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Figure 1. Overview of DriveBench. Our benchmark evaluates the reliability and visual grounding of Vision-Language Models (VLMs)
in autonomous driving across four mainstream driving tasks — perception, prediction, planning, and behavior — under a diverse spectrum
of 17 settings (clean, corrupted, and text-only inputs). It includes 19,200 frames and 20,498 QA pairs spanning three question types:
multiple-choice, open-ended, and visual grounding. By addressing diverse tasks and conditions, we aim to reveal VLMs’ limitations and
promote reliable, interpretable autonomous driving.
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uating 12 VLMs across 17 settings, covering 19,200 im-

Abstract ages, 20,498 QA pairs, and four key driving tasks. Our

findings reveal that existing VLMSs often generate plausible

Recent advancements in Vision-Language Models (VLMs) responses from general knowledge or textual cues rather
have fueled interest in autonomous driving applications, than true visual grounding, especially under degraded or
particularly for interpretable decision-making. However, missing visual inputs. This behavior, concealed by dataset
the assumption that VLMs provide visually grounded and imbalances and insufficient evaluation metrics, poses sig-
reliable driving explanations remains unexamined. To ad- nificant risks in safety-critical scenarios like autonomous
dress this, we introduce DriveBench, a benchmark eval- driving. We further observe that VLMs possess inherent

(=) Project lead. (=) Corresponding author corruption-awareness but only explicitly acknowledge these

6585



issues when directly prompted. Given the challenges and
inspired by the inherent corruption awareness, we propose
Robust Agentic Utilization (RAU), leveraging VLMs’ cor-
ruption awareness and agentic planning with external tools
to enhance perception reliability for a diverse set of down-
stream tasks. Our study challenges existing evaluation
paradigms and provides a road map toward more robust
and interpretable autonomous driving systems.

1. Introduction

With recent advancements in Vision-Language Models
(VLMs) [1, 2, 5, 12, 13, 4648, 51, 71], there has been in-
creasing research interest in applying VLMs to autonomous
driving applications [20, 21, 26, 30, 43, 52, 53, 62, 63, 66,
72,74, 77, 80, 84]. Recent research explores both integrat-
ing VLMs into end-to-end driving frameworks [20, 33, 57,
606, 72, 79], and extending VLMs into Vision-Language-
Action (VLA) models that directly generate control com-
mands [11, 22, 26, 30, 31, 62, 63, 77, 80, 86, 87]. This in-
tegration aims to leverage the common-sense reasoning ca-
pabilities of VLMs, learned from internet-scale knowledge,
to improve the transparency and reliability of autonomous
driving systems, especially in handling corner cases [82].
However, previous studies highlight significant limita-
tions in evaluating end-to-end autonomous driving models
in open-loop settings [42]. Instead of focusing on trajectory
prediction with potentially unreliable open-loop end-to-end
VLMs [33, 55, 63, 80], we address another fundamental —
yet underexplored — question that has been widely assumed
[55, 62, 66, 82]: “Are existing VLMs capable of providing
reliable explanations grounded on visual cues for driving?”
To investigate, we examine whether driving decisions
generated by VLMs are genuinely grounded in sensory in-
formation from the physical environment or reflect general
knowledge and fabricated responses from textual cues.
VLM Reliability. To tackle the fundamental question
above, we examine the model’s reliability through an out-
of-distribution (OoD) robustness lens. For this purpose, we
introduce DriveBench, a benchmark encompassing four
mainstream driving tasks and 15 types of data corruptions,
including 19,200 images and 20,498 QA pairs tailored to
real-world autonomous driving scenarios shown in Fig. |
To assess robustness under extreme conditions, we push vi-
sual degradation to its extreme by using text-only prompts.
Surprisingly, VLMs demonstrate comparable performance
to their outputs under “clean” visual inputs, even when no
visual cues are available (as illustrated in Fig. 2). This ob-
servation starkly contrasts with human drivers, who would
struggle under such degraded conditions. A closer analysis
reveals that this apparent “resilience” is often a byproduct of
imbalanced datasets, suboptimal evaluation protocols, and
model bias rather than actual model robustness.
Datasets. We perform an in-depth analysis of existing
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Figure 2. Do VLMs provide reliable explanations based on vi-
sual cues in driving? We study this from perspectives on reliabil-
ity, data, and metrics. We find VLMs can fabricate quality answers
to driving questions when visual information is absent. The fab-
ricated answers can bypass current metrics, even GPT scores, due
to imbalance, lack of a context dataset, and problematic evaluation
protocols. Our observations challenge the passive assumption that
VLMs are more reliable than task-specific models in driving deci-
sions [28] because of visual-grounded interpretable responses.

