixel values at location (7,j) on the
adversarial pattern A before rendering. Finally, we optimize
the adversarial pattern as a weighted sum of all the objectives:

where wy, is the tuned weight to balance the k-th objective
function and 7 denotes the transformation detailed below.

3) Physical-world robustness: To overcome the influence
of innumerable physical factors, we stack a set of expectations
over transformation (EoT) within the optimization process [2].
In the rendering operation, we randomly select the camera
elevation angle 71(-) : 6 ~ [—=5°5°] and azimuth angle
T2(:) + ¢ ~ [-5°,5°] to simulate the attacker pointing
the umbrella slightly off the camera center. We randomly
sample the angle of rotation 73(-) : ¢ ~ [—20°,20°] of
the umbrella to simulate the imperfect vertical direction of
the physical adversarial pattern. Additionally, we add image
transformations to the adversarial patterns, including Gaussian
noise (74), brightness (75), contrast (7g), saturation (77), and
hue transformation (7g) to simulate complex physical world
environments. The final transformation is composed of all
the transformations Tcompose = {71 0 T2 © - - - o Tg }. Addition-
ally, the PDP naturally incorporates estimation error due to
imperfect physical modeling, accounting for the real-world
imperfection control assumed in the closed-loop simulation.

V. ATTACK EVALUATION
A. General Experimental Setups

1) Dataset collection: We collected an aerial-view dataset
for training and evaluation. The dataset includes video record-
ings featuring four individuals with diverse appearances and
covers four typical drone deployment environment types, in-
cluding two grass fields, two parking lots, one bare ground
area, and one drivable road. For each combination, we
recorded two videos: one for training and one for testing.
In total, the dataset includes 23 training videos comprising
11,898 frames and 25 evaluation videos comprising 13,594
frames. Ethics considerations can be found in Section VIII.

2) Models: In our experiments, we choose SiamRPN-
based [57] SOT models as victims, following prior work [69],
due to their strong trade-off between tracking accuracy and
computational efficiency. To further broaden our evaluation,
we also include MixFormer, a state-of-the-art Transformer-
based SOT model [103], which represents the recent trend
toward more expressive yet computationally intensive track-
ing architectures. By incorporating both CNN-based and
Transformer-based models, this combination provides compre-
hensive coverage of the current SOT model landscape.

3) Metrics: Under the DPA setting, we define evaluation
metrics to capture the system-level impact of the attacks.
Specifically, we define two metrics: (1) open-loop attack
success rate (ASRopen) and (2) closed-loop attack success rate
(ASR(josed)- ASRypen is defined as successful if all of the
following conditions are satisfied: (1) to ensures the drone is
expected to be pulled to within the attacker-desired distance:
the bounding box area must be smaller than a shrinkage
threshold r, of the umbrella areas; (2) to ensures the ATT
system doesn’t lose track and thus fail in distance-pulling:
the prediction confidence must exceed a predefined threshold
score, and (3) to ensure the umbrella is the trigger: the
attacked prediction bounding box must lie entirely within the
umbrella boundary:

a<Tq- ay,
Copen © { score > scoreg,

(Cz7 Cy, W, h) - (Cuz7cuy7wu> hu)7

where a denotes the bounding box area and the u subscript
denotes umbrella. We evaluate frames from the testing dataset
and compute the ASRpen as:

PIRR (<))
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where I is the indicator function, C; represents the condition
for the i-th sample, and N is the total number of frames.
To capture ASR comprehensively across varying threshold
settings, we introduce a metric similar to mean Average
Precision (mAP) used in object detection [27], [59]. We define
mean ASRgpen (MASRgpen) as the average ASRpe, over a
set of thresholds r, and score, ranging from 0.1 to 0.9 in
increments of 0.1 to provide broad coverage. For the ASRjosed,
we define success if the final distance d between the drone and
the attacker is below a distance threshold d,:

Celosed = d < dg.

ASRopen =

The ASRjoseq 1s computed as the average success rate across
multiple real-world drone flights. The success criterion for
ASRjosed 18 straightforward: the distance threshold can be the
maximum range to capture the drone (e.g., 9 meters [19]) or it
can be the working distance for sensor attacks (e.g., 6 meters
for projector [124]) or hitting distance (e.g., 0.5 meters).

B. Attack Effectiveness

1) Evaluation Methodology: As a baseline, we use target
photos (TGT) cropped from the first frame of each training



TABLE II: Evaluation of attack effectiveness (mASRpen). Sia-
mAlex, SiamRes, and SiamMob refer to SiamRPN [57] com-
bined with AlexNet [54], ResNet [37], and MobileNet [41],
respectively. The FlyTrap attack consistently outperforms the
TGT baseline, despite its visual similarity to the tracked object.
FlyTrapppp consistently outperforms the vanilla version.

Attack | MixFormer Siam-Alex. Siam-Res. Siam-Mob. | Avg.

TGT ‘ 46.3% 37.2% 24.9% 35.5% ‘ 36.0%
FlyTrap 42.0% 17.0% 44.3% 32.1% 33.9%
FlyTrapepp | 78.7% 35.6% 50.8% 49.1% | 53.6%

TABLE III: Evaluation of scenario universality for attacks
across unseen target-location combinations (mASRg,n). We
evaluate the attack on two unseen people and two unseen loca-
tions with different target-location combinations. The FlyTrap
in this table is the version with the PDP design.

