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Abstract Keywords

Recent research shows that adversarial patches can attack object de-
tectors in camera-based perception for Autonomous Driving (AD).
However, camera-based perception includes more than object de-
tection; it also involves Multiple Object Tracking (MOT), which
enhances robustness by requiring consistent detection across mul-
tiple frames before affecting tracking and thus, driving decisions.
This makes attacks on object detection alone less effective. To attack
such robust systems, a digital hijacking attack has been proposed,
aiming to induce dangerous scenarios such as collisions. However,
this attack has limited effectiveness, especially in the physical world.

In this paper, we introduce a novel physical-world adversarial
patch attack, ControlLoc, which exploits hijacking vulnerabilities in
entire AD camera-based perception. ControlLoc utilizes a two-stage
process: 1) identifying the optimal patch location and 2) generating
the patch to modify the perceived location and shape of objects
at that optimal location. Extensive experiments demonstrate the
superior performance of ControlLoc, with an average attack success
rate of around 98.1% across various AD camera-based perception
and datasets, four times higher than that of the best existing method.
Furthermore, the physical-world effectiveness of ControlLoc is
validated in real vehicle tests under different conditions, such as
outdoor lighting, angle, and background, achieving an average ASR
of 79%. We also assess AD system-level impact with a production-
grade AD simulator. ControlLoc yields a vehicle collision rate of
72.5% and an unnecessary emergency stop rate of 96.3%.
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1 Introduction

Autonomous Driving (AD) vehicles, also known as self-driving cars,
are increasingly becoming an integral part of our daily lives [23, 43].
Various companies [28], such as Tesla, are at the forefront of devel-
oping AD technologies. To ensure security and safety, AD vehicles
such as Tesla employ camera-based perception to detect environ-
mental elements such as traffic signs, pedestrians, and other vehicles
in real time. These camera-based perception systems predominantly
involve Deep Neural Networks (DNNs) [2, 27, 45] such as object
detection, owing to the superior performance of DNNs.

Given that failing to detect objects can lead to violent crashes [51,
67], camera-based perception in AD (referred to as AD perception
throughout this paper) in ensuring safety and security has prompted
extensive research into exploring its vulnerabilities. For instance,
previous studies have highlighted the potential for adversarial at-
tacks, including the use of adversarial patch [17, 24, 54, 56, 73], to
fool object detection in AD perception. Such attacks cause the AD
systems to ignore objects, posing significant safety risks.

However, it is essential to recognize that AD perception ex-
tends beyond object detection to include Multiple Object Tracking
(MOT) [2, 25, 27, 49]. MOT plays a pivotal role in AD perception by
enhancing robustness against object detection errors. It ensures that
only objects detected with consistent and stable accuracy across
multiple frames are considered in the tracking results and, conse-
quently, the driving decisions. Specifically, MOT tracks detected
objects, estimates their velocities, and generates movement trajecto-
ries, called trackers. The tracker management module adds a layer of
robustness against detection inaccuracies by not hastily discarding
unmatched trackers or instantly creating new ones for newly de-
tected objects. This multi-frame consistency requirement presents
a significant challenge to attacks that solely target object detection.
For instance, for an adversarial attack on object detection alone to
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significantly impact the AD perception pipeline, it must achieve at
least a 98% success rate across 60 consecutive frames [25], which is
infeasible for previous attacks on object detection [24, 54, 56, 73].

Therefore, a digital adversarial hijacking attack [25] to fool the
entire AD perception has been proposed with adversarial patches
as the attack vector. By nature, this attack is powerful since it can
achieve a persistent attack effect lasting for dozens of frames with
just a few frames of successful attacks. Such a lasting impact is
particularly valuable, as existing attacks on object detection alone
require consistent success to achieve similar significant attack im-
pacts. Despite this potential, this prior attack [25] has shown limited
effectiveness even in the digital space and is ineffective in the physi-
cal world fundamentally, since it manually specifies BBOX locations
rather than relying on outputs from the object detector. Reproduc-
ing their patch generation method, described in their appendix,
revealed low attack success rates with a 0% success rate in physical-
world experiments. The detailed analysis and experiment results of
the ineffectiveness for this adversarial hijacking attack [25] in both
digital and physical domain are demonstrated in §5, §6.3, and §6.4.

In this paper, we propose the first effective physical-world ad-
versarial hijacking attack named ControlLoc on the entire AD per-
ception. To perform tracker hijacking attacks against MOT, the
first step is to shift the target object’s BBOX location a certain dis-
tance in a specified direction, and then disappear the surrounding
BBOXes, as illustrated in Fig. 3 (c). This places higher demands on
the attack capability and requires an attack vector able to display
dynamically, as common static patches, such as printed ones, are
insufficient to meet these requirements. We employ a monitor as
the attack vector, and physical-world experiments show that it per-
forms effectively under diverse lighting conditions. This approach
also enhances stealth, as embedding adversarial patches into just
a few frames (4-5) of a benign advertisement video makes the at-
tack almost indistinguishable from standard roadside billboards or
vehicle advertisements, as depicted in Fig. 1.

ControlLoc adopts a two-stage approach. In the initial stage, we
focus on finding the most effective location for placing the adver-
sarial patch to facilitate successful hijacking attacks. Subsequently,
the second stage is to generate the adversarial patch, guided by the
optimal locations identified in the preceding phase. This step in-
volves erasing the target object’s BBOX from the detection outputs,
with a fabricated BBOX of a similar shape in a direction specified by
the attacker based on the attack goals and scenarios. This process is
designed to simulate movement in a chosen direction, deceiving the
AD perception. We propose two loss functions in the second stage,
introduced in §5.5, aimed at generating the adversarial patch to
achieve the attack goal: a score loss, which controls the appearing
or disappearing of the bounding boxes, and a regression loss, which
is for shape and positioning of fabricated BBOX. Given the inherent
challenges arising from the interdependence of these loss functions,
we propose a novel optimization strategy, detailed in §5.5, which
demonstrates superior performance compared to existing meth-
ods in prior works [24, 25, 54, 73]. Due to these, ControlLoc can
significantly outperform the existing hijacking attack [25].

Our evaluation results demonstrate that ControlLoc achieves
outstanding performance across all different AD perceptions, in-
cluding the combinations between four object detectors and four
MOT algorithms with the two attack goals mentioned above. On
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Figure 1: Examples of monitor as attack vectors in real world.

two driving datasets, ControlLoc achieves an impressive average
attack success rate (ASR) of 98.1%. Furthermore, when compared
with a baseline attack [25], the ASR of ControlLoc is quadruple
that of the baseline. Additionally, our newly proposed optimization
method in this problem domain surpasses the previous method by
demonstrating the trend of different loss function values.

To understand the attack effectiveness in the physical world, we
further evaluate ControlLoc with a real vehicle, where we put the
generated adversarial patch on the rear of the car (and the location is
specified by our patch location preselection in the first stage). The re-
sults show a 79% average ASR across different outdoor backgrounds,
light conditions, hijacking directions, attack goals, angles, and back-
grounds while the baseline attack [25] shows ineffectiveness, i.e.,
0% average ASR. To assess how ControlLoc affects the AD behavior,
such as collisions or unnecessary emergency stops, we conduct tests
using Baidu Apollo [2], an industry-grade full-stack AD system
with the LGSVL simulator [47], a production AD simulator with
an average effectiveness of 84.4%. We also evaluate various state-
of-the-art domain-specific defenses and existing directly adaptable
DNN-level defenses on ControlLoc. For attack demos, code, and
supplementary material, please check out our project website at
https://sites.google.com/view/av-ioat-sec/controlloc.

To sum up, we make the following contributions:

e We propose the first practical and effective hijacking attack
on AD perception using the monitor as the attack vector, to
alter the location and shape of objects. This attack can cause
vehicle collisions or unnecessary emergency stops.

We introduce a novel attack framework, ControlLoc, to gen-
erate physical-world adversarial patches. This includes patch
location preselection, BBOX filters, loss designs, and etc.

We evaluate ControlLoc on multiple AD perception systems
and ControlLoc is effective in the real world with a real vehicle
across different backgrounds, outdoor light conditions, hijack-
ing directions, and angles. It causes AD system-level effects
such as vehicle collisions in a production AD simulator.