“Driving with Language” benchmarks [9, 34, 59, 63, 78]
and identify critical shortcomings, particularly concerning
dataset imbalance. Many of these benchmarks, built on
popular driving datasets such as nuScenes [59], BDD [85],
and Waymo Open [65], inherit limitations from their orig-
inal designs [42]. For instance, imbalanced data distribu-
tions skew evaluations, enabling overly simplistic answers
such as “Going Ahead” to achieve over 90% accuracy for
motion-related queries. Furthermore, some cases create
challenges even for human annotators. Consequently, these
benchmarks exhibit inherent biases and persistent negative
samples, which diminish the interpretability and reliability
of the evaluation and impair the model fine-tuned on them.

Metrics. We also revisit existing metric designs crit-
ically. Language interactions in driving applications are
often assessed using traditional pattern-matching metrics
such as ROUGE [44], BLEU [58], and CIDEr [69], which
were originally developed for summarization and transla-
tion tasks. However, as noted in [3, 4, 18, 67], these metrics
face significant limitations in evaluating nuanced language-
based driving decisions. We also find that even GPT-based
evaluators [10, 24, 49, 63] provide distinct scores given dif-
ferent prompts. These constraints underscore the urgent
need for metrics that effectively capture reasoning, contex-



tual understanding, and safety-critical aspects.

Through a series of comprehensive experiments, we de-
rive several key insights from our analysis, spanning 17 set-
tings (i.e., clean, text-only, and various corrupted inputs),
12 VLMs (including both open-sourced and commercial
models), 5 tasks (perception, prediction, planning, behav-
ior, and corruption identification), and 3 evaluation met-
rics (accuracy scores, traditional language metrics [44, 58],
and GPT scores). These findings shed light on the current
challenges in integrating VLMs into driving scenarios:

@ Fabricated responses under degradation: VLMs of-
ten produce plausible yet fabricated responses under de-
graded visual conditions, including scenarios where no vi-
sual cues exist. This raises concerns about their reliability
and trustworthiness, as such behaviors are difficult to detect
using existing datasets and evaluation protocols.
@ Awareness of visual corruptions: While VLMs exhibit
certain awareness of visual corruptions, they only acknowl-
edge these issues when directly prompted. This highlights
their limitations in assessing the reliability of inputs and
providing scenario-specific, safety-focused responses.
Highly biased datasets and
suboptimal evaluation protocols can create misleading im-
pressions. In many cases, VLMs rely on general knowledge
rather than actual visual cues to generate responses, which
can unexpectedly achieve high scores with existing metrics.
@ Need for tailored metrics: Existing metrics, including
language-based [44, 58] and GPT scores [10, 63], fail to
capture the nuanced requirements of driving tasks. There is
an urgent need for the development of specialized metrics
that account for reasoning, contextual understanding, and
safety-critical aspects to evaluate VLMs more effectively.

Our findings through DriveBench highlight the need for
improved datasets, evaluation protocols, and more reliable
VLMs. Motivated by these insights, we further propose Ro-
bust Agentic Utilization (RAU), leveraging VLM agents for
enhanced perception in autonomous driving. RAU explores
the potential of VLMSs’ corruption awareness and agentic
planning with external tools to improve perception reliabil-
ity, paving the way for more robust autonomous systems.

2. Related Work

Driving with Language. VLMs [1, 5, 4648, 71] have
demonstrated remarkable human-level reasoning and un-
derstanding across diverse domains [7, 11, 14, 16, 27, 45,
50, 64, 66, 79, 81, 88]. This capability has raised the
prospect of utilizing VLMs to manage complex and unpre-
dictable scenarios in autonomous driving [82]. Addition-
ally, the language-based interaction that VLMs offer can
help mitigate the black-box nature of deep neural networks
by providing explanatory feedback that accompanies their
decisions. Driven by these advantages, a growing body of
research has begun building benchmarks of VLMs in au-
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Figure 3. Challenging cases excluded from DriveBench. The
results are from GPT4o [2]. (a): A black sedan is turning left, in-
dicated by the turn lights. (b): A black sedan is turning right. The
model predicts both Going Ahead. The examples show challeng-
ing cases for Turn choice, where the visual cues are subtle or rely
on temporal context for correct predictions. (c¢) and (d) are both
Turning Right, but the model fails to locate the objects due to the
existence of overlapping or occlusion.

tonomous driving [34, 54, 59, 63, 75, 78]. However, de-
spite these advancements, the robustness and reliability of
VLMs in complex, real-world autonomous driving tasks re-
main largely untested, especially given that reliable perfor-
mance across diverse driving situations is a fundamental re-
quirement for their application in autonomous driving.
VLM Reliability. Deep neural networks have historically
struggled with out-of-distribution (OoD) data, a limitation
of particular concern in autonomous driving, where failing
to handle rare or unexpected scenarios could result in se-
vere consequences [35, 36, 76]. While existing research
attempted to explore VLM hallucinations and trustworthi-
ness [32, 40, 68, 70], it has not yet been rigorously ex-
amined within the context of driving applications. Au-
tonomous driving raises new challenges to evaluate the re-
liability of VLMs where language-based driving decisions
are naturally linked to physical and context-specific real-
world scenarios. In this work, we provide a systematic eval-
uation of the reliability of current VLMs under conditions
of visual corruption, identifying potential limitations that
impact their applicability in real-world driving.