\ Scenario Universality
Location (6 Videos) Person (7 Videos)

Both (6 Videos)

Model TGT FlyTrap TGT FlyTrap TGT FlyTrap
MixFormer 25.5%  85.9% 11.6%  40.4% | 6.8%  34.1%
SiamRPN-Alex | 34.3% 50.2% 24.2%  67.9% 21.7%  33.0%
SiamRPN-Res 20.7% 55.2% 10.4%  63.5% 9.9% 42.8%
SiamRPN-Mob | 28.8% 55.9% 13.8%  54.5% 12.2%  26.0%
Average | 27.3% 61.8% | 15.0% 56.6% | 12.6%  34.0%

video, corresponding to the same person and location, as they
naturally resemble the genuine target being tracked. The TGT
can be regarded as a simple human figure printing baseline
attack. We use grid search to find the ratio of the printed
human figure to the umbrella that can maximize mASR e, and
use that for fair baseline comparisons. More TGT generation
details are included in the Appendix A. Since TGT also applies
an image on the umbrella surface, the mASRyp, can be
naturally applied to it. This evaluation involved 4 people x 4
locations = 16 TGT combinations in total. The mASRpe, Was
averaged over 16 TGTs x 6 testing videos = 96 combinations
of experiments. Regarding FlyTrap, we select two people as
the tracked target and two locations as the background for
training. Then, we evaluate FlyTrap on the 6 testing videos
of the same target person and background. Vanilla FlyTrap
can also be considered as a baseline from the previous SOT
shrinking attack [20], [115], but with our new contributions
of the umbrella modeling, DPA-specific objective function
design, and attack vector-specific robustness design.

2) Experiment Results: The main results of our evaluation
are presented in Table II. We find TGT, even though it
visually matches the genuine person being tracked, performs
considerably limited, with an average mASR ., of 36.0%
across all victim models. In comparison, FlyTrapppp achieves
a much higher mASR ., of 53.6% on average, underscoring
its effectiveness. The comparison between FlyTrap with and
without PDP design shows its effectiveness in further shrinking
the area, which is also observed in the physical experiments.
We also study the robustness of FlyTrap to environmental
distractions, where multiple similar but unobstructed objects
(e.g., other passersby) appear in the same scenario and find that

FlyTrap can cause consistent attack effects given the presence
of other visual distractions. Please refer to our website [113]
for more details and demonstrations.

It’s worth noting that mASRpe, is a challenging metric.
Specifically, assume the Copen can always be satisfied when
V re > 0.5, I(Copen) = 1 and V 7, < 0.5, I(Copen) = O,
the mASR,pen will be 50.0%. However, this can already
shorten the tracking distance to half of its original distance
as indicated by Theorem IV-B. We show in physical exper-
iments (Section V-F2) that the shrink rate can continuously
decrease as the distance decreases. Therefore, the mASRpen
primarily serves for digital, scalable evaluation before printing
adversarial patterns for physical evaluation. Thus, even though
the absolute number of mASR,p., might not seem as high
as expected, we find it already sufficient enough to cause
closed-loop impacts as indicated by our physical closed-loop
experiments (Section V-F5).

C. Scenario Universality

1) Evaluation Methodology: For TGT, we apply the same
set of images from Section V-B to videos of unseen scenarios,
including different target persons and/or different background
locations. The results are derived from 16 TGTs x 19 testing
videos = 304 combinations of tests. For FlyTrap, we use the
same set of adversarial patterns optimized in Section V-B to
an unseen person and/or unseen background. We report the
mASRpen Of universality to location (6 testing videos), to
person (7 testing videos), and both (6 testing videos).

2) Experiment Results: In Table III, we observe that the
TGT shows limited universality, even for the same tracked
person with a different background. Its universality to location
is only 27.3% across all models. The universality to person
and to both are even worse. Therefore, TGT might only be
useful if the attacker knows the exact scenario, including both
the person and location. On the contrary, FlyTrap shows a
significantly better universality of 61.8%. The universality to
location and to person can achieve comparable mASRpen
as effectiveness shown in Table II, suggesting that FlyTrap,
when trained on a subset of location or person, can generalize
effectively to unseen individuals or environments, satisfying
the need to attack ATT drones in unknown deployment places.
However, when both the person and location are unseen, the
mASRpen are slightly lower, but still 21.4% higher than TGT.

D. Attack Transferability

1) Evaluation Methodology: We employ the FlyTrap opti-
mized from one victim SOT model for transferring to attack
another. We consider FlyTrap with and without PDP designs.
We study the transferability of FlyTrap without PDP as we
observe an interesting adversarial pattern: the human-shape
pattern in Fig. 6 (a), which might be more transferable as
it visually resembles a standing human. Then, we report the
mASR,en On the same set of testing videos as Section V-B1.

2) Experiment Results: The main results are shown in
Fig. 7. Notably, we observe that the human-shape patterns
indeed have better transferability, with an average of mASRgpen



Fig. 6: Visualization of adversarial patch designs against
MixFormer [17]. (a) Umbrella pattern without progressive
distance-pulling, which achieves high transferability due to its
visual resemblance to a standing human. (b) Umbrella pattern
with progressive distance-pulling, exhibiting a structured cas-
cade pattern that enhances continuous distance-pulling effects.
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Fig. 7: Attack transferability evaluation (mASRgpen%). (a)
FlyTrap pattern optimized without progressive distance-pulling

(PDP) design; and (b) with PDP design.
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of 13.1% compared to FlyTrap with PDP design, which is
4.0%. The phenomenon can be explained by the visual appear-
ance of the optimized pattern shown in Fig. 6. Specifically,
Fig. 6 (a) shows visual resemblance to a standing human,
which potentially benefits the transferability, while Fig. 6 (b)
exhibits a structured cascade pattern that enhances continuous
distance-pulling effects but is more model-specific. Among
them, the adversarial pattern against MixFormer [17] shows
the highest transferability of 18.2% mASRyp., on average.
Such a level of transferability can already achieve effective
DPA against black-box commercial systems (Section V-G).
The results suggest a trade-off between a more continuous
distance-pulling attack to a more transferable attack, which
we acknowledge as a limitation in Section VI-B.

E. Spatial-temporal Consistency

We select one defense for each of our three categorized
classes (Section IV-C) to evaluate FlyTrap’s spatial-temporal
consistency for each defense type, using the same set of testing
videos in effectiveness evaluation (Section V-B).