2 Motivation

Our primary motivation arises from the limitations of existing re-
search [25], which lacks an effective method for generating adver-
sarial patches capable of precisely controlling an object’s location
to achieve the object hijacking attack. Although a novel attack
strategy is proposed, the evaluation in [25] relied on manually spec-
ifying BBOX locations rather than using adversarial examples to
influence the outputs of the object detector. Furthermore, when
we reproduced the adversarial patch generation method described
in their appendix, we achieved only a 20.69% attack success rate
in the digital domain (as shown in Fig. 6), and a 0% success rate
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in physical-world experiments as shown in Table 3. These results
suggest that while the proposed strategy may be conceptually in-
teresting, it lacks a concrete implementation method, rendering
tracker hijacking attacks against AD perception largely theoretical.
Consequently, their work falls short of demonstrating the practical,
real-world threats posed by adversarial vulnerabilities in MOT.

Furthermore, we find that existing adversarial attacks against AD
systems mainly focus on making objects disappear, fabricating new
ones, or causing objects to be misclassified, but lack an effective
method to precisely control an object’s location. Direct adaptation
of these methods, as well as the method in [25], proves ineffective
for this purpose. This ineffectiveness is due to limitations in their
loss function design, optimization method, random patch location,
and lack of precise BBOX filtering. Specifically, their loss function
and optimization method struggle to handle the coupled conflicts
between fabricating the new target BBox and erasing original ones,
as well as conflicts among the position, shape, and confidence scores
of the fabricated BBox. More detailed theoretical analysis and com-
parisons can be found in §6.3. Additionally, their BBOX filtering
method is crude, preventing them from obtaining BBoxes with the
potential to align attacker-specified locations and shapes. Success-
fully executing a tracker hijacking attack requires the attacker to
fabricate a BBOX that both associates with the original tracker
and produces the maximum possible hijacking speed. This means
the BBOX must strike a delicate balance—it cannot deviate too far
from the original tracker’s position, nor can it be placed too close.
This demands fine-grained BBOX selection during optimization, for
which we propose a new precise BBOX filter based on the universal
grid-based architecture of object detectors.

3 Background and Related Work
3.1 Camera-based Perception in AD

Camera-based perception in AD critically depends on object detec-
tion and multiple object tracking (MOT) to accurately recognize
and classify surrounding entities, such as cars. Such object de-
tection plus MOT designs are commonly used in AD perception
systems [33, 37, 38, 49] and are even presented in production-grade
AD systems such as ZOOX [76]. As depicted in Fig. 2, the process
initiates with a series of images. The AD perception algorithm em-
ploys an object detector [77] to generate a bounding box (BBOX)
and classify the object. Subsequently, the results from object de-
tection, combined with existing tracking data, are input into the
MOT [9]. This is tasked with updating the tracking information,
such as the BBOX, object velocity, and track identification (track
id). Finally, this data is relayed to other downstream modules, such
as the planning [66], which facilitates decision-making processes.
Since only the detection results with sufficient consistency and
stability across multiple frames can be included in the tracking, the
MOT can generally improve the robustness of AD perception.
Object Detection. Object detection plays a pivotal role in AD
perception, predominantly utilizing Deep Neural Networks (DNN)
to identify or categorize various road objects [8]. State-of-the-art
DNN-based object detectors are divided into two main categories:
anchor-based and anchor-free approaches [68]. Anchor-based de-
tection methods leverage a large number of preset anchors, then
predict the category and refine the coordinates of these anchors,
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Figure 2: AD system pipeline: The camera captures images for
object detection and multiple object tracking (MOT). Results
are sent to the planning and then control modules.

and finally output these refined anchors as detection results. Con-
versely, anchor-free detection [52], directly predicts the bounding
boxes of objects, offering a more generalizable solution.

Multiple Object Tracking (MOT). The state-of-the-art MOT
can be broadly classified into two main approaches [13, 36]: detection-
based tracking, also known as tracking-by-detection, and detection-
free tracking. The former method employs object detectors to iden-
tify objects, which are then used as inputs for MOT, while the
latter relies on manually cropped or marked objects as inputs [36].
Tracking-by-detection has emerged as the predominant technique
in MOT, particularly within the context of AD [13, 36, 71]. This
predominance is attributed to the inherent unpredictability of the
number and locations of objects, coupled with the expectation that
objects can periodically enter and exit the camera field of view [13].
These conditions render tracking-by-detection algorithms espe-
cially well-suited for integration into AD systems [13]. In this paper,
we concentrate on the tracking-by-detection paradigm. As illus-
trated in Fig. 2, this methodology involves associating the results of
object detection at time ¢ with existing trackers from the previous
time step (track|t — 1) and forecasting the current state of the track-
ers at time ¢t (track|t), which includes the velocity and location of
every tracked object. To mitigate the impact of false positives and
missed detection by the object detectors, MOT modules typically
initiate a tracker for an object only after it has been consistently de-
tected across H frames. Similarly, a tracker is removed only after the
object has not been detected for R consecutive frames [2, 25, 27, 75].
Thus, merely compromising the object detection component may
not sufficiently disrupt the AD perception 25, 49]. Therefore, this
paper introduces a novel physical-world adversarial hijacking at-
tack strategy targeting the entire AD perception.

3.2 Previous Attacks and Comparisons

Attacks on Object Detection. Recent studies have highlighted
the vulnerability of DNN models to adversarial examples or at-
tacks [5, 7, 20, 41, 59, 69]. To improve their practicality especially in
AD settings, further investigations have extended to the physical-
world object detection adversarial attacks [17, 24, 34, 54, 56, 60, 73].
However, the entire AD perception encompasses both object detec-
tion and MOT. Given the nature of MOT, for an attack targeting
only object detection to be effective, it must achieve at least a 98%
success rate across 60 consecutive frames—a highly challenging task
that for existing object detection attacks to meet [25, 39, 56]. This
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Figure 3: Attack goals: (a) move-in attack and (b) move-out attack. (c) shows hijacking attack flow. Rather than aiming for a
stable and continuous attack success, ControlLoc achieves a sustained attack effect by successfully attack just a few frames. As
shown in the figure, this brief success can have a lasting impact on the MOT, even if the OD recovers to benign detection.

paper proposes a novel, effective, and practical the physical-world
adversarial hijacking attack on entire AD perception.

Attacks on Object Tracking. Various attacks targeting object
tracking have been proposed, spanning both the digital [11, 63]
and physical domains [14, 39]. Among them, AttrackZone [39] rep-
resents one of the most related physical domain hijacking attack
against siamese-based tracking [30, 31], which is a single object
tracking (SOT) [72], employing a projector to introduce adversarial
perturbations. However, contemporary AD systems employ MOT
rather than SOT [2, 10, 27, 29, 49] due to the requirement to iden-
tify and track multiple objects simultaneously [29]. Additionally,
AttrackZone cannot be fundamentally extended to MOT for the
following reasons: (1) The SOT in AttrackZone uses a DNN-based
binary classification to label each pixel as either background or
target, then inverts these binary labels. However, MOT requires
tracking multiple objects simultaneously without background de-
tection, rendering the AttrackZone methodology inapplicable; (2)
AttrackZone relies on gradient information to generate attacks.
However, in MOT, gradient information is unavailable due to non-
differentiable processes such as tracker management introduced
in §3.1; (3) In SOT, there are no strict constraints on the location
of target BBOXes across consecutive frames. But, MOT enforces
IOU constraints between BBOXes in consecutive frames, making it
significantly more challenging to identify and generate the desired
target BBOX accurately. Our paper addresses these challenges with
new designs detailed in §5; (4) In SOT, an attack succeeds if the tar-
get BBOX achieves the highest confidence score (top-1). However,
in MOT, success requires a high confidence score for the target
BBOX and a reduction of the original BBOX’s confidence score
below a threshold. Without this, the tracker cannot be hijacked.
This necessitates new designs detailed in §5.5. In this paper, we
introduce a novel attack against the entire AD perception, i.e., ob-
ject detection plus MOT, leveraging adversarial patch effective in
different light conditions, angles, and backgrounds.