3. DriveBench: Driving with VLMs

In this section, we detail the construction of our benchmark
designed to assess the reliability of VLMs within the do-
main of autonomous driving. The comparison between our
dataset and related benchmarks is presented in Tab. 1.

3.1. Datasets

We construct our benchmark with representative driving
with language datasets [63]. We choose DriveLM [63] as it
is acknowledged as one of the most representative datasets
for driving with languages [17, 56]. The dataset spans five



Table 1. Comparisons among evaluation benchmarks for driving. “Per.”, “Pre.”, “Beh.”, “Pla.”, “Rob.” refer to the Perception,
Prediction, Behavior, Planning, and Robustness tasks, respectively. GPT. represents GPT scores augmented with context information.

Benchmark y©3 g % m B | #Frames #’ QA Pairs Logic Evaluation Metrics
Per. Pre. Beh. Pla. Rob. | (TestData)  (Test Data) Acc Language F1 GPT GPT

BDD-X [34] ‘ v X X X X - - None No Yes No No No
BDD-OIA [78] v X v X X - - None No No Yes No No
nuScenes-QA [59] ‘ v X X X X 36,114 83,337 None Yes No No No No
Talk2Car [15] v X X v X ~ 1.8K 2,447 None Yes No No No No
nuPrompt [75] ‘ v X X X X ~ 36K ~ 6K None Yes No No No No
DRAMA [54] v X X v X - ~ 14K Chain No Yes No No No
Rank2Tel [61] ‘ v X X v X - - Chain Yes Yes No No No
DirveMLLM [25] v X X X X 880 - None Yes No No No No
DriveVLM [66] ‘ v X v v X - - None No No No No Yes
DrivelLM [63] v v v v X 4,794 15,480 Graph No Yes Yes No No
DriveBench | v v v v/ | 19,200 20,498 | Graph | Yes Yes Yes Yes Yes

tasks, including perception, prediction, planning, behavior,
and control. For each task, different sets of questions are
applied, such as multiple-choice questions (MCQs), and vi-
sual question answering (VQA). For clarity, we will use
{Task}-{Question Type} to specify the data in the rest of
the paper (e.g., perception-MCQs).

Distribution Bias. Through detailed examination, we iden-
tify a significant distribution bias in the dataset, which
is naturally inherited from the nuScenes dataset [6, 42].
Specifically, in behavior-MCQs that inquire about the fu-
ture movement of the ego vehicles, approximately 78.6%
of responses are labeled as “Going Ahead”, which severely
impair the evaluation and induce bias towards the fine-tuned
model as studied in Appendix A.l. To address this imbal-
ance, in DriveBench, we carefully re-sampled the data to
create a more balanced distribution among different options.
The detailed distribution can be found in Appendix B.1. We
also investigate BDD-X [34, 85] dataset and find that bias
commonly exists in current driving with language bench-
marks, detailed analysis can be found in Appendix A.2.
Challenging Cases. Furthermore, we evaluate GPT-40 [2]
and analyze its failure cases, as illustrated in Fig. 3. We
find cases such as “Turn Left” or “Turn Right” are factu-
ally correct but involve (a) long temporal context; (b) subtle
indicators (e.g., the turn signal); (c) overlapping, and (d) oc-
clusion, which is confusing even for human at first glance.
It is more concerning given the input length constraint of
image resolutions and temporal lengths of existing VLMs.
Therefore, we eliminate these outlier instances to prevent
such samples from obscuring our findings and focus on an-
alyzing the average cases. Due to space limits, more details
can be found in the case study in Appendix E.4.

3.2. Driving Tasks

Our DriveBench covers four mainstream driving tasks, in-
cluding &) perception, £ prediction, 2 planning, and
4 behavior, examples are shown in Fig. 1. The definition
and distribution of each task can be found in Appendix B.3.

3.3. Corruption Data

We craft a total of 15 visual corruption types (cf. Fig. 1),
spanning across % weather conditions ('Brightness,
2Dark, 3Fog, “Snow, and Rain), @ external dis-
turbances (*Water Splash and "Lens Obstacle),
@ sensor failures (3Camera Crash, Frame Lost,
and °saturate), ‘& motion blurs (MMotion Blur
and 2Zoom Blur), and @ data transmission er-
rors (®Bit Error, “Color Quant, and '°H.265
Compression). We encompass a range of potential OoD
scenarios the vehicles might encounter [36, 37, 76]. From a
reliability perspective, these corruptions are the key to our
evaluation and insights into VLMs’ visual-grounded driv-
ing capabilities. For more detailed corruption definitions
and the generation process, please refer to Appendix B.2.