1) PercepGuard Evaluation: We adopt the released behav-
ior LSTM [38] model in the official codebase [65]. The input
to the LSTM model is the tracked bounding box prediction
in the last ten frames. The output of the LSTM model is a
probability distribution over several classes. We regard the
alarm as raised if the prediction is not “pedestrians”. The
results are shown in Table IV. The original PercepGuard true
alarm rate (TAR) in benign case and false alarm rate (FAR)
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TABLE IV: Evaluation of the PercepGuard [66] defense. We
report False Alarm Rates (FAR) under benign inputs and True
Alarm Rates (TAR) under vanilla and FlyTraparg attacks.
Notably, the FlyTraparg achieves an average detection rate of
only 2.8%, which is lower than the 5% benign PercepGuard
FAR reported in [71].

False Alarm Rate True Alarm Rate

Model Benign FlyTrap FlyTraparc
MixFormer 2.6% 78.0% 2.2%
Siam-Alex 0.0% 41.2% 4.9%
Siam-Res 0.0% 55.2% 0.0%
Siam-Mob 0.0% 68.2% 4.2%
Average | 0.7% | 60.7% 2.8%
Benign Track

5 1 FlyTrap Attack

3

El

2

Q

]

3 0

9 04, ~" 0.06
04y 9 0.08
Long 7, h %.08) 10.10 <
resholy &S

Fig. 8: Evaluation results of VisionGuard [36]. In the z-axis,
0 represents alarm is not activated, and 1 represents that the
alarm is triggered. FlyTrap can bypass it across all the tuned
thresholds, even when the benign track triggers the alarm.

in attack case are 99.0% and 5.0%, respectively [66], [71].
Our evaluation found a similar trend of low FAR in benign
tracking cases and high TAR for vanilla FlyTrap. However,
with our ATG design, the FlyTraparg attack can decrease
the TAR to 2.8%, even lower than the FAR of around 5.0%
reported in the original paper [66]. The FAR in our evaluation
is lower because our collected dataset is single object tracking
scenarios, while in the original evaluation, it’s tested in driving
scenarios with a more complex environment (i.e., the BDD
dataset [119]), thus leading to slightly higher FAR.

2) VOGUES Evaluation: VOGUES [71] was originally
proposed for defense Multiple Object Tracking (MOT). There-
fore, we follow the original setups while making necessary
adaptations for SOT. Following their setups [70], we adopt
YOLOV3 [85] as the object detector and AlphaPose [29] as
the pose estimator. We compute the spatial consistency by
choosing the object detection prediction that has the high-
est Intersection of Union (IoU) with the SOT prediction to
avoid high false positive rates during the SOT adaptation.
Since VOGUES doesn’t release the LSTM model they use
to evaluate the consistency of the human pose, we reproduce
it by following their setups: we train the LSTM model using
the pose from the UCF101 dataset [99]. Same to their setups,
we set the OD and OT prediction IoU threshold as 0.5 and
the LSTM threshold as 0.5. If any of the values is below the
threshold, an alarm will be raised. We observe that SOT can
mostly operate normally even if a benign umbrella is used
as camouflage. Therefore, the defense is desired to tolerate
the spatial-temporal anomaly induced by a normal umbrella,



TABLE V: VOGUES [71] defense evaluation. FlyTraparg
can largely decrease the alarm rate across models and almost
achieve consistently lower alarm rates than a benign umbrella.

False Alarm Rate True Alarm Rate

Model

Benign  Umbrella | FlyTrap FlyTraparg
MixFormer | 3.1% 51.6% 93.7% 32.4%
Siam-Alex 4.2% 75.6% 89.3% 77.9%
Siam-Res 3.4% 73.0% 91.4% 54.4%
Siam-Mob 3.9% 65.1% 80.8% 44.8%
Average | 3.7% 66.3% | 88.8% 52.4%

avoiding an unnecessarily high false alarm rate that hampers
ATT drones from operating normally in this case.

Table V shows that with the ATG design, FlyTraparg can
largely decrease the alarm rate across models and almost
achieve consistently lower alarm rates than a benign umbrella.
We find that the relatively high alarm rate compared with be-
nign tracking is caused by imperfect universal attacks against
the object detector across multiple frames and videos, which
is an observed limitation in existing attacks against object
detectors [36]. Nonetheless, the ablation study of FlyTraparg
is already sufficient in justifying the effectiveness of our ATG
design and is significantly lower than the effectiveness level
that the original VOGUES used to claim success (98.4%).

3) VisionGuard Evaluation: We use the official implemen-
tation for evaluation [35]. To collect drone states, we use
the Clover drone simulator [28], which uses Gazebo [53]
as the backend and PX4 [83] as the firmware. We simu-
late the benign tracking and the FlyTrap attacked tracking
in OFFBOARD mode [83] by publishing to the ROS topic
mavros/setpoint_position/local to set the target
point at a frequency of 20 Hz, simulating the SOT model’s in-
ference FPS. Following their setup, we only consider the drone
and person moving along the x-axis for simplicity, without los-
ing generality. The drone’s states can be retrieved by subscrib-
ing to mavros/local_position/velocity_local,
which is used as the input to the ARIMA [7] states estimation
model. Finally, we use one benign sequence to train the model
for predicting the drones’ states and test on the FlyTrap attack
sequence and another benign track sequence. Each sequence
has around 130 frames sampled every 0.1 seconds. We iterate
the alarm threshold, including long-term residual and short-
term residual, and set the accumulated threshold to 2. In Fig. 8,
we find that FlyTrap can bypass VisionGuard [36] across all
the tuned parameters, even when the benign track triggers the
alarm. The results suggest that the fundamental rationale of
VisionGuard to aim for inconsistent attack effects in object
detection has limited applicability to the ATT drone context,
where the SOT prediction is temporally consistent by nature.

4) Impact on Attack Effectiveness: In Table VI, we evaluate
the impact of ATG design on attack effectiveness. The re-
sults show that the ATG design to constrain spatial-temporal
consistency has a subtle impact (within 10%) on the attack
performance, which is still significantly higher than TGT
(in Table II). For example, FlyTrap against MixFormer with
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TABLE VI: Attack effectiveness evaluation (mASRpen) with
spatial-temporal constraint tailored for different defenses. The
constraint has a subtle impact (within 10%) on the attack
performance across the models, which are still significantly
higher than TGT.