4 Attack Goal, Threat Model, and Vulnerability

Attack Goal. In this paper, we primarily focus on attack goals with
significant safety implications for AD, such as vehicle collisions or
unnecessary emergency stops [53]. We specifically explore physical-
world attack vectors within the AD landscape, employing the adver-
sarial patch due to its high practicality and realism [17, 38, 54, 73, 74].
Our research outlines two main hijacking attack goals: the move-in
attack and the move-out attack, shown in Fig. 3 (a) and (b), respec-
tively. The move-in attack is designed to deceive the victim AD
vehicle into an unnecessary emergency stop by inducing a false
perception of an object on its current trajectory. On the other hand,
the move-out attack manipulates the AD system to overlook actual
obstacles by altering the perceived location of these obstacles to the
roadside, thereby leading the vehicle into a collision. These tactics
aim to demonstrate the potential for adversarial interventions to
disrupt the safety and operational integrity of AD systems.
Threat Model. To achieve the attack goals outlined above, this
paper delves into a white-box threat model for AD perception
consists of object detection and MOT. This threat model assumes
that the attacker possesses detailed knowledge of the target object
detection, including its architecture and parameters, a promising
threat model that aligns with the ones in the existing literature on
adversarial vulnerabilities of AD perception [5, 17, 24, 25, 39, 48, 73].
For MOT, the threat model only assume the attacker knows the
key parameter settings, i.e., under what conditions the tracking
results and detection results are successfully associated, without
needing to know other MOT algorithms, such as which Kalman
filter is used, etc. This enables our attack to exhibit transferability
across various MOT algorithms [1, 2, 15, 27, 71]. To improve the
attack effectiveness, especially in the real world, we assume that
the attacker can collect videos of a targeted road where she plans
to launch the attack [5, 48] for attack preparation. To effectively
attack AD perception, we employ a monitor as an attack vector [38],
a method with significant potential for dynamically displaying
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adversarial patches, despite being rarely explored in the context of
physical-world adversarial attacks.

MOT Vulnerability. The MOT vulnerability lies in its funda-
mental algorithm design, where attackers can generate tracker
hijacking attacks as shown in Fig. 3 (c). The targeted MOT tracks
objects that appear consistently for H consecutive frames and when
tracked objects are missing, MOT retains trackers for R frames. This
allows attackers to attack object detection for a small number of
frames, but create a lasting hijacking effect. For instance, the tracker
remains hijacked for R frames after the attack, and even if object
detection recovers, the tracker remains hijacked for H frames. Dur-
ing the attack period, it is generally super dangerous especially
when the vehicles with high speed. This vulnerability is general
due to generality on this fundamental MOT design. Our survey of
the MOT17 benchmark [42] found that 87% of the top 15 algorithms
with code share this design and thus such a vulnerability is general.

5 ControlLoc Attack Methodology
5.1 Attack Design Overview

We provide a detailed overview of our ControlLoc. This hijacking
attack flow is illustrated in Fig. 3 (c). As depicted, the process begins
with the AD perception system correctly detecting and tracking the
object. When the vehicle enters the effective attack range, Control-
Loc removes the bounding box (BBOX) of the target object from the
detection results and fabricates a similar-shaped BBOX, which is
slightly shifted with an attacker-desired direction. This fabricated
BBOX is then associated with the original tracker of the target
object, effectively hijacking the tracker. Although the tracker hi-
jacking typically lasts for only a few frames, its adversarial effects
can persist longer, depending on the design of the MOT, particularly
the common H and R shown in Fig. 3 (c) and introduced in §3. To
achieve the above attack strategy, we propose a dual-stage attack
method, of which overview is in Fig. 4.

Stage I: This stage shown in Fig. 4 is an optimization-based
approach to preselect the patch location. The details of this part will
be introduced in §5.2. This strategy leverages masks and adversarial
perturbations to identify areas that are most conducive to successful
attack execution. These areas are then further refined based on
potential patch placement locations, such as the rear of the vehicle.
Subsequently, a sliding window is utilized to precisely obtain the
optimal location. This process (Stage I) can be a pre-processing step
to enhance the efficiency and effectiveness of attack generation.

Stage II: This stage as shown in Fig. 4 can be divided into several
distinct steps, outlined below, focusing on generating a physical-
world adversarial patch for hijacking attacks.

Step 1: Finding Target Fabricated Bounding Box. In Fig. 4, an itera-
tive process is employed to find the target fabricated BBOX based
on the Intersection over Union (IOU) value between the candidate
and the original BBOX. The key insight is that the fabricated BBOX
should closely match the original BBOX, but with a shift as large as
possible towards attack direction. The details are outlined in §5.3.

Step 2: Bounding Box Filter. In DNN-based object detection, many
proposed BBOXes are irrelevant for attack generation, often iden-
tifying background elements or unrelated objects. To ensure the
effective generation of the patch, it is crucial to filter the relevant
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BBOXes. This BBOX filter process is conducted based on the un-
derstanding of the object detection and is elaborated upon in §5.4.

Step 3: Loss Function Design and Optimization Method. This step
introduces novel loss functions and a new optimization method
detailed in §5.5. The designed loss function includes score loss and
regression loss to create or remove BBOXes. We propose a new
optimization strategy that markedly enhances the effectiveness of
the traditional standard Lagrangian relaxation method. To bolster
attack robustness, we integrate Expectation over Transformation
(EoT), drawing upon prior research [54, 73].

The novelty of our attack lies in several key aspects: we pro-
pose novel loss functions and overcome optimization challenges,
becoming the first to jointly manipulate BBOX’s position, shape,
and confidence score during adversarial attacks (these three have
coupling conflict effect challenge); whereas prior work typically
targets only one or two of these aspects. By addressing the cou-
pling conflict among all three, our method significantly advances
the state of the art. We also design a novel BBOX-Filter to precisely
filter BBOXes that meet attack criteria. This filter leverages a fun-
damental property of visual detectors—arising from the trade-off
between CNN downsampling and localization precision. In addition,
we propose Patch Location Preselection to guide where adversarial
patches should be placed on the target object. This guidance is ap-
proximate rather than exact, enabling robust performance without
pixel-level precision. Compared to random placement, our method
boosts attack success rate by over 4 times as shown in Table 2.

5.2 Patch Location Preselection

To effectively generate our attack, it is crucial to strategically po-
sition a patch in the most vulnerable area near the vehicle. We
formulate this problem as an optimization problem to find ideal
region for patch placement [12]. The detailed process is illustrated
in Fig. 4. The objective function, denoted as L4k, is as follows:

argmin Log, (x') + @ Lor (m, Ay, Av) (1)
h w
’ 1 rrss
where Ly = || max(M) - o ;;M (i, j1111 (2
Ap—-1A,,—-1
M'[i, j] = Z Z Mli+z1,j+22|W]z1,22]  (3)
z1=0 2z5=0
1 i 1
MIij] = 5 x tanh(y - m[L =), LD + 5 @
s s 2
X=x0(1-M)+poM (5)

Equation (1) is to identify the most vulnerable region leveraging the
mask denoted as M, which controls the strength of the perturbation
p- The final patch location aims to contain as many pixels with high
values of M as possible, to cover the most vulnerable areas. When
using this method, two main concerns must be addressed. First, the
values of M need to be kept as close to 0 or 1 as possible to reflect
the binary decision of either applying or not applying the patch.
Second, it is important to keep that the high-value pixels of M are
clustered closely, as the patch needs to form a contiguous block.
To address the first concern, M is computed by unconstrained
mask parameters m, as shown in Equation (4). The transformation
using the tanh function in Equation (4) constrains the mask M
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Figure 4: Overview of our ControlLoc, a two-stage hijacking attack via adversarial patches.

within [0, 1] range. Tuning the hyperparameter y drives mask values
closer to 0 or 1 and modulates the convergence speed of the process.
The hyperparameter s modulates the mask granularity. The variable
p signifies the perturbations applied to the original image x through
Equation (5) to obtain the input x” for £,4,. The details of £, 4, will
be introduced in §5.5. The variables h and w represent the height
and width of the image x.