3.4. Vision-Language Models (VLMs)

To encompass the full scope of existing advanced VLMs,
the current version of DriveBench evaluates a diverse set
of 12 popular VLMs, including both commercial and open-
source models, as well as models fine-tuned specifically for
autonomous driving applications [52, 63]. This selection
reflects the latest developments in state-of-the-art VLMs
for driving. To ensure consistency, we apply a standard-
ized system prompt across all models (further prompt de-
tails are provided in the Appendix C.2). The prompt explic-
itly instructs the VLMs to generate auxiliary explanations,
enabling GPT-based evaluation of single-answer MCQs.

3.5. Evaluation Metrics

We consider a comprehensive set of metrics, including
Accuracy, BLEU [58], ROUGE-L [44], and GPT scores
[10, 63]. For MCQs, we utilize both accuracy, as the most
direct measure, and GPT scores to capture nuances in the
explanatory quality beyond simple answer selection. For
VQAs, we choose BLEU, ROUGE-L, and GPT scores. We
further improve the GPT evaluation in [63] by providing de-
tailed rubrics, scenario-based context, denoted as GPT .
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Table 2. Evaluations of VLMs across different driving tasks (perception, prediction, planning, and behavior). “Clean” represents clean
image inputs. “Corr.” represents corruption image inputs, averaged across fifteen corruptions. “T.0.” represents text-only evaluation. For
humans, only perception-MCQ and behavior-MCQ are evaluated. The evaluations are based on GPT.x scores, where we tailored detailed
rubrics for each task and question type. We highlight scores higher than the corresponding clean performance under corruptions.

Method | Size Type y% Perception % Prediction 2 Planning ‘3'%3 Behavior
P Clean  Corr. T.O. Clean Corr. T.O. Clean Corr. T.O. Clean  Corr. T.O.
Human | - | - | 4767 3832 - - - - | - - - | 6951 5400 -
GPT-40 [2] | - | Commercial | 35.37 3525 36.48 | 51.30 49.94 49.05 | 75.75 75.36 73.21 | 4540 44.33 50.03
LLaVA-1.5 [47] 7B Open 23.22 2295 2231 | 22.02 17.54 14.64 | 29.15 31.51 32.45 | 13.60 13.62 14.91
LLaVA-1.5[47] | 13B Open 23.35 23.37 2237 | 36.98 37.78 23.98 | 34.26 34.99 38.85 | 32.99 3243 32.79
LLaVA-NeXT [48] 7B Open 24.15 19.62 13.86 | 35.07 35.89 28.36 | 45.27 44.36 27.58 | 48.16 39.44 11.92
InternVL2 [12] 8B Open 32.36 32.68 33.60 | 45.52 37.93 48.89 | 53.27 55.25 34.56 | 54.58 40.78 20.14
Phi-3[1] | 4.2B Open 22.88 23.93 28.26 | 40.11 37.27 22.61 | 60.03 61.31 46.88 | 45.20 44.57 28.22
Phi-3.5[1] | 4.2B Open 27.52 2751 28.26 | 45.13 3821 4.92 3191 2836 46.30 | 37.89 49.13 39.16
Oryx [51] 7B Open 17.02 1597 1847 | 48.13 46.63 12.77 | 53.57 55.76 48.26 | 33.92 33.81 23.94
Qwen2-VL [71] 7B Open 28.99 2785 35.16 | 37.89 39.55 37.77 | 57.04 54.78 41.66 | 49.07 47.68 54.48
Qwen2-VL [71] 72B Open 30.13  26.92 17.70 | 49.35 43.49 557 | 61.30 63.07 53.35 | 51.26 49.78 39.46
DrivelLM [63] 7B Specialist 16.85 16.00 8.75 | 44.33 39.71 4.70 | 68.71 67.60 65.24 | 42.78 40.37 27.83
Dolphins [52] 7B Specialist 9.59 10.84 11.01 | 32.66 29.88 39.98 | 52.91 53.77 60.98 8.81 8.25 11.92
. Models
4. Experiments & Analyses 00 , | . | = Human
GPT-40
: . o1 1 . = [laVA1.5-7B
We cgnduct extens'lve ben‘chma'rk exp'erlments'and analyses N I I I L I I L
in DriveBench, with detailed discussions leading to our ob- | ! I I I m LLaVAL6-7B
. . -0.3 I InternVL2-8B
servations and conclusions by step. | i I Phi3
41 E . | o4 N = Phi-3.5
X \ o o -
.1. Experimental Setups ‘@a@e %&@a o . o = gm_;;
<@