ATG | MixFormer Siam-Alex. Siam-Res.  Siam-Mob.
- ‘ 78.7% 35.6% 50.8% 49.1%
PercepGuard 76.8% 51.1% 53.5% 47.6%
VOGUES 69.4% 41.4% 40.6% 40.5%
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Fig. 9: Physical evaluation of average shrink rate versus
distance. (a) FlyTrapppp achieves a lower shrink rate across
all distances in short-range evaluation since the shrink rate
continuously decreases as distance decreases. (b) FlyTrap
works well below 20m and can potentially extend to 30m or
40m. PDP means using PDP during attack optimization.

spatial-temporal constraints can achieve similar mASRpen
compared with FlyTrap without constraints: 76.8% for Per-
cepGuard [66] and 69.4% for VOGUES [71]. Interestingly,
we find the FlyTrap with ATG can even significantly boost
the mASRpen for SiamRPN-AlexNet to 51.1% and 41.4%.

F. Physical-World Attack Evaluation

1) Open-Loop Evaluation Setups: We create real-world
adversarial umbrella prototypes by uploading the optimized
adversarial patterns to an online umbrella-printing service.
We record 10-second videos at varying distances using a 4K
resolution smartphone camera (iPhone 16). This results in
around 600 frames with a resolution of 3840 x 2160 for
each video. Then, we run the SOT model offline and evaluate
the shrink rate. We report the average shrink rate recorded
at different distances. We use umbrellas printed with FlyTrap
patterns optimized against MixFormer and SiamRPN-ResNet,
both with and without PDP design. For both, the target shrink
rate in the objective function (in Section IV-D2) is set to O to
study the effects of closed-loop distance-pulling effects.

2) Open-Loop Experiment Results: We study the average
shrink rates at different distances, shown in Fig. 9. In the
short-range evaluation, for both SiamRPN and MixFormer,
the average shrink rate of FlyTrapppp decreases as the distance
decreases since the higher resolution on the adversarial pattern
can cause an even lower shrink rate. On the other hand, the
shrink rate of the vanilla FlyTrap remains almost the same
since it’s locked onto one fixed area in the pattern (e.g., the
human shape area in Fig. 6 (a)). The results suggest that PDP
enables finer optimization at higher resolution, resulting in a
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significantly smaller tracked area. We further evaluate at long-
range distances to study the maximum working distance for
the FlyTrap attack. Optimized using collected videos under 20
meters, we find FlyTrap works well at that distance and can
potentially extend to 30 or 40 meters. The distance is beyond
the maximum functional distance of available ATT drones
with 4K videos, which are typically around 20 meters [25],
[26], [81]. It should be noted that the training dataset we
collect mainly includes close-range footage. Thus, FlyTrapppp
might not be well-optimized for the long-range attack case.
We leave it as future work to further study the long-range
attack capabilities. More discussions are in the Appendix B.

3) Closed-Loop Evaluation Setups: To evaluate our attack
in physical, closed-loop setups, we build our experimental
platform using Hylobro X500 v2 drone [39], a medium-lift
quadcopter powered by a Pixhawk flight controller. The system
uses Robot Operating System (ROS) [84] as the communica-
tion backbone. We detail the implementation in Appendix C.

4) Closed-loop Evaluation Methodology: We conduct ex-
periments with the same location and target person as our
training videos (Section V-B). For safety and distance mea-
surement issues, we simulate ATT behavior without a physical
takeoff by manually maneuvering the drone on the ground.
The experimenter, who acts as the attacker, then initiates the
FlyTrap attack and manually moves forward until the tracking
box size matches the initialization (shown in Fig. 10), which
closely approximates the outcome of an autonomous closed-
loop flight. We test all four models with FlyTrap initialized
from 7 various starting distances from 6 to 12 meters. For
closed-loop attack success criterion d, (Section V-A3), we
choose each of the three attack goals in Section II-B: Al:
dg, = 9 for net gun capturing [73], [74], [100]; A2: d, = 6 for
binocular camera projection attack [124], as it directly related
to drone sensor spoofing attacks with range limits; and A3:
dg = 0.5 for crashing, as it within human arm length to push
the umbrella. Finally, we report the resulting ASRjoseq.

5) Closed-loop Experiment Results: As shown in Table VII,
FlyTrapppp substantially reduces the tracking distance of the
ATT system to be within the range of capturing, sensor attacks,
or direct crashes. These results confirm the physical feasibility
of our threat model and demonstrate that the proposed PDP can
significantly affect the tracking distance of autonomous track-
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Fig. 11: Physical evaluation of FlyTrapppp against Mix-
Former [17]. The video is captured by an on-drone RealSense
camera with a resolution of 640 x 480. The shrink rate
decreases largely as the distance decreases, enabling the pro-
gressive distance-pulling effects. Bold the box for clarity.

TABLE VII: White-box physical closed-loop evaluation results
of ASRjoseq against different models under different attack
goals. w/ PDP means using PDP during attack optimization.

Victim Model | Capture (9 m) | DoubleStar (6 ) | Crash (0.5 m)

MixFormer 100.0% 100.0% 0.0%
MixFormer w/ PDP 100.0% 100.0% 100.0%
Siam-Alex 100.0% 100.0% 0.0%
Siam-Res 100.0% 100.0% 0.0%
Siam-Res w/ PDP 100.0% 100.0% 100.0%
Siam-Mob 100.0% 85.7% 0.0%

A
Adversarial
Umbrellas

Commercial
Drone

v (b

Fig. 12: Commercial evaluation. (a) Crafted FlyTrap physical
umbrellas and three commercial drones. (b) Net gun equipment
set used for an end-to-end attack demonstration.

ing drones in closed-loop control. As shown in Fig. 11, since
we use RealSense camera [43], which has lower resolution of
640 x 480 compared to the videos captured by the smartphone
in Section V-F1, the phenomenon that the shrink rate decreases
as the distance decreases is even more obvious compared
to those in Fig. 9a. The results highlight the physical-world
impact and FlyTrapppp’s capability to progressively pull the
drone as it approaches.