To address the second concern, upon generating a sensitivity
mask indicative of the perturbation mask M, a sliding window W of
the same size (Ap, Ayy) as the patch is applied to process this mask.
The calculated averaged values within the window are referred to as
M’ shown in Equation (3), which scores each potential location by
averaging the values within the window. Furthermore, leveraging
the mask M’, we formulate a novel loss function £/, which plays
a pivotal role in determining the unique and most effective patch
location. Specifically, by minimizing Ly, we can encourage M to
cluster within a uniquely rectangular box of dimensions (Ap, Ayy).
The clustering effect is super important for the effectiveness of an
adversarial patch, as the patch must form a contiguous block.

Moreover, recognizing physical constraints on the capabilities
of the attackers, only designated areas are considered viable for
patch placement. Therefore, consistent with prior works [38, 40],
we restrict the attack areas to the rear side of the vehicle in both
digital and physical-world experiments. Thereby, we limit the mask
M to these regions. Notably, selecting the patch location can pre-
cede attack generation steps, serving as a potential and effective
pre-processing step. Furthermore, our patch selection method in-
curs negligible computational overhead: only 20 iterations in our
experiments to determine the optimal location shown in §6.3.

5.3 Finding Target Fabricated Bounding Box

The core idea behind finding a target fabricated BBOX is to create
a scenario where, when our attack has ended, the tracking system

Algorithm 1 Find target fabricated BBOX location

Require: B,: Original object BBOX; 9: Attacker desired directional
vector; Tioy: IOU threshold for data association between track-
ers and detection results.

Ensure: B;: Target fabricated BBOX location.

1 ke1
: Bt — Bo
: while IOU(B;, By) > Tioy do
Bt < By, + -k
k=k+1

end while

. B (—B0+5(k—1)

: return B;

[ B~ NS NS R N}

loses track of the original object. This is achieved by manipulating
the BBOX of the target object to maximize its deviation from the
benign, within its original data association range, directing towards
a directional vector ¥ determined by the attack goal. Unlike previous
research [25], which seeks the optimal BBOX location based on the
specific tracking algorithm, we employ a tracking-agnostic strategy
since the adversarially modified BBOX does not require precise
alignment with the adversarial patch’s physical location.

To achieve that, the key insight of this approach is that the
fabricated BBOX should match the original BBOX, but with a shift as
large as possible towards the direction 3. Thus, the fabricated BBOX
must overlap the benign BBOX with an IOU above a predefined
threshold Tjoy, while also being slightly shifted towards the original
BBOX position. It’s noteworthy that this IOU threshold generally
remains consistent across different MOT [2, 15, 25, 27, 71], enabling
the application of a general threshold that facilitates a black-box
attack model. This general property is critical, as it does not require
detailed knowledge of the specific MOT algorithms in use. Our
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method for iteratively determining the target fabricated BBOX
location is in Algorithm 1 to find the desired deviation.

5.4 Bounding Box Filter

In DNN-based object detection, most proposed BBOXes do not
contribute to patch generation, as they frequently identify irrelevant
objects or background elements. To generate the patch effectively,
it requires the selection of appropriate BBOXes for fabrication
or erasure. This selection hinges on the understanding of object
detection. Our approach is adaptable to both anchor-based and
anchor-free detection (§3.1).

The mainstream object detectors, including one-stage detectors
such as the YOLO series, or two-stage detectors such as the RCNN
series, introduced in §3, can adopt grid-based designs [22, 26, 35, 44—
46]. Grid-based detectors separate the input image into fixed-size
grids, with each cell responsible for predicting BBOXes for objects
within its vicinity. To ascertain the location of these BBOXes, an
offset is calculated from the top-left corner of each cell. A detailed
illustration and example for this process is provided in Appendix,
which precisely obtains the BBOX location.

By leveraging the intrinsic property of grid-based detectors
above, we introduce the Center bounding box filter (C-BBOX),
an effective method for filtering BBOX adaptable for both anchor-
based and anchor-free object detection detailed in §3. The details
of the C-BBOX process are in Algorithm 2. C-BBOX first calculates
the scaling ratio scale between the input image size and the feature
map size, i.e., the size of each grid cell. Then the C-BBOX extracts
the grid cell corresponding to B; (§5.3) based on scale.

C-BBOX is compatible with anchor-based and anchor-free mod-
els. For anchor-based detectors, where each grid corresponds to
multiple anchors, C-BBOX extracts the BBOX having the largest
IOU with B; as By in Algorithm 2 (top(A) is to obtain the index of
maximum value in vector A). For anchor-free detectors, where each
grid has a unique anchor, C-BBOX applies a corrective vector in
the hijacking direction to accurately filter the BBOXes since such
detectors allow for greater flexibility in BBOX placement.

Moreover, C-BBOX assists in pinpointing BBOXes for erasure in
anchor-based models by identifying the cell corresponding to the
original BBOX, thereby enabling the precise removal of undesired
BBOXes. For anchor-free detectors, we use the IOU BBOX filter,
similar to previous research [24], to identify BBOXes for erasure.
This method initially eliminates predictions with confidence below
the NMS threshold. Subsequently, it filters the BBOX by the IOU
between each remaining proposal BBOX and B;.

For detectors not based on grid structures, bipartite matching [6],
is used to distinguish between BBOXes for fabrication and those for
erasure. This approach ensures our method’s applicability across
various object detection designs. The filter in Equation (6) help to
extract the BBOXes needed to be fabricated B 3 and erased Be.

Bf’ Be = F(Oppoxs B, Bo) (6)

where Oy is all proposal BBOXes before NMS, B, is the original
BBOX, and F(-) is the BBOX filter function.
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Algorithm 2 C-BBOX

Require: B;: Target BBOX; sizey: Feature map size; size,: Image

size; U: Attack directional vector, k;: Step size.

Ensure: By: BBOX needed to be fabricated.

1: (cx,cy) < center point of By
. scale = sizey /size
: idgriq = int(cx/scale, cy/scale)
: grid « grid cell corresponding to idgig
. if detector is anchor_based then
anchors « all anchors of grid
indexX,pchor = top(IOU(By, anchors));
By = anchors[index,nchor]
. else if detector is anchor_free then
Cx = Cx + ks - %

O @ N U W

[E—
_- O

idgriq = int(cx/scale, cy/scale)

By « the anchor of grid corresponding to idgyig
: end if

: return By

== =
oW

5.5 Loss Design and Optimization Method

As detailed in Algorithm 3, ControlLoc involves enhancing the
confidence score of B - to ensure its preservation after NMS, while
concurrently adjusting its dimensions and location to closely match
B;. Conversely, it is imperative to diminish the confidence scores
of Be to preclude their inclusion in the detection outcomes. Similar
to the existing adversarial patch attacks [54, 73], we also formu-
late the adversarial patch generation as an optimization problem.
The optimization of this attack poses a multiple-objective problem,
requiring the simultaneous optimization of the score loss L for
the extracted boxes as well as the shape and location loss, collec-
tively referred to as regression loss L. Specifically, for an input
image x and an object detection model D(-) that excludes NMS,
the optimization task can be represented in Equation (7), aiming to
minimize A subject to conditions that By is encompassed within
B’ and B, is excluded from B’, where B’ is all BBOXes after NMS.

argmin L{F[D(x,A), B, Bo]}
A

, , ™)
st.BreB and B. "B =@

where A is adversarial patch and F is from Equation (6).

Score Loss. To effectively manipulate BBOXes in ControlLoc,
adjusting their scores is essential. This adjustment aims to enhance
the scores of newly generated BBOXes denoted as L while simul-
taneously reducing the scores of removed BBOXes denoted as L.
To accomplish this, we introduce a novel score loss in Equation (8).

1 1
L= 16 ¢ - — Y (1=ceonp)?  (8)
s |Be| C; conf H |Bf| C; conf
e f
L L
Cconf = Cobj ~max{ccigss; b | € [1 Ne] )

where N, is the number of classes; the indicator function 1¢ checks
whether the score of a BBOX ¢ exceeds the score threshold Te,, 3
it is set to 1 if true, and 0 otherwise. This formulation aims to
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adjust scores, enhancing the detection of relevant objects while
minimizing the impact of irrelevant ones. yy is a hyperparameter.

Regression Loss. To optimize the position and shape of the fab-
ricated BBOXes B—aiming to effectively redirect the tracking from
the target object—we introduce a regression loss in Equation (10).