Models. We set the temperature to 0.2 and top-p to 0.2,
with a maximum output token limit of 512. For DriveLM-
Agent [63], we adhere to the configurations outlined in [17].
Specifically, we utilize LLaMA-Adapter-V2 [23] as the
base model, fine-tuned on the DriveLM-nuScenes dataset.
The fine-tuning process is conducted on A800 GPUs with a
batch size of 4, over 4 epochs. For other open-source mod-
els, we download the official model weight from Hugging-
Face and inference using the vLLM [38] framework. More
details about the used model configuration can be found in
Appendix C.1. For GPT-40, we query the official APIs from
OpenAl with the same configuration mentioned above. The
model is provided with single-frame images by default. We
also show the generality of our observation under multi-
frame temporal input in Appendix E.2. Additionally, we
provide the single-view image if only that view is required.
Metrics. For GPT score evaluation, we employ GPT-3.5-
turbo. To better capture nuances between responses, we
prompt the model with detailed rubrics that account for an-
swer correctness, coherence, and the alignment of expla-
nations with the final answer. Rubrics are designed for
each specific task and question type to better reflect human-
preferred responses. Detailed information on the GPT eval-
uation prompts and rubrics can be found in Appendix C.3.

4.2. Observations & Discussions

We mainly report GPT. scores in the rest of the paper un-
less otherwise specified. Due to space limits, the complete

Figure 4. Illustration of performance degradation. After apply-
ing each corruption, we evaluate the perception-MCQs accuracy
changes compared with clean inputs. We observe that human per-
formance largely decreases while most VLMs remain unchanged.

results with different metrics are provided in Appendix D.

4.2.1. Corruption Resilience

The primary results, evaluated using GPT.y, are summa-
rized in Tab. 2. We observe that, even in the presence of cor-
ruption, the model performance remains largely unaffected,
demonstrating “seemingly” resilience to such OoD scenar-
ios. Specifically, a noticeable portion of VLMs maintains
comparable performance to that with clean image inputs,
even in open-ended VQAs. To understand the source of
the resilience, we investigate whether it stems from the ro-
bustness of these VLMs, given their large-scale pre-training
data [19], or if other factors contribute to this phenomenon.
Human Evaluations. To further validate that the applied
corruptions indeed impact the driving scenario, we conduct
a human evaluation. Specifically, we sub-sample the dataset
and design a user interface to facilitate human performance
assessment (more details in Appendix C.4). The accuracy
degradation is shown in Fig. 4. Interestingly, we observe a
significant accuracy drop for human participants under cor-
rupted conditions, whereas most VLMs exhibit subtle per-
formance variations across different corruption types.

Text-Only Prompts. Given the above results, we fur-
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Table 3. Comparisons of perception-MCQ and behavior-MCQ accuracy scores between ‘“clean” and fully “black” (no image)
inputs. We observe a large portion of models have no clear performance degradation even when the visual information is absent, suggesting
the driving VLMs response might mainly be based on general knowledge, instead of leveraging specific visual cues from sensors.

Task | Image | Human | GPT-40[2] | LLaVA-NeXT [48] | LLaVA-1.513p [47] | Phi-3[1] | Phi-3.5[1] | Qwen2-VLsp [71] | Qwen2-VLyop [71]
Perception | Clean 933 |  59.0 55.0 50.0 | 545 56.5 59.0 60.0
P No Image - 59.510.5 34.5 1205 50.0 L 0.0 1751370 | 585120 56.5 1 2.5 23.5136.5
Behavior Clean 69.5 | 255 33.5 32.5 | 265 36.5 30.0 23.0
No Image - 24.0411.5 24.0 195 33.010.5 30.0 1 3.5 40.0 1 3.5 23.01 7.0 36.5 1 13.5

Table 4. Comparisons of perception-MCQ accuracy degradation after prompting VLMs with explicit corruption context. We notice
a clear trend of performance degradation after mentioning the corruption type in the question. The results suggest VLMs are aware of the
current corruption and acknowledge they can not respond due to the degraded visual information when explicitly prompted.

Method | Bright Dark  Snow Fog Rain | Lens Water | Cam  Frame Saturate | Motion Zoom | Bit Quant  H.265

GPT-4o | —8.69 1298 825 —9.00 —6.00 | —381 582 | —1204 ~10.99 852 —6.98 057 822 479 | ~1430
LLaVA-15: | 026  1.04 025 000 000 | 140 260 | —279 —897 051  —052 257 | 222 —1.32 —2.66
LLaVA-15135 | 0.26  1.04 025 000 000 | 196 260 | —127 —0.26 051 | 1.04 257 | 222  —026 —2.07
LLaVA-NeXT | —5.83 | —20.63 ['=31:95" —14.00 —18.50 | =31:39 =361071 —6.13 —18.20 —17.67 —24.85 12331207 —19.50 589 | —21.19

