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Fig. 1: Three discovered vulnerabilities in thermal image
perception caused by invisible heat radiation: genuine pedes-
trian misdetection (left), calibration-induced obstacle creation
(middle), and ghost artifacts (right).

safer navigation during night and fog conditions. Similarly, au-
tonomous drones, such as DJI, Skydio [10], and Teledyne [11],
use thermal cameras for obstacle avoidance and navigation in
degraded visual environments.

Unlike normal RGB (red, green, and blue) cameras, which
perceive visible light to capture images, thermal cameras
capture infrared radiation from surrounding objects and living
beings, building a heat map of the environment [12]. Due to
this property, they have recently been integrated into obstacle
avoidance frameworks to detect pedestrians, animals, and
objects where RGB cameras underperform [2], [1].

Although the trustworthiness of these sensors is critical
in such applications, their security aspects have been largely
unexplored. For example, previous work has shown the pos-
sibility of conducting evasion attacks on surveillance sys-
tems based on thermal cameras [12], [13], [14], [15], [16],
[17], [18]. The attackers in these studies wear materials
with varying thermal properties, such as ice packs and hot
patches, strategically placed on human bodies. This process
generates adversarial examples specifically crafted to evade
person detection in deep learning models used by security
cameras. Another recent study demonstrated the susceptibility
of thermal camera sensors to electromagnetic interference [19],
which can induce numerical errors during sensor data trans-
mission. All these attacks, however, target detection models
in static surveillance settings and require direct manipulation
of the attacker’s appearance to induce misdetection. In other
words, the security of thermal cameras in dynamic critical

Abstract—Thermal cameras are increasingly considered a 
viable solution in autonomous systems to ensure perception 
in low-visibility conditions. Specialized optics and advanced 
signal processing are integrated into thermal-based perception 
pipelines of self-driving cars, robots, and drones to capture 
relative temperature changes and allow the detection of living 
beings and objects where conventional visible-light cameras 
struggle, such as during nighttime, fog, or heavy rain. However, 
it remains unclear whether the security and trustworthiness of 
thermal-based perception systems are comparable to those of 
conventional cameras. Our research exposes and mitigates three 
novel vulnerabilities in thermal image processing, specifically 
within equalization, calibration, and lensing mechanisms, that 
are inherent to thermal cameras. These vulnerabilities can be 
triggered by heat sources naturally present or maliciously placed 
in the environment, altering the perceived relative temperature, 
or generating time-controlled artifacts that can undermine the 
correct functioning of obstacle avoidance.

We systematically analyze vulnerabilities across three thermal 
cameras used in autonomous systems (FLIR Boson, InfiRay 
T2S, FPV XK-C130), assessing their impact on three fine-tuned 
thermal object detectors and two visible-thermal fusion models 
for autonomous driving. Our results show a mean average 
precision drop of 50% in pedestrian detection and 45% in 
fusion models, caused by flaws in the equalization process. Real-
world driving tests at speeds up to 40 km/h show pedestrian 
misdetection rates up to 100% and the creation of false obstacles 
with a 91% success rate, persisting minutes after the attack ends. 
To address these issues, we propose and evaluate three novel 
threat-aware signal processing algorithms that dynamically detect 
and suppress attacker-induced artifacts. Our findings s hed light 
on the reliability of thermal-based perception processes, to raise 
awareness of the limitations of such technology when used for 
obstacle avoidance.

I. INTRODUCTION

Thermal cameras are increasingly considered a potential
solution for autonomous systems, such as Connected Au-
tonomous Vehicles (CAVs) and drones, to enhance visibility in
low lighting conditions, including under complete absence of
illumination, such as during nighttime and severe weather [1],
[2]. CAV companies, such as Zoox [3], Nuro [4], Waymo
Via [5], Adastec [6], and ADAS providers [7], [8], [9] have
incorporated thermal cameras into their vehicle stacks for
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scenarios, such as obstacle avoidance using in-vehicle thermal
cameras, remains an open research problem.

This study aims to answer the following critical research
questions: Can thermal camera-based perception be used
for critical tasks such as obstacle avoidance in autonomous
systems? What are the limitations of such technology under
adversarial manipulation, and how can these limitations be
mitigated to ensure reliable detection?

Our work explores vulnerabilities in thermal image ac-
quisition and processing, fundamental to the trustworthiness
of thermal camera operations. Thermal image processing
typically requires specialized calibration and equalization, as
illustrated in Figure 2 to handle thermal drift and high dynamic
range, unlike RGB image processing, primarily optimized for
visual clarity and color correction. These vulnerabilities can be
exploited before the input reaches object detection and fusion
models for autonomous systems’ perception, causing them
to falsely detect non-existent obstacles or misdetect genuine
ones, as shown in Figure 1. Finally, we demonstrate how
these vulnerabilities can be mitigated using our attack-aware
signal processing techniques, which dynamically suppress the
vulnerabilities’ effects on thermal images before they are
fed into machine learning models for obstacle avoidance.
Our analysis aims to provide a comprehensive view of the
challenges and potential solutions that autonomous systems
manufacturers should consider when adopting thermal imaging
technology in their perception systems. Our contributions can
be summarized as follows:
Discovery of Three Vulnerabilities in Thermal Imaging.

1) Vulnerability due to linearity in equalization. Real-
world scenarios involve dynamic variations in thermal
maps, which can trigger a linear response in various
equalization methods, such as plateau, CLAHE [20], and
Bi-histogram equalization (BBHE) [21] algorithms used
in thermal imaging equalization. Adversaries can exploit
this naturally occurring condition to reduce the heat
signature of genuine obstacles, causing misdetection.