Loy
1
L= B Z —log(I0U(c, By))
f CEBf (10)
+p4- BL Z (center(c) — center(By))?
| f| CEBy
.Lcemer

where the regression loss £, comprises two components: Loy
and Lcenter- The IOU loss aims to reduce the discrepancy in the
overlap between the fabricated BBOX By and the target BBOX B;,
ensuring accurate coverage and alignment. Thus, the center loss,
weighted by a factor f3, seeks to minimize the distance between the
centroids of B and B; such that the tracker can be moved away.

Total variation Loss. To make the generated adversarial patch
smooth, and thus increase the effective range of the attack, the total
variation loss in Equation (11) is used to reduce the color changes
between the adjacent pixels.

Ly = Z \/|Ai+1,j = Dil o+ [Ag = A (1)
ij

Optimization Method. Simultaneously optimizing multiple
loss functions, particularly £s and L, requires a sophisticated
strategy. Existing literature [25] typically employs the standard
Lagrangian relaxation method for this task. This approach involves
aggregating the different loss functions into a single objective, each
modulated by predetermined coefficients with gradient descent.

In our case, this method is fundamentally ineffective. Notably,
it does not perform well across various coefficient configurations,
as detailed in §6.3. The inefficacy of simultaneously optimizing
multiple loss functions, i.e., Ls and L, is largely attributed to the
negative coupling effects in gradients. Essentially optimizing Ly in
Ls determines the location of By at a coarse-grained level. Subse-
quent optimization of L, refines the location and shape of B¢. Thus,
the appropriate sequence of optimization should initially focus on
Lf in Lg, to ensure that B I is correctly identified in the detection
results after NMS. Then, the subsequent step involves adjusting
the location and shape of By. However, employing the standard La-
grangian relaxation method to achieve dual optimization presents
challenges. The interaction between L, and L fin Ls often leads to
a negative coupling effect in our problem space, where an exces-
sive gradient on one side can restrict improvements in the other,
hindering effective optimization.

Thus, we propose a new optimization method for hijacking attack
generation to address the limitations mentioned above:

argmin L,qy + pi2 - L1V
A

where L,q, = 1[BfNB # @ and B.NB' = 2] - L, (12)
+1[BfNB =@orB.NB 2] Ls
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Algorithm 3 Generating Adversarial Patch

Require: x: Input image; B;: Target BBOX; B,: Original object;
D(-): Object detector; N: Attack iterations; NMS(-): NMS func-
tion; Tpyp r: Score threshold.

Ensure: A: Adversarial patch.

1: Initial A « Ag
2. forn=1to N do
3: Obbox = D(x + A);

4: Bf’ Be = F(Obbox’ Bt,BO)

5: B = NMS(Obbox)

6: if BfﬂB’;&@andBeﬂB’:@then
7: Ladv = -[:r(Bf, Bt)

8: else

9 Ladv = Ls(st Be, Tcanf)

10: end if

11: L=Lygy+pz2- L1v
12: A = Adam(A, £)

13: end for

14: return A

Our method optimizes either L or £, based on the condition
specified shown in Equation (12), rather than attempting to mini-
mize a combination of the two loss functions simultaneously. This
selective approach ensures that the optimization process is more
targeted and effective. The purpose of optimizing L in our selec-
tive approach is to satisfy the non-linear constraint in the equation.
In other words, L only needs to be optimized to the point where
B becomes the sole BBOX around the object, rather than being
minimized as much as possible. This approach avoids waste of
perturbation [4]. Another advantage lies in its ability to address
the issue of imbalanced gradients between the two loss functions,
particularly in the context of the coupled problem of location, shape
and score of BBOX in object detection. The attack generation is in
Algorithm 3. pj is a hyperparameter.

Attack Robustness Enhancement. To enhance attack robust-
ness, particularly in physical world, we incorporate the Expectation
over Transformation (EoT) [3, 17, 24, 54] illustrated in Fig. 4. This in-
volves applying various transformations, such as color modification.
Our attack does not rely on a large EoT distribution across vary-
ing distances, unlike previous methods that aim to conceal objects
across varying distances. This is a key advantage of our approach,
as we only require short-term success to create a lasting impact. For
angle transformations, we incorporate perspectives from behind
the vehicle (to simulate ‘move-out’ attacks) and from adjacent lanes
(to simulate ‘move-in’ attacks) into our transformation set. This
ensures the attack remains effective under typical driving camera
angles. The patch generation method for disappearing attacks is in
Appendix.

6 Evaluation

6.1 Evaluation Methodology and Setup

AD Perception. We include different AD perceptions, i.e., different
object detection models and MOT. For object detection, we encom-
pass both anchor-based and anchor-free detectors. Our examination
mostly leverages algorithms in open-source full-stack AD systems
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Table 1: The effectiveness of attacks on four object detection (OD) models, i.e., ApoD, Y3, Y5, and YX, with four MOT algorithms,
i.e., ApoT, BoT-SORT, ByteTrack, and StrongSORT. The evaluation metrics include the attack success rate (ASR) and the average

number of frames to execute an effective attack (Frame #).

Attack BDD dataset [64] KITTI dataset [19]
scenario ODWMOT ApoT BoT-SORT ByteTrack StrongSORT ApoT BoT-SORT ByteTrack StrongSORT Average
ApoD o ASR - 100% 100% 100% 90% 90% 100% 100% 90% 96.3%
POL Frame# 3.1 2.8 2.6 2.5 2.4 2.4 2.7 2.6 2.6
3 ASR  100% 100% 100% 100% 100% 100% 100% 100% 100%
) Frame # 3.2 2.9 3.4 2.7 2.5 2.6 3.1 2.4 2.9
Move-in
vs ASR  100% 100% 100% 100% 100% 100% 100% 100% 100%
Frame # 3.1 2.8 2.9 2.6 2.7 2.3 3.0 2.9 2.8
vX ASR  100% 100% 100% 100% 100% 100% 100% 90% 98.8%
Frame # 3.8 3.0 3.1 2.7 2.6 2.9 35 2.3 3.0
ApoD o ASR - 100% 100% 100% 100% 90% 100% 100% 100% 98.8%
POL" Frame# 3.6 2.6 2.5 2.4 2.9 2.6 2.4 2.8 2.7
3 ASR  100% 100% 100% 100% 100% 100% 100% 100% 100%
Frame # 4.0 2.8 2.7 2.2 2.9 2.4 2.4 2.2 2.7
Move-out
vs ASR  100% 100% 100% 100% 100% 100% 100% 100% 100%
Frame # 3.5 2.7 2.6 2.3 2.8 2.2 2.4 2.2 2.6
vX ASR 90% 90% 90% 90% 80% 90% 100% 100% 91.3%
Frame # 4.5 2.9 2.9 2.8 2.7 2.4 2.9 2.4 2.9
A ASR  98.8%  98.8% 98.8% 97.5% 95.0%  98.8% 100% 97.5% 98.1%
verage Frame # 3.6 2.8 2.8 2.5 2.7 2.5 2.8 2.5 2.8

to affirm the practicality and representativeness of our findings.
We select a variety of object detection models, including the Baidu
Apollo Object Detection (ApoD) [2]; YOLO v3 (Y3) [45] as incorpo-
rated in Autoware.Al [27]; YOLO v5 (Y5) [26] which is highlighted
in recent security research on AD [24]; and YOLOX (YX) [18], an
anchor-free detector in the latest Baidu Apollo Beta. For MOT,
our focus extends to leading and representative algorithms that
underscore the diversity and advancement in the field: the MOT
used in Baidu Apollo [2](ApoT); BoT-SORT [1]; ByteTrack [71], and
StrongSORT [15]. We all use their default configurations.

Datasets. We select two widely recognized datasets in the AD
research [5, 19, 25, 64]: the Berkeley Deep Drive (BDD) dataset [64]
and the KITTI dataset [19]. Within the BDD dataset, we randomly
chose 20 clips specifically for their relevance to our attack goals: 10
clips are for the object move-in scenario, and another 10 are chosen
for the object move-out scenario. A similar selection process is
applied to the KITTI dataset. We manually identify a target vehicle
within each clip. To align our study with realistic conditions, we
impose restrictions on adversarial patch size, for which our patch
average size is 12% of the target vehicle in pixels.