InternVLgp | —7.24 —892 —10.74 —950 750 | —7.54 —6.24 | —17.51 —0.23 246 -235 700 —6.67 771 —465

Phi-3.5 | —9.78 —7.48 -7.75 —9.00 -850 | —860 -7.48 | —16.37 -931 950 848 -807 —6.94 —11.29 -11.16

Phi-3 | 422 867 075  —500 —10.00 | —11.31 233227 3.03 829 851 542 357 | 17.89 | —1881 -13.12
Qwen2-VLyp | —9.74 —7.96 —9.75 —9.50 —9.00 | —5.93 —6.98 | —20.94 [=29585] 849 846 —3.00 506 —9.38 —11.07
Qwen2-VLpp | —6.70 —8.96 —825 —950 —11.00 | -804 —6.90 | 7.19  11.01  —10.51 -744 293 661 —9.29 —13.07
ther investigate the effects of extreme corruption by pro- Cam Front Left Cam Front _ Cam Front Rght
viding VLMs with fully black images, reducing the input . -
. . . . L °
to text-only prompts with no visual information. The re- o g ‘3;" .
. . @% 0. s
sults, shown in Tab. 2, reveal an intriguing pattern: GPT .y PN M §
scores for text-only prompts are closely aligned with those N . o °
obtained with clean image inputs. This trend persists across
) . . Cam Back Left Cam Back Cam Back Right
different tasks and models, suggesting that the seeming re- am Sacx e s am Sace 29
silience is not solely due to the inherent robustness. 28 .
. .,"’;.r’ 2 ® Going ahead
We also report the accuracy for the perception-MCQs, > ¢ ® Tum left
. .. . . . ® ® Turn right
as shown in Tab. 3. Surprisingly, a significant portion of the ° : e
models show minimal or no accuracy degradation, even in .
the complete absence of visual cues. Upon further examina- Figure 5. Perception-MCQs answer spatial distribution of
tion, we observe that the “resilience” of VLMs under text- Qwen2-VLzg [71] under text-only prompts. We visualize the
only conditions is likely influenced by the extensive general MCQs prediction given the object’s spatial position on different
knowledge acquired during training. For instance, the mod- cameras. The model can potentially “guess” the answers without
els can “guess” the moving status Of one Surrounding Object visual information by leveraglng text cues. For example, “what
based on text cues referring to which camera it has been is the moving status of object at (480, 520) in front camera?”.

We also study the visual-based object prompt (i.e., using a visu-
alized bounding box to specify an object), detailed in Appendix
E.1. More model case studies are included in Appendix Fig. G.4.

seen and the corresponding position in that image. An ex-
ample is shown in Fig. 5. To justify the generality of the
findings and exclude text cues, we also study the visual-
based object prompt (i.e., using a visualized bounding box
to specify a certain object), detailed in Appendix E.1. In
summary, these observations yield two key insights:

To investigate the first insight further, we pose the ques-
tion: “Are driving VLMs aware of the underlying corrup-
tions in images when they fabricate their answers?”

* VLMs are capable of producing plausible responses to

driving-related questions based solely on general knowl- 4.2.2. Corruption Awareness

edge or text prompts. This capability is likely attributed We explore whether the fabricated “reasonable” answer of
to the extensive general knowledge and common-sense VLMs under corruption might stem from a lack of aware-
reasoning capabilities acquired during their training. ness regarding potential visual corruptions. To investi-
e The current evaluation protocols for assessing VLMs gate this, we conduct two experiments: E-1) involves ex-
in autonomous driving reveal significant shortcomings. plicit corruption reference when prompting the model, e.g.,
Even advanced evaluation methods, such as GPT score, “what are the important objects in the snowy day”, and E-
fail to effectively reflect the reliability of driving VLMs 2) we directly ask the model to identify the current type of
based on specific real-world scenarios. image corruption, e.g., “what is the current corruption”.
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Table 5. Study on corruption awareness (robustness-MCQs).
We directly prompt VLMs to identify the type of corruption and

average the accuracy score within each corruption type (defined

. % .. . )
in Sec. 3.3): *¢ weather conditions, ® external disturbances, Q@

§
sensor failures, ‘8’ motion blurs, and & data transmission errors.