G. Commercial System Attack Evaluation

To assess DPA’s real-world viability and highlight poten-
tial vulnerabilities in widely accessible commercial products,
we conduct a black-box evaluation on three consumer-grade
drones equipped with visual tracking systems. As noticed
in [106], the obscure implementations in commercial systems
can heavily undermine the phenomenon observed in academia
prototypes. Therefore, we evaluate whether our proposed DPA
can be conducted in the physical world against real-world
products instead of testing our PDP and ATG design, which
is specifically for white-box systems (Section II-C).

1) Evaluation Setups: We acquire three commercially avail-
able drone products, including DJI Mini 4 Pro [22], DIJI
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Fig. 13: Screenshots from the DJI Mini 4 Pro remote controller interface during a real-world FlyTrap DPA. The green tracking
box indicates the output of DJI's built-in tracking model (zoomed-in view in the figure with a grey dotted border for clarity).
In the third frame, the tracker erroneously locks onto a small subregion within the adversarial umbrella pattern. We highlight
the vertical and horizontal position and their corresponding velocity of the drone. In the fourth frame, the altitude decreases to
5.3 meters at -2.5 m/s while the drone is moving forward at 5 m/s, suggesting the drone rapidly descends toward the attacker.

TABLE VIII: Commercial evaluation of ASR_joq. Distance
limitation for each attack is used as the threshold for ASRjosed-
A human-shaped FlyTrap umbrella successfully deceives three
consumer drones, with crash outcomes on DJI Neo and Hov-
erAir. N/A means the drones’ preset initial tracking distance
is already within the distance. These findings demonstrate the
real-world existence of the ATT vulnerabilities we identified.

Attacks | DJI Mini 4 Pro DJI Neo HoverAir
Capturing (9 m) 60.0% N/A N/A
DoubleStar (6 m) 30.0% N/A N/A
Crash (0.5 m) 0.0% 60.0% 80.0%

Neo [24], and HoverAir [40]. We employ the same umbrella
design described in Section V-F3, shown in Fig. 12 (a). We
purchase a net gun [74] to demonstrate the DPA-enabled drone
capturing attacks, shown in Fig. 12 (b).

2) Evaluation Methodology: We place ground markers at
fixed intervals (Ad) and have an observer walk parallel to
the drone’s flight path to estimate displacement. The flying
altitude h is retrieved from the flight log or viewed directly
on the controller interface. The distance between the drone and
the person is derived by d = \/h? 4+ (nAd)?. We record the
final distance under attacks and report the resulting ASRjosed-
Each drone is tested in 10 separate flights with fixed initial
distances. For the DJI Mini 4 Pro, we set the initial distance
as 12 meters, and for the DJI Neo and HoverAir drones, the
tracking distance is factory set to around 2 meters. For each
flight, we begin by powering up the drone, taking off, and
then activating the tracking. We don’t report capturing and
DoubleStar [124] attack for DJI Neo and HoverAir since their
preset initial tracking distance is already within those ranges.

3) Experiment Results: We find that one of the umbrellas,
i.e., adversarial pattern against MixFormer shown in Fig. 6 (a),
can successfully deceive all three tested drones. As shown in
Table VIII, we find that with FlyTrap, we can capture or launch
sensor attacks on the DJI Mini 4 Pro with a success rate of
60% and 30%, respectively. In Fig. 13, we record the screen
of the DJI remote controller to verify that the distance-pulling
is indeed caused by a shrunk box instead of other factors. In
Fig. 14, we show an end-to-end DPA-enabled drone-capturing
attack. After conducting the DPA, the tracking distance is
shortened largely, allowing the attacker to aim and then shoot
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Fig. 14: End-to-end FlyTrap-enabled DPA demonstration: Al:
drone capturing. We use a net gun to shoot the DJI Mini 4
Pro with Active Tracking feature when the tracking distance
is pulling closer to the attacker. Zoomed-in view in the figure
with dotted borders for clarity.

the capturing net against the drone. For DJI Neo and HoverAir,
we observe that these two ultra-light drones are easy to crash,
with a success rate of 60% and 80%, respectively. We suspect
they lack the tracking state-verification mechanisms found in
more advanced models like the DJI Mini 4 Pro [23]. Thus,
they try to catch up with the “shrunk” object at a relatively
high speed, causing the observed collision. Fig. 15 showcases
an end-to-end DPA-enabled crashing attack on the HoverAir
drone. The attacker can physically hit the drone using the
umbrella to cause a collision and crash. We also empirically
find that crouching down to cover the whole body can increase
the attack success rate, as shown in Fig. 13 and 14.

The failure of other umbrellas might be due to the white-box
model, which they are optimized against, being convolutional-
based models. Ma et al. find that adversarial examples gen-
erated using Transformer-based models tend to be more
transferable than CNN-based models [63]. We also find that
adversarial patches against SiamRPN, which is a CNN-based
SOT model, show more model-specific patterns (second to
fourth umbrellas in Fig. 12 (a)) compared to the human-shape
pattern from MixFormer (umbrella in Fig. 6).

Additionally, we find the black-box commercial results con-
sistent with transferability experiments (Section V-D): the pat-
tern with a human-like shape, with the highest transferability
among others (18.2%), can potentially transfer to commercial
drones. Despite only one of our crafted umbrellas succeeding,
we reveal the first demonstration of the proposed DPA vulnera-
bilities in deployed commercial drone systems, thus justifying
the security problem we identified, and demonstrate two out
of three use cases of DPA (Al and A3 in Section II-B). We
have already performed responsible vulnerability disclosure to



Fig. 15: End-to-end FlyTrap-enabled DPA demonstration: A3:
drone crashing. We use the umbrella to hit the HoverAir drone
with Dolly Track feature when the tracking distance is pulled
within the hitting distance to the attacker.

the corresponding manufacturers (Section VIII).