6.2 Attack Effectiveness

Evaluation Metrics. The success of the attack is defined as the
attack is considered successful when, at the end of the attack, the de-
tection BBOX of the target object can no longer be associated with any
existing trackers. This metric is widely used in the security analysis
of tracking [25, 39]. We measure the attack success rate (ASR) and
the average number of frames to conduct an effective attack (Frame
#). Note that the Frame # is within the attack successful cases.
Results. The attack effectiveness on four object detectors and
four MOT algorithms across two datasets, aiming for two specific
attack goals, is detailed in Table 1. The attack boasts an average
success rate of 98.1% and necessitates an average of 2.8 frames to
achieve efficacy in general. Among the MOT algorithms evaluated

across the two datasets, ApoT emerges as the most robust one, evi-
denced by its lowest average attack success rate of 96.9% and the
highest average of 3.2 frames required for a successful attack. These
findings suggest that attacking ApoT demands a higher frame count
and has a lower attack success rate, rendering it less vulnerable
compared to other MOT algorithms. Regarding object detection,
YX demonstrates the lowest attack success rate at 95.1% and re-
quires the highest average of 3.0 frames for a successful attack.
This robustness could be attributed to its anchor-free object detec-
tion design, which appears more robust against hijacking attacks.
Within the anchor-based object detection models, ApoD shows the
lowest attack success rate at 97.6%, suggesting that the design of
object detection and MOT in Apollo tends to be more robust. An
additional observation is that the move-in attack achieves a higher
success rate of 98.8% but generally requires more frames (average
of 2.8) compared to the move-out attack, which has a success rate
of 97.5% with an average of 2.7 frames. This suggests that, although
move-in attacks might be easier to succeed than move-out attacks,
the latter tend to reach attack goals faster within successful cases.
From Table 1, StrongSORT exhibits greater robustness compared
to others, except ApoT. This is likely due to a Noise Scale Adaptive
Kalman filter [15] design, which adjusts measurement noise covari-
ance based on confidence scores of detection results. Note that in
this evaluation, we only generate the adversarial attack based on
the object detection and evaluate attack effectiveness on entire AD
perception. Thus, ControlLoc can potentially have very high attack
transferability between different MOT algorithms.

6.3 Comparison with Baselines

6.3.1  Comparison with Prior Attack [25]. For the camera-based per-
ception, we select different object detectors coupled with ApoT due
to its robustness. The evaluation utilizes the BDD dataset in §6.1.
Following the methodology of baseline research [25], we employ
A to denote the weighting factor between two loss functions in
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Figure 5: Physical-World attack evaluation setups.

the baseline method, £; and L, thus defining the combined loss
function as £ = L1 + A - Ls. The £L; is for erasure and L5 is
for fabrication. We also explore the impact of varying A values:
0.1, 1.0, and 10.0. Additionally, for ApoT, we investigate its perfor-
mance across different tracking parameters, cov: noise covariance
in Kalman filter [25], following the same setup as the baseline [25].

The results, as depicted in Fig. 6, unequivocally demonstrate
the superior efficacy of ControlLoc, achieving an impressive 99.4%
attack success rate on Y3, ApoD, and Y5 models, and a 90% attack
success rate on the YX model. This starkly contrasts with the out-
comes from existing research [25], which has an 8.3% attack success
rate on the YX model and 24.8% on the other models tested. This
substantial discrepancy underscores the enhanced capability of our
ControlLoc to manipulate the target object’s position effectively,
thereby hijacking its tracker. A critical observation from our anal-
ysis reveals that prior research [25] tends to fail in maintaining
the target’s BBOX: at low A values, leading to its disappearance,
or conversely, at high A values, resulting in no significant change
or generating multiple BBOXes. In stark contrast, our ControlLoc
demonstrates remarkable effectiveness and robustness to different
cov values of ApoT. In certain instances, ControlLoc achieves simi-
lar performance to maximum attack capacity, which assumes the
attacker can arbitrarily manipulate the BBOXes.

6.3.2 Comparison with Traditional Optimization. This part com-
pares our novel optimization method with the traditional standard
Lagrangian relaxation method (SLRM) in this hijacking attack con-
text. Our method, delineated in Equation (12), diverges from SLRM,
which merges score loss (L) and regression loss (L) using a hy-
perparameter 5 in the form £, + n - L. Notably, the score loss
encompasses two components, L and L, as specified in Equa-
tion (8). To facilitate a detailed comparison, we use Ly and L,
for L. Previous research leveraging SLRM [25] demonstrates its
inadequacy in generating effective adversarial patches for tracker
hijacking. This limitation is illustrated through the three losses, £,
L, and L, which fail to optimize simultaneously under varying
hyperparameter 7 settings, as depicted from Fig. 7 (a) to (d). The
primary challenge arises from the low initial score of the fabricated
BBOX (By), resulting in a correspondingly weak gradient. Thus,
SLRM hinders the minimization of L, particularly when with high
regression loss. This typically leads to a negligible reduction in
Ly, as evidenced in Fig. 7 (a) to (c), where L barely decreases
unless 75 is substantially increased, for example, to around 1000,
as shown in Fig. 7 (d). However, elevating the 1 introduces a new
problem: the regression loss (L) fails to be well optimized, shown

Chen Ma et al.

Table 2: ASR between our patch location preselection (§5.2)
and a random location preselection on rear of the vehicle.

Random Ours

Move-in Move-out Move-in Move-out
ASR 20% 20% 90% 80%

in Fig. 7 (d). This damages the attack’s effectiveness, preventing the
fabricated BBOX from associating with the target tracker. However,
our approach successfully mitigates these issues in Fig. 7 (e).

6.3.3  Baseline Evaluation for Stage I in §5.2. This part assesses the
benefit of Stage I by comparing two scenarios: Stage I for patch
location preselection and a random patch location on the rear of the
vehicle. For a fair comparison, we maintain consistent patch sizes
and conduct 1,000 iterations for each attack generation. Specifically,
for Stage I, we involve 20 iterations to determine the optimal patch
location. The results, in Table 2, reveal that attacks employing
Stage I achieve an average attack success rate of 85.0% across two
attack goals, whereas those with a random patch location exhibit a
significantly lower attack success rate of 20.0%. This underscores
the importance of Stage I in ControlLoc.

6.4 Physical-World Attack Evaluation

Evaluation Setup and Methodology. To systematically evaluate
the effectiveness of ControlLoc in the physical world, we conduct
experiments on real driving roads under various physical-world
factors, including angle, light conditions, and background. Specifi-
cally, we conduct experiments on driving routes at four different
angles, as illustrated in Fig. 5, capturing video at a constant speed
as the vehicle approaches from a distance to achieve both move-in
and move-out attack goals depending on the positioning of the
vehicle. The angles are defined based on the lateral distance from
the vehicle, i.e., L1 to L4 shown in Fig. 5 with around 1 m per seg-
ment. Among them, L1 and L2 correspond to the move-out attack,
while L3 and L4 are used for the move-in attack. Our attack goals
align with the angles, as introduced in §4. Additionally, we evaluate
the system under three different light conditions: the sunny day
(approximately 20,000 lux), the cloudy day (approximately 8,000
lux), and nighttime (approximately 70 lux). Furthermore, we exper-
iment with six different backgrounds B1 to B6, including common
roadside and intersection scenarios encountered during driving,
to explore hijacking attacks from both directions: right-to-left (B1-
B3) and left-to-right (B4-B6). The combination of these various
physical-world factors results in a total of 72 scenarios. We conduct
physical-world attack evaluation in controlled environments. For
our attack, we insert a single-frame adversarial patch for moving
the target object and a three-frame adversarial patch for hiding the
target object in a benign advertisement video, with a resolution of
1080P. The video is displayed on a 32-inch monitor, which is smaller
than the physical monitors typically used in existing research on
AD security [38]. For each scenario, we collect five video clips for
analysis. For object detection and MOT, we utilize the systems im-
plemented in Baidu Apollo, specifically ApoD and ApoT, due to
their representativeness. The camera used for these recordings has
the same configurations—such as focal length and video resolu-
tion—as the camera used in the Baidu Apollo project [2]. For the



ControlLoc: Physical-World Hijacking Attack on Camera-based Perception in Autonomous Driving