Method | 5 B @ & | Ave

GPT-4o [2] | 57.20 29.25 4425 3425 36.83 | 40.36
LLaVA-1.57:5 [47] | 69.70 2650 1883 7125 10.17 | 39.29
LLaVA-1.5135 [47] | 61.60 15.50 24.08 79.75 15.50 | 39.29
LLaVA-NeXT [48] | 69.70 4850 21.83 66.00 11.83 | 43.57
InternVL2 [12] | 59.90 50.75 2092 68.25 3000 | 47.76
Phi-3[1] | 40.00 2500 1683 3125 27.67 | 28.15
Phi-35[1] | 60.60 2125 2558 33.00 39.67 | 36.02
Oryx [51] | 53.20 4500 5050 7250 39.67 | 52.17
Qwen2-VLyg [71] | 7670 3750 2283 57.00 35.83 | 45.97
Qwen2-VL7op [71] | 59.80 45.50 52.25 58.25 44.83 | 52.13
DriveLM [63] | 21.20 21.25 9.00 22.25 17.50 | 18.24
Dolphins [52] | 54.30 3.00 9.42 9.25 21.50 | 19.49

In E-1, we analyze changes in perception-MCQs accu-
racy. As shown in Tab. 4, the results demonstrate a notable
trend of decreasing accuracy across various models and cor-
ruption types. Certain models exhibit substantial perfor-
mance declines in the presence of corruption prompts; for
example, LLaVA-NeXT,p [48] experiences an accuracy re-
duction of approximately 19.62%. A closer examination
of model responses reveals increased uncertainty when the
corruption context is included in the prompt. For instance,
the model may respond with a statement such as “based on
the image, it is not possible to determine the moving status
of the object...”. These findings suggest that some mod-
els exhibit a degree of corruption awareness when explic-
itly prompted, recognizing potential unreliability in their re-
sponses under conditions of severe visual degradation.

Conversely, models such as LLaVA-1.5 [47] exhibit min-
imal performance changes even when corruption-specific
prompts are provided. This observation, when combined
with the previous findings, suggests two possible explana-
tions: 1) these models may lack the capability to detect im-
age corruption, or 2) while aware of the corruption, their
responses remain dominated by general knowledge rather
than current visual information, even in clean situations.

To investigate the first hypothesis, we conduct E-2, in
which we explicitly prompt the VLMs to identify the type of
visual corruption, which we call robustness-MCQs for nam-
ing consistency. The results in Tab. 5 indicate that LLaVA-
1.5 [47] achieves competitive accuracy in identifying cor-
ruption types, particularly in weather and motion corrup-
tions, suggesting it possesses corruption awareness.

To study the second hypothesis, we analyze the con-
fusion matrix of responses from LLaVA-1.5 [47] in the
perception-MCQs. Remarkably, the model consistently
outputs “Going Ahead”, regardless of the actual visual con-
text (visualized in Fig. G.4 in Appendix). This uniformity
in answering indicates the model response is biased toward
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general knowledge rather than relying on current visual in-

formation. Therefore, combining the results with the find-

ings in Sec. 4.2.1, we conclude below:

* VLMs tend to rely predominantly on common sense or
text-based cues to generate responses under conditions of
visual degradation, even though they are aware of it.

4.2.3. Fine-Tuned VLMs

In this section, we mainly focus on VLMs fine-tuned specif-
ically on driving datasets, reflecting the growing body of
research dedicated to this area [52, 63, 66]. Specifically,
we select DriveLM [63] and Dolphin [52] as representative
models for our analysis, as both are fine-tuned to enhance
visual-grounded driving decision-making abilities.

The main results are summarized in Tab. 2. A key ob-
servation is that Dolphin [52], which is primarily fine-tuned
on the BDD [85] dataset, demonstrates significant difficulty
in answering questions from the nuScenes [59] dataset.
Given the general capabilities of VLMs to address ques-
tions across diverse domains, this result is both surprising
and concerning, highlighting the limited generalizability of
driving-specific VLMs when exposed to datasets or ques-
tion formats that differ from their fine-tuning conditions.
Regarding DriveLM [63], we further investigate how the
model benefits from in-distribution fine-tuning. We visual-
ize the results from different metrics towards the same an-
swer in Fig. 6. DriveLM [63], while surpassing other VLMs
with large margins under ROUGE-L evaluation, still lags
behind Qwen2-VL7op [71] and GPT-40 [2] in GPT eval-
uation. The observation indicates that the main improve-
ment of in-distribution fine-tuning on the current small-
scale driving dataset largely comes from the answering tem-
plate. This analysis aims to elucidate the potential advan-
tages and limitations of fine-tuning on a specific language-
annotated driving dataset.