H. Attack Stealthiness Evaluation

The proposed FlyTrap attack is stealthy since the umbrella
is folded for most of the carrying time. In this section, we
conduct a user study to further justify the stealthiness during
the deployment time.

1) Evaluation Setups: The survey consists of two parts. In
the first part, we focus on the attack vector, the umbrella: we
investigate if it’s uncommon to use an umbrella on a non-
rainy day. Next, given the adversarial pattern, we investigate
if people feel suspicious about it. We released the survey on
the Prolific platform [82] with 200 participants sampled to
reflect a broad demographic distribution in the United States.
For the user study, we go through the IRB review process
of our institution and receive confirmation of the self-exempt
subject search categorization. More details can be found in the
ethics discussion in Section VIIL

2) Experiment Results: In terms of the usage of umbrellas,
we find 78.6% of the participants think it’s not abnormal to
them when seeing someone using an umbrella on a non-rainy
day. In terms of the adversarial patterns, some portion of the
participants might think our FlyTrap pattern is eye-catching
(~13%), and rank 3rd among all the candidate umbrellas.
However, only 5.9% of participants found the FlyTrap pattern
suspicious, lower than the percentage of 26.7% who selected
“none of the umbrellas are suspicious”. The results suggest the
FlyTrap is a deployable attack in the real world without being
considered suspicious by the general public, even during the
launch time. Please refer to our website [113] for full results.

VI. DISCUSSION AND LIMITATIONS
A. Other countermeasures

In addition to spatial-temporal consistency checking, there
are model-level defense strategies such as certified robust-
ness [55], [110], [109], [111], adversarial training [96], [33],
[64], and input transformation [34], [112]. Certified defenses
provide theoretical guarantees of model robustness against
white-box attacks, typically by ensuring bounded prediction
error in the presence of adversarial perturbations. However,
existing certified robustness techniques and adversarial train-
ing methods primarily target misclassification attacks, mak-
ing their direct application to SOT models non-trivial due
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to the fundamentally different attack objectives and model
behaviors. To the best of our knowledge, there is no specific
certified robustness or adversarial training for SOT defense.
Input transformation-based defenses, in contrast, are inef-
fective under strong Expectation over Transformation (EoT)
optimization [2]. Jia et al. [45] proposed a defense specifi-
cally tailored for SOT models. However, their method targets
pixel-level perturbations and relies on run-time gradient-based
iterative denoising. The gradient back-propagation process is
well-known to be much slower than the inference, which is
computationally intensive and thus impractical for real-time
ATT drone applications [68]. Specifically, ATT drones are
more likely to lose target if the inference speed is limited,
given the temporal dependency of their working mechanisms.
Therefore, future defense needs to improve the efficiency to
support real-time ATT applications.

B. Limitations

We acknowledge the limitation of FlyTrap’s black-box
transferability. Our approach is mainly designed to achieve
better attack effects for white-box ATT systems, and thus
might sacrifice the black-box transferability. However, it
should not be the major concern given (1) the existing ad-
vancement in reverse engineering (in Section II-C) and (2)
the existing approach to boost black-box transferability in
attacking SOT [118], [46]. They are applicable to FlyTrap
by replacing the gradient-based optimization with their black-
box searching, which is out of the scope of this work. Fur-
thermore, the black-box commercial system implementation
can influence how the commercial systems react towards
the attack [106]. Nonetheless, we’ve shown the real-world
existence of the vulnerabilities by exploiting the proposed DPA
to capture or crash the drone (Section V-G). We leave it as
future work to improve the transferability and understand the
commercial ATT systems to further investigate the real-world
security problems.

VII. CONCLUSION

In this paper, we conduct the first systematic study on the
security of camera-based Autonomous Target Tracking (ATT)
systems, with a focus on the newly proposed physical-world
distance-pulling attacks (DPA). We define the problem with
domain-specific goals and introduce the adversarial umbrella
as a novel, real-world deployable attack vector. By designing a
progressive distance-pulling strategy and controllable spatial-
temporal consistency, we achieve closed-loop distance-pulling
effects and spatial-temporal consistent attacks. Through a new
dataset and system-level metrics, we demonstrate the attack’s
high effectiveness and generalizability. Physical-world evalua-
tions with adversarial umbrella prototypes and full-stack ATT
drones, alongside black-box testing on commercial drones,
reveal significant real-world implications. Given the critical
security and safety concerns surrounding ATT, we hope our
findings will inspire future research and community attention.



VIII. ETHICS CONSIDERATIONS

Disclosures. We evaluated our attack on three commercial
drones and confirmed that their ATT features are all vul-
nerable to the FlyTrap attack, sometimes causing high-speed
collisions. To prevent negative impacts, we have performed
responsible vulnerability disclosure to both affected manufac-
turers prior to all public releases of this work, following the
ethical standards in the security community.

Data collection. We collected videos of researchers (with ob-
scured facial features) to evaluate ML models for tracking and
detection. No identifiable private information was involved,
and participants could not be identified. As confirmed by our
IRB officers, this anonymized setup does not qualify as human
subject research under federal policy [88].

User study. We conducted anonymous visual recognition
tasks on Prolific. According to the Federal Policy [86], this
qualifies for exempt Category-2 [87] since no identifiable
information was collected and participants faced no physical
or psychological risks. Thus, IRB review was not required.
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APPENDIX
A. Human Figure Printing Baseline Attack

We introduce the target photo baseline attack (TGT), where
attackers print their own photos on an umbrella to misguide
the ATT drone (Fig. 16). TGT is straightforward: (1) printed
images resemble the tracked target, (2) their smaller size in-
duces a shrinking effect, and (3) it requires no adversarial ML
expertise. To ensure fair comparison with FlyTrap, we grid-
search the person/background ratio maximizing mASRgpen. If
too large, the shrinkage is weak; if too small, the features
are insufficient. Using four people and four backgrounds, we
generate TGTs with ratios 0.01-0.9, then test across four
models to pick the optimal ratio.