100

Attack success rate (%)

g g
o o
2 2
© ©
© ©
wn wn
w0 w0
4] 4]
1) 1)
1) 1)
3 3
w w
v v
1®) 1®)
© ©
= =
< 1 2 3 4 5 6 7 8 5 < 1 2 3 4 5 6 7 8 9
Frame # Frame #
(e) Y3, cov=1 (f) Y5, cov=1

80+

60+

40

20-

—e— Our attack

[15] with A=0.1

15}
S

—— [15] withA=1.0

@
S

-3
5]

IS
S

Attack success rate (%)
S

o

Az aus

Attack success rate (%)

—e— [15] withA=10

100

80+
60+
40!
20+

0

CCS ’25, October 13-17, 2025, Taipei, Taiwan

Attack success rate (%)
N & o o B
o o o o o

o

Maximum attack capacity

Overlapping:
1=10.1,1.0,10

1 2 3 4 5 6 7
Frame #

(a) Y3, cov=0.1

1 2 3 4 5 6
Frame #

(b) Y5, cov=0.1

7

8 9

1 2 3 4 5 6 7 8
Frame #

(c) ApoD, cov=0.1

9

Attack success rate (%)

80

60

40

20

Attack success rate (%)

1 2 3 4 5 6 7 8 9
Frame #

(d) YX, cov=0.1

Overlapping:
1=0.1,1.0,10

1 2 3 4 5 6 7 8
Frame #

(g) ApoD, cov=1

100

1 2 3 4 5 6 7 8 9
Frame #

(h) YX, cov=1

Attack success rate (%)
Attack success rate (%)

Attack success rate (%)

801 v 4

7 //Overlapping:

A=10.1,10,10

601

401

Attack success rate (%)

1 2 3 4 5 6 7 8 9
Frame #

1 2 3 4 5 6 7 8 9
Frame #

(i) Y3, cov=10 (j) Y5, cov=10

1 2 3 4 5 6 7 8 9
Frame #

(k) ApoD, cov=10

1 2 3 4 5 6 7 8 9
Frame #

(1) YX, cov=10

Figure 6: Comparison between our attack and the baseline attack [25] under four different object detection models (Y3, Y5,
ApoD, and YX) with three different parameter values of ApoT (cov = 0.1, 1, 10). A is the hyperparameter in [25]. Maximum
attack capability assumes the attacker can arbitrarily control BBOX locations.
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Figure 7: Comparison of loss value between our optimization method in ControlLoc and the standard Lagrangian relaxation
method (SLRM) with different hyperparameter values 1. The detailed loss designs are in §5.5: Equation (8) and Equation (10).

baseline [25], the hyperparameter A is set to 10, as this value yields
the best performance in §6.3, and we utilize the same EoT as used
in ControlLoc. We ensure that all other factors that could influence
the results, such as video recording, are consistent.

Results and Visualization. The effectiveness of ControlLoc
compared with baseline attack [25], under variations in angle, light
conditions, and background, is presented in Table 3. Our ControlLoc
achieves a 79% average attack success rate, while the baseline [25]
shows no effectiveness, evidenced by a 0% attack. This ineffective-
ness arises from their lack of a precise BBOX filtering method and
the shortcomings of their optimization approach, which makes it
difficult to address the imbalanced gradients between the score

loss and regression loss. As a result, the patch used to manipu-
late the BBOX fails to function effectively. Notably, on cloudy day,
ControlLoc has better effectiveness, yielding an 87% attack suc-
cess rate compared to a 77% attack success rate on the sunny day
and a 73% attack success rate at night. The root cause is that the
patches displayed on the monitor experience minimal distortion
under cloudy light conditions. In contrast, the stronger light on
sunny day lowers the brightness of the displayed patches, while
the weaker light at night increases their brightness, causing glare.
Additionally, the attack success rate shows limited variation across
different backgrounds, indicating that our attack is largely insensi-
tive to background changes. As for the attack goals, the move-in
attack (L3, L4) achieves a higher success rate of 87.0%, making it
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Table 3: Physical-world attack evaluation regarding ASR for ControlLoc and baseline attack [25] under different outdoor light
conditions, i.e., sunny, cloudy, and night; angles, i.e., L1 to L4 defined by the lateral distance shown in Fig. 5, where L1 and L2
correspond to the move-out attack, while L3 and L4 are used for the move-in attack; and background, i.e., B1 to B6, including
common roadside and intersection scenarios encountered during driving. The results are averaged over 5 videos.

B1 B2 B3

B4 B5 Bé6

Baseline [25] Ours Baseline [25] Ours Baseline [25] Ours Baseline [25] Ours Baseline [25] Ours Baseline [25] Ours

Sunny day (~20,000 lux)

L1 0% 60% 0% 80% 0% 60% 0% 60% 0% 60% 0% 40%
L2 0% 100% 0% 100% 0% 100% 0% 80% 0% 80% 0% 80%
L3 0% 100% 0% 80% 0% 80% 0% 60% 0% 80% 0% 80%
L4 0% 80% 0% 80% 0% 80% 0% 80% 0% 60% 0% 80%
Cloudy day (~8,000 lux)
L1 0% 60% 0% 80% 0% 80% 0% 60% 0% 60% 0% 80%
L2 0% 80% 0% 80% 0% 80% 0% 80% 0% 80% 0% 80%
L3 0% 100% 0% 100% 0% 100% 0% 100% 0% 80% 0% 100%
L4 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Night (~70 lux)
L1 0% 60% 0% 60% 0% 60% 0% 40% 0% 60% 0% 40%
L2 0% 80% 0% 80% 0% 80% 0% 60% 0% 60% 0% 60%
L3 0% 80% 0% 100% 0% 100% 0% 80% 0% 80% 0% 80%
L4 0% 80% 0% 80% 0% 80% 0% 80% 0% 80% 0% 80%

more effective than the move-out attack (L1, L2), which has a suc-
cess rate of 70.5%. This observation is consistent with the findings
from digital-space evaluations (§6.2).

6.5 System-Level Attack Effect Evaluation

Evaluation Setup and Methodology. To study the AD system-
level attack effects of ControlLoc, we perform an attack evaluation
on Baidu Apollo [2], an open-source full-stack AD system released
by the commercial AD system provider Baidu, using LGSVL simu-
lator [47], a production-grade AD simulator. Our experiments are
conducted on the Borregas Ave map and the Lincoln2017MKZ AD
vehicle. To better reflect real-world driving conditions, we incorpo-
rate random vehicles and pedestrians as surrounding obstacles, as
well as environmental variability (including rain and fog conditions)
into our simulation setup. To enhance the perception fidelity of
simulators [54], we comprehensively model the hijacked tracker’s
displacement by characterizing its movement speed, duration, and
location, and inject it into the AD system based on our physical-
world attack evaluation results in §6.4 including the four different
drive trajectories with different angles/lateral distances as shown
in Fig. 5. Our evaluation focuses on two representative scenarios as
shown in Fig. 3: move-in attack (Fig. 3 (a)), a common scenario for
other vehicles to park on the side of the road, and move-out attack
(Fig. 3 (b)), another common driving scenario. To evaluate the effec-
tiveness of tracker hijacking attacks across different driving speeds,
we conducted comprehensive simulations focusing on: 1) attack
success rates under various speeds and 2) minimum tracker dis-
placement requirements for successful attacks across speed ranges.
Additionally, we evaluate the performance of the AD system in be-
nign scenarios to verify its ability to function properly. We perform
10 runs on each scenario across a range of vehicle speeds.
Results. The outcomes are summarized in Fig. 9. Our ControlLoc
achieves an average AD system-level attack effectiveness rate of
77.5% for critical scenarios such as vehicle collisions or unnecessary
emergency stops while maintaining normal operation in benign sit-
uations with a 0% incidence of attack effects on the AD system. The

efficacy of the move-in attack (L3, L4) at 82.9% is notably superior
to that of the move-out attack, which has a 72.1% rate. ControlLoc
achieves high attack success rates across common driving speed
ranges. Only in some low-speed scenarios (10 km/h in L1, L2, and
L3) is the success rate relatively low. The average tracker displace-
ment ControlLoc achieves (shown as red dashed line in Fig. 9 (b))
in physical-world experiments effectively covers almost all speeds
in L1, L2, and L3 scenarios, only falling short of the displacement
requirements for high-speed L4 scenarios (70km/h). For move-out
attacks (L1, L2), higher speeds generally lead to higher success rates.
This is because at lower speeds, the attack effect may expire before
the AD vehicle collides with the attacker’s vehicle, thus requiring
larger tracker displacements to quickly move the attacker’s vehicle
tracker away, making the AD vehicle perceive the path ahead as
obstacle-free sooner. Conversely, for move-in attacks (L3, L4), high-
speed scenarios pose a different challenge: the AD vehicle may
pass by before the attacker’s vehicle has moved far enough ahead
to trigger a braking response. As a result, attack success rates are
lower at higher speeds, and greater tracker displacement is required
to achieve effectiveness.