4.2.4. Metrics

Evaluating open-ended answers is still a challenging prob-
lem [8, 60, 83]. The problem is further escalated in driving,
given that the safety of vehicle decisions is closely con-
nected to a specific physical environment. To better un-
derstand the existing metrics’ applicability in driving, We
experiment with the same response under different evalu-
ation metrics, including accuracy, language metrics, GPT
score, and GPT score. The results suggest that the same
response evaluated under different metrics can vary signif-
icantly. Even using LLM-as-Judge with different prompts
can lead to different results. We argue that existing met-
rics are far from enough to effectively reflect the reliabil-
ity of driving VLMs. We provide full evaluation results in
Appendix D. Due to space limits, additional analyses on
the relationship between accuracy vs. GPT score, language
metric vs. GPT score, and GPT score vs. GPT., score can
be found in the Appendix E.3.
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Figure 6. Prediction-VQA evaluations using different metrics.
The language metrics, such as ROUGE-L [44] and BLEU-4 [58],
exhibit high consistency, while GPT . scores demonstrate notice-
able gaps. We also observe that fine-tuned process benefits Driv-
elLM [23, 63] significantly in regulating its response format, thus
leading to misleadingly high performance under language metrics.

5. Robust Agentic Utilization (RAU)

Given the observed drawbacks of existing benchmarks,
metrics, and models, while inspired by the corruption
awareness above, we explore how the inherent robustness
awareness can be leveraged toward robust perception in au-
tonomous driving. Specifically, we focus on developing Ro-
bust Agentic Utilization (RAU), applying VLMs as agents
augmented with tools for robust perception.

Previous research shows the trade-off between OoD ro-
bustness and performance [76]. Meanwhile, the denoise-
based approach is not extensible as separate training is
needed given new corruption types [39]. Inspired by the
corruption awareness of VLMs. We instead explore the use
of VLMs as an agentic interface for robust perception.

5.1. Approach

Without losing generality, this paper focuses on the usage
of RAU on one downstream task, camera-based 3D object
detection [29, 41, 73], as it serves as the first component in
full-stack autonomous driving pipelines. For the tools, we
choose the denoise model [39] to restore the visual infor-
mation. We train a denoise model for each of the corrup-
tions and assemble them as tools. Then, we use VLMSs as
the planner to decide which one to use at run-time. This
framework is extensible since a new denoiser can add flex-
ibility and does not require re-training downstream models
for robustness. Additionally, the environmental conditions
in real-world autonomous driving do not change from frame
to frame. Therefore, the inference cost for RAU is needed
only when the environment changes. Furthermore, devel-
oping RAU is orthogonal to VLM and tool evolution: our
framework can continuously benefit from the progress of
VLMs and available model tools (e.g., the denoise model).
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Table 6. RAU robustness evaluation. mCE and mRR metrics
are only applied to robustness evaluation. For mCE, we choose
DETR3D [73] as the baseline. Detailed definition of metrics can
be found in RoboBEV benchmark [76]. Equipped with RAU, we
can improve the robustness of BEV detectors under corruption.

Method | Input | NDST mAP? mCE| mRR{
DETR3D [73] Clean 43.41 34.94 - -
DETR3D [73] Corrup. | 30.76  19.26 1.22 0.71
DETR3Dgav [73] Corrup. | 34.12  22.72 1.16 0.79
BEVFormer [41] Clean 51.71  41.63 - -
BEVFormer [41] Corrup. | 30.64  20.13 1.23 0.59
BEVFormergay [41] | Corrup. | 35.44  25.07 1.14 0.68

5.2. Setups

We evaluate the approach using camera-based 3D object de-
tection model [41, 73] on RoboBEV benchmark [76]. The
robustness evaluation is averaged across six different cor-
ruptions, including Bright, Dark, Fog, Snow, Color
Quant, and Motion Blur. More details on the denois-
ing model training and denoising qualitative results can be
found in Appendix C.5. We use InternVL2 [12] as the agen-
tic VLM without losing generality.

5.3. Results

Our RAU can largely improve the robustness under cor-
ruptions to downstream BEV detectors.  Specifically,
BEVFormergay and DETR3Dgay improve the NDS by
10.9% and 15.6%, respectively. The results can be po-
tentially further boosted by improving the VLMs and the
denoising model, which is out of the scope of this paper.
Detailed results of RAU corruption identification accuracy
and BEV detector performance for each corruption are pre-
sented in Appendix D.4. Besides 3D detection, the RAU
can potentially be used for end-to-end driving [62, 63], or
even used before the images are input to the VLMSs them-
selves, which we leave as future work. We hope our initial
efforts can inspire future works exploring for trustworthy
integration of VLMs in autonomous driving.

6. Conclusion

This work identifies and addresses key challenges in de-
ploying Vision-Language Models (VLMs) for autonomous
driving, with an emphasis on their visual grounding reliabil-
ity in complex real-world scenarios. Our findings reveal that
VLMs frequently generate plausible yet unsupported re-
sponses when subjected to visual degradation, casting doubt
on their reliability in critical decision-making tasks in au-
tonomous driving. Furthermore, imbalanced datasets and
suboptimal evaluation amplify these concerns, contribut-
ing to an overestimation of VLM reliabilities. Finally, we
propose Robust Agentic Utilization (RAU) inspired by cor-
ruption awareness to improve perception reliability in au-
tonomous driving under visual corruption.
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