‘::Y

Fig. 16: Target photo baseline attack (TGT). Attackers print a
self-photo to mislead the tracker. The printed figure resembles
the target and appears smaller than the original. Distortion is
from rendering to simulate umbrella geometry.

B. Real-World Attack Distance and Angle Discussion

The maximum attack distance of FlyTrap is related to
the ATT tracking limit, determined mainly by the drone’s
camera resolution and optics. Consumer drones (e.g., DJI
Mini, Potensic, Autel, Skydio 2) with 4K video typically track
humans up to ~20m [25], [81], [4], [26]. In our experiments
with DJI Mini 4 Pro, FlyTrap remains fully effective up to
20m and, in some cases, generalizes to 30—40m, beyond its
training range. Thus, within the tested scope, FlyTrap shows
no attack distance limitation, though longer-range validation
is left for future work.

For the attack angle, we simulate umbrella misalignment by
varying azimuth/elevation during rendering. FlyTrap tolerates
pointing errors within £10° (Fig. 17), with significant degra-
dation only beyond 30°, which we consider to be already well
within the normal controllable range when a normal person
intentionally tries to aim the umbrella at the drone (visualized
in Fig. 18). Real-world tests in Section V-F also confirmed that
best-effort aiming is sufficient, requiring no retries to achieve
the reported attack effects.
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Fig. 18: A real-world example of umbrella aiming. As shown,
+30° is within the normal controllable range when a normal
person intentionally tries to aim the umbrella at the drone.

C. Full-Stack ATT System Implementation

Hardware setup. Our platform is the Holybro X500 v2
quadcopter [39] with a Pixhawk flight controller (inertial
sensors + GPS). An NVIDIA Jetson Orin Nano [75] handles
detection, tracking, and control, while PX4 [83] runs on the
controller. An Intel RealSense D435i camera [43] provides
video, streamed via a Jetson-hosted WiFi interface where
operators select a target by drawing a bounding box (Fig. 10).
Software setup. We use ROS [84] with four nodes:
UserUINode, DetectorNode, TrackerNode, and
ControlNode. The user selects a target through the
web Ul; DetectorNode refines the bounding box using
SSD-MobileNet-V2 [60], [91], filtering for the “person”
class and choosing the highest-IoU box. This improves SOT
accuracy, especially when manual selection is imprecise.
TrackerNode then tracks the target, outputting bbox and
confidence. ControlNode acts only if confidence exceeds
a threshold, computing movement offsets (Axz, Ay, Az) to
keep the target centered and sized consistently. Then, we
apply offsets to the current pose (z,y,z) in real time for
stable motion.



ARTIFACT APPENDIX
D. Description

FLYTRAP is a physical distance-pulling attack that danger-
ously reduces the effective range of autonomous target tracking
(ATT) systems, such as those used in visual tracking drones.
By executing a Distance-Pulling Attack (DPA), an adversary
can conduct range-limited sensor attacks, capturing, or even
direct crashes of autonomous drones.

This artifact contains the full codebase, pre-trained mod-
els, optimized adversarial patches, and the dataset used to
implement and evaluate the proposed FLYTRAP attack. We
provide detailed instructions for environment setup, execution
of evaluation pipelines, and reproduction of all experimental
results presented in the paper.

E. Requirements

Access: The artifact is publicly available on GitHub at https:
//github.com/Daniel-xsy/FlyTrap. The repository includes a
comprehensive README .md file that provides step-by-step
setup instructions, experiment configurations, and command-
line examples for reproducing our results. We also upload the
following materials onto the Zenodo platform:

o Codebase: https://doi.org/10.5281/zenodo.17051835
« Dataset: https://doi.org/10.5281/zenodo.16908024
o Models: https://doi.org/10.5281/zenodo.17051654

Hardware Requirements: A GPU is required to run the
experiments. We recommend a minimum of 24 GB of GPU
memory. All evaluations were conducted on a machine with
two NVIDIA RTX 3090 GPUs, though the artifact can be run
on a single GPU with increased execution time. The system
CPU used was an AMD EPYC 7513 32-Core Processor.
Software Requirements: The artifact mainly uses PyTorch
deep learning framework. All experiments were executed on
Ubuntu 20.04, with PyTorch=1.11 and CUDA=11. 3.
Storage Requirements: The artifact requires approximately
20 GB of disk space. This includes around 16 GB for the
dataset and 2 GB for the pre-trained victim Single-Object
Tracking (SOT), object detection, and pose estimation model
checkpoints. The remainder is allocated for other materials.

F. Codebase Design

The codebase is designed to be modular, extensible, and
scalable. It follows a registry-based architecture, enabling
flexible training and evaluation workflows. All experiments
can be launched using a single configuration file. The major
components of the codebase are organized as follows:

. /config: Contains configuration files used to optimize and
evaluate the FLYTRAP attack. Each file specifies victim model
hyperparameters, the data loading pipeline, loss objectives,
and the physical simulation engine, which together compose
a complete pipeline for adversarial patch generation.

./flytrap: Implements core functionality. We leverage
the mmcv [16] registry system to modularize components,
allowing easy integration via configuration files. This includes:
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attacks: Defines the attack pipeline, including modules
for digital rendering and patch application, as well as loss
functions used for optimization.

dataset: Implements the data loading pipeline required
for adversarial patch optimization.

engine: Simulates the closed-loop drone tracking be-
havior, supporting our Progressive Distance-Pulling de-
sign (PDP) and attack target control.

metrics: Defines mASR, ., metrics in evaluate the.
models: Provides unified API wrappers to build victim
models from their original implementations.

./models: Contains the original implementations of third-
party tracking models used as victims in our evaluation.

. /tools: Includes entry-point scripts for executing optimiza-
tion and evaluation procedures.

G. Major Claims

The provided artifact supports the validation of the key
experimental claims presented in the paper. All necessary
code, configurations, and resources are included to facilitate
reliable replication of these core findings.