7 Discussion
7.1 Defenses

Domain-Specific Defenses. Two representative types of domain-
specific defenses are involved: trajectory validation: Percep-
Guard [38], and motion consistency checks: VOGUES [40] and
PhySense [65].

Following the official implementation and design of Percep-
Guard [38], we apply the AD perception results to the classifier
to predict their classes and check the consistency. BDD dataset
and four AD perception combinations introduced in §6.1 are used.
ControlLoc achieved a 98.8% attack success rate in bypassing Per-
cepGuard. We believe this high attack success rate stems from
PercepGuard’s assumption regarding consistency between object
labels and trajectories: an object cannot exhibit motion patterns
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Figure 9: AD system-level evaluation under different driving
speeds using Baidu Apollo and LGSVL. Attack success rate
is defined as the rate of vehicle collisions or unnecessary
emergency stops. 10 runs for each scenario.

typical of another object class. For example, for an object to be
classified as a car, it has to not only look like a car but also move
like a car. This defense fails since the adversarial tracker hijacking
movement follows normal vehicle motion patterns.

PhySense [65] defends against physical adversarial attacks lever-
aging static object attributes, dynamic behaviors, and inter-object
interactions to detect and correct wrong perception results through
multi-faceted consistency reasoning. We apply the physical adver-
sarial patch generated by ControlLoc and input video into PhySense
for prediction with the official implementation in the original pa-
per. The patch sizes are consistent with the original settings: the
larger patch measures 400 x 400 within a 1024 x 1024 mask, while
the smaller patch is 200 x 200 within the same mask. ControlLoc
achieves an 89.16% attack success rate in bypassing PhySense. This
high success rate is attributed to the fact that our patch does not
significantly alter the object’s attributes, and any changes in the
object’s behaviors or interactions remain plausible and consistent
with the expected characteristics of the object class.

We further perform an analysis of ControlLoc on VOGUES [40].
However, its official evaluation is limited to SOT attacks, which
is not the focus of this paper. Our analysis further reveals that
VOGUES is not applicable to MOT settings due to its high false
positive rate (FPR) even in benign cases: 95.0% average FPR across
different score thresholds (0.01-0.5) in the benign. This is due to the
much higher probability of benign-case matching errors between
pose estimation and object tracking in MOT scenarios. We believe
that consistency check methods hold promise for defending against
this type of attack. However, their design requires improvement on
false positives caused by mismatches in the consistency matching.

Our evaluation shows that state-of-the-art domain-specific de-
fenses proposed for AD perception in this problem space cannot

defend or be applicable to ControlLoc. Thus, it still needs to develop
more effective and targeted defenses for the MOT vulnerability.

General DNN-based Defenses. Prior research has focused on
enhancing the robustness of DNNs against adversarial attacks. Such
efforts fall into two broad categories: certified defenses [32, 57, 58]
and non-certified defenses [16, 61, 70]. Certified defenses offer prov-
able guarantees of robustness but are generally time-intensive, ren-
dering them impractical for real-time systems, like AD systems.
Furthermore, there is a notable absence of certified defenses specif-
ically designed to defend against attacks on the entire AD percep-
tion. Thus, we evaluate several non-certified defense strategies:
input-transformation defenses, which are directly adaptable. These
include JPEG compression [16], bit depth reduction [61], Gaussian
noise [70], median blur [61], and non-local means [61, 69]. Due to
their easily adaptable nature, these methods have been assessed in
recent security studies [5, 48, 69, 74]. We use the BDD dataset and
the perception module in Baidu Apollo, i.e., ApoD and ApoT.

The effectiveness of these defense measures is quantified by
the attack success rate, while the impact on benign performance
is assessed using the mean Average Precision (mAP). As shown
in Fig. 8, we observe that median blur can partially mitigate the
attacks, particularly with large kernel sizes. However, it remains
possible for the attack to succeed, and this harms the model, which
may cause serious consequences in safety-critical applications [74].

Sensor Fusion Based Defense. Employing multi-sensor fusion
(MSF) for improving perception robustness, such as integrating
LiDAR, represents a strategic defensive approach.

State-of-the-art MSF can be broadly categorized into late fusion
and early fusion approaches. In late fusion, our evaluation using
Apollo’s MSF demonstrates that attacks are effective when the main
sensor is a camera, achieving a 76.8% ASR under the same setup as in
§6.5. However, if LIDAR serves as the main sensor, it can often cor-
rect the errors introduced by camera-based attacks. This indicates
that MSF can function as a practical defense mechanism, although
certain MSF designs remain susceptible to attack. Importantly, many
commercial AD systems such as Tesla and OpenPilot, primarily rely
on camera-based perception. Given Tesla’s widespread adoption,
our attack poses substantial real-world implications. In early fu-
sion, prior research [12] has shown that even camera-only attacks
can significantly degrade MSF performance. Given that the 3D ob-
ject detections they evaluated are also grid-based structures, our
method can inform future attacks on feature-fusion MSF.

Other Defenses. VisionGuard [21] detects physical adversarial
examples by exploiting inconsistencies across consecutive frames.
However, because tracker-hijacking attacks introduce persistent,
continuous trajectory manipulations, VisionGuard’s defense effec-
tiveness is inherently limited. PhyScout [62] detects sensor spoofing
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attacks by formalizing and checking spatio-temporal consistency
conflicts. However, the manipulated object trajectories caused by
tracker hijacking attacks are crafted in a smooth and coherent
fashion, maintaining both spatial and temporal consistency across
frames. As a result, PhyScout is not fundamentally capable of de-
tecting such attacks due to the inherent lack of spatial-temporal
consistency conflicts.

Promising Defense Suggestion. We propose that stricter man-
agement of unmatched trackers — for example, through hierarchical
frameworks or by integrating tracker confidence scores — can be an
effective mitigation strategy. Nevertheless, effectively addressing
false positives and false negatives under benign conditions remains
an important avenue for future work in defense design.

7.2 Ethics

Our physical-world evaluation is taken to ensure both safety and re-
sponsibility. The experimental setup is located within our institute,
under controlled conditions to ensure minimal traffic. All equip-
ment is operated by individuals experienced in outdoor vehicle
experiments. This can effectively avoid the risk of unintended con-
sequences to the uninvolved public. Additionally, we confirm that
no harm is caused to the commercial vehicles. We have performed
vulnerability disclosure during the paper submission period to AD
companies. We will closely follow up with them to mitigate this
attack and avoid potential negative impacts.

7.3 Limitation and Future Work

This paper does not directly evaluate commercial AD systems. Prior
research [55] indicates that adversarial attacks generally have lim-
ited impact on commercial AD systems, revealing a significant
gap between academic prototypes and commercial systems. While
bridging this gap requires significant effort, our findings still raise
caution. For example, Tesla’s AD system employs mechanisms
similar to MOT—featuring short-term memory for occluded ob-
jects—and our findings reveal vulnerabilities in these “memory”
buffer mechanisms [50]. Exploring these threats in commercial sys-
tems is an important direction for future research. Our research
examines one-stage detectors. However, a systematic investigation
on two-stage detection can be a future direction.

8 Conclusion

In this paper, we present ControlLoc, a novel physical-world adver-
sarial patch attack to exploit vulnerabilities in AD perception in-
cluding object detection and MOT. With a two-stage attack method-
ology, ControlLoc significantly outperforms the existing attack,
achieving an impressive average success rate of 98.1% across di-
verse AD perception systems. The effectiveness of ControlLoc is
validated in real-world conditions with a 79% average attack success
rate. AD system-level impact such as vehicle collisions is evaluated
using a production AD simulator with 84.4% attack effectiveness.
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