[C1: Table II]: FLYTRAP with Progressive Distance-Pulling
(PDP) achieve higher effectiveness than FLYTRAP w/o PDP.
[C2: Table IT and III]: FLYTRAP can achieve better effective-
ness and universality than target image baseline attack (TGT).
[C3: Table IV and V]: FLYTRAP with attack target generation
(ATG) design can decrease the true alarm rate (TAR) of
spatial-temporal consistency defenses.

[C4: Table VI]: FLYTRAP with ATG design does not largely
reduce the attack effectiveness.

For the physical experiments, we provide recorded demon-
stration videos along with corresponding evaluation scripts.
Due to hardware dependencies, such as the need for our
implemented drone platform, the commercial drone platform,
and a physical adversarial umbrella, we do not include closed-
loop physical experiments in this artifact.

H. Evaluation

1) Experiment (E1): [C1] [5 human-minutes + 4 computer
hours]: This experiment tests the Progressive Distance-Pulling
(PDP) design of the FlyTrap attack.

o Full Evaluation: [5 human-minutes + 4 computer hours].
Please run the command:
bash scripts/eval_flytrap.sh
bash scripts/metric_summary.sh

e Fartial Evaluation: [5 human-minutes + 1 computer
hours]. Please run the command:
python tools/main.py <config>
cd analysis
python analyze_result_metric.py —--file
<result_path>

e Pre-computed Evaluation: [5 human-minutes + 5 com-
puter minutes]. Please run the command:
cd download
bash download_flytrap_results.sh
cd ../


https://github.com/Daniel-xsy/FlyTrap
https://github.com/Daniel-xsy/FlyTrap
https://doi.org/10.5281/zenodo.17051835
https://doi.org/10.5281/zenodo.16908024
https://doi.org/10.5281/zenodo.17051654

bash scripts/metric_summary.sh
2) Experiment (E2): [C2] [5 human-minutes + 40 computer
hours]: This experiment compares the FlyTrap attack with
baseline target photo attack.

o Full Evaluation: [5 human-minutes + 40 computer hours].
Please run the command:
bash scripts/eval_tgt.sh
Partial Evaluation: [5 human-minutes + 1 computer
hours]. Please run the command:
bash scripts/eval_tgt_partial.sh
<config>
Pre-computed Evaluation: [5 human-minutes + 5 com-
puter minutes]. Please run the command:
bash download/download_tgt_results.sh
Then, run the command for evaluation:
python analysis/analyze_tgt_metric.py
——input_dir <json_dir>
3) Experiment (E3): [C3] [S human-minutes + 4 computer
hours]: This experiment compares the true alarm rate of
PercepGuard defense before and after applying attack target
generation (ATG).

o Full Evaluation: [5 human-minutes + 4 computer hours].

Please run the command, the config and adv_patch
please refer to the GitHub repository:
bash scripts/eval_percepguard.sh
<config> <adv_patch>
Partial Evaluation: [5 human-minutes + 1 computer
hour]. You can only compare the results of one model:
bash scripts/eval_percepguard.sh
<config> <adv_patch>
Please average across all the model results to reproduce the
results in the paper.
4) Experiment (E4): [C3] [5 human-minutes + 10 computer
hours]: This experiment compares the true alarm rate of
VOGUES defense before and after applying attack target
generation (ATG).

o Full Evaluation: [5 human-minutes + 10 computer hours].
Please run the command, the config and adv_patch
please refer to the GitHub repository:
bash scripts/eval_vogues.sh <config>
<adv_patch>
Fartial Evaluation: [5 human-minutes + 2.5 computer
hour]. You can only compare the results of one model:
bash scripts/eval_vogues.sh <config>
<adv_patch>

The JSON file results will be saved in this directory:
work_dirs/vogues_results. For the results:

o With Attack: before means the false alarm rate before
the attack, and after means the true alarm rate after
the attack.

o Without attack: before means the false alarm rate
without the umbrella (should be the same as above), and
after means the false alarm rate with the umbrella.

5) Experiment (E5): [C4] [10 human-minutes + 10 computer
hours]: This experiment compares the FlyTrap attack with and
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without ATG design. Please refer to FlyTrap without ATG
design in EI: FlyTrapppp. Please evaluate FlyTraparg results
by running:

bash scripts/eval_flytrap_atg.sh

bash scripts/metric_summary_atg.sh



	Introduction
	Background and Problem Formulation
	Camera-based Autonomous Target Tracking (ATT) Drone
	Problem Formulation
	Threat Model

	Related Works and Design Challenges
	Related Works and Comparisons
	Design Challenges

	FlyTrap
	Design Overview
	Progressive Distance-Pulling via Physical Modeling
	Controllable Spatial-Temporal Consistency
	Overall Optimization Pipeline
	Dataset Construction
	Adversarial Objective Function
	Physical-world robustness


	Attack Evaluation
	General Experimental Setups
	Dataset collection
	Models
	Metrics

	Attack Effectiveness
	Evaluation Methodology
	Experiment Results

	Scenario Universality
	Evaluation Methodology
	Experiment Results

	Attack Transferability
	Evaluation Methodology
	Experiment Results

	Spatial-temporal Consistency
	PercepGuard Evaluation
	VOGUES Evaluation
	VisionGuard Evaluation
	Impact on Attack Effectiveness

	Physical-World Attack Evaluation
	Open-Loop Evaluation Setups
	Open-Loop Experiment Results
	Closed-Loop Evaluation Setups
	Closed-loop Evaluation Methodology
	Closed-loop Experiment Results

	Commercial System Attack Evaluation
	Evaluation Setups
	Evaluation Methodology
	Experiment Results

	Attack Stealthiness Evaluation
	Evaluation Setups
	Experiment Results


	Discussion and Limitations
	Other countermeasures
	Limitations

	Conclusion
	Ethics Considerations
	References
	Appendix
	Human Figure Printing Baseline Attack
	Real-World Attack Distance and Angle Discussion
	Full-Stack ATT System Implementation
	Description
	Requirements
	Codebase Design
	Major Claims
	Evaluation