2) Flaws in thermal calibration processes. Thermal cam-
eras need a periodic heat intensity correction in their
calibration processes, which exposes a new attack surface,
enabling attackers to manipulate the resulting heat map.
Attackers can exploit such vulnerability to induce delayed
artifacts, which can appear in the resulting images several
minutes after the attack termination, and trigger continu-
ous detection of non-existent obstacles.

3) Image acquisition weaknesses. We demonstrate a vul-
nerability in the shutter assembly and lens design of ther-
mal cameras, which, unlike RGB cameras [22], preserves
the structure of heat signals. This allows adversaries to
generate controllable flare patterns (e.g., ghost artifacts)
that can appear in thermal images, triggering false object
detection.

Vulnerability Characterizations. We characterize the cause
of the vulnerabilities and conduct an extensive evaluation on
three different thermal cameras used in autonomous systems

applications (InfiRay T2S [23], FLIR Boson [24], FPV XK-
C130 [25]). We focus our analysis and end-to-end evaluation
on driving scenarios as a safety-critical application to quan-
tify the impact of the threat on three state-of-the-art object
detection models fine-tuned for thermal imaging processes
(YOLOv5 [26], YOLOv8 [27], and Faster-RCNN [28]) and
two RGB-thermal fusion models (DAMSDet [29] and Faster-
RCNN [28]). Our results show the vulnerability in equalization
due to linearity causes up to a 50% drop in mean average pre-
cision for pedestrian detection on the FLIR ADAS dataset [30],
for all tested models. Flaws in calibration and image acquisi-
tion can induce the creation of fake pedestrian obstacles, with
success rates of up to 100% in our real-world outdoor testing,
which appear minutes after the attack is terminated. In realistic
driving scenarios with vehicle speeds reaching up to 40 km/h,
our experiments demonstrate a 100% misdetection rate and up
to a 91% success rate in inducing false obstacle detections.
Details and demo videos are available on our website at
https://sites.google.com/view/thermal-vuln-ad/.
Defense Strategies. We propose three defense strategies
that leverage changes in the behavior of signal processing
algorithms when the underlying vulnerabilities are triggered.
These strategies are designed to accurately identify false
obstacles and suppress artifacts, with minimal degradation of
the overall system performance. For instance, our strategy
reduces the drop in the mAP score due to the equalization
vulnerability from 50% to 4%, and suppresses the artifacts
created by the calibration and image acquisition vulnerabilities
with 100% accuracy in our real-world outdoor scenarios.

II. BACKGROUND

A. Thermal Cameras vs Visible RGB Cameras

Thermal cameras operate by detecting infrared radiation
emitted from objects and translating it into visual images [31].
Unlike conventional cameras, which rely on reflected visible
light captured by photodiodes, thermal cameras utilize inte-
grated bolometer arrays [32], [33] to detect infrared radiation,
typically in the long wavelengths (8–14 µm) by measuring
minute relative temperature variations and converting them
into electrical signals to form an image. Thermal cameras
generate a heat map by converting the above electrical signals
into pixel values based on a predefined table, such as iron
or ironbow color palette. Since conventional glass lenses are
opaque to the long wavelengths of infrared thermal radiation,
thermal cameras typically use lenses made from special mate-
rials (e.g., germanium or zinc selenide lenses [34]), instead
of the optical glass used in visible RGB cameras. These
lenses focus infrared radiation onto the bolometer, enabling
the camera to form a clear thermal image by directing and
concentrating heat signatures from the scene. To enable this,
circular apertures are used to ensure uniform distribution of
the infrared radiation across the sensor and to minimize optical
aberrations [35].
Thermal Imaging Process. The temperature sensitivity
of thermal cameras enables them to operate effectively in
complete darkness or visually obscured environments, such
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Fig. 2: Typical thermal camera-based perception in CAVs involves capturing thermal radiation, followed by calibration and
equalization. These images are used as input for object detection and sensor fusion models to identify and annotate obstacles.

as fog-filled areas, where conventional optical cameras would
struggle. Thus, thermal cameras have been increasingly used to
complement visible imaging techniques in obstacle avoidance
under harsh environments, such as during nighttime driving or
under certain weather conditions [2], [36], [1].

However, operating in these dynamic environments with
continuous shifts in scene temperature semantics and perceived
temperature leads to challenges in contrast adjustment and
susceptibility to thermal noise [33], [37]. To handle this,
these sensors implement sophisticated image processing mech-
anisms that substantially differ from the ones in conventional
RGB cameras, and consist on three main phases: acquisition,
calibration, and equalization, as shown in Figure 2. While the
image acquisition relies on the special lenses, the subsequent
processing is based on non-linear image equalization and
correction algorithms described below. Our work identifies
three vulnerabilities in both the image acquisition and pro-
cessing typical of thermal cameras employed in high dynamic
scenarios such as autonomous driving.

Non-Uniform Correction. RGB cameras typically address
sensor noise, distortion, and color balance issues using algo-
rithms such as dark frame subtraction, flat field correction,
and white balance adjustment [38], [39], [40]. In contrast,
thermal cameras suffer from fixed pattern noise and pixel-to-
pixel variability due to thermal drift [41], [42]. Non-Uniform
Correction (NUC) algorithms address these issues in the
calibration phase, ensuring consistent pixel intensity levels
across thermal images over time [37]. Shutter-less NUC algo-
rithms, in particular, work by periodically adjusting the gain
and offset of each pixel to compensate for heat fluctuations,
scene changes, and environmental conditions. This enhances
the quality of thermal images, enabling uninterrupted image
acquisition in dynamic applications, and serves as a critical
component in the operation of modern commercial automotive
thermal cameras [43], [44]. In contrast, shutter-based NUC
methods are more commonly employed in static industrial
or surveillance applications, such as equipment monitoring,
because of their poor performance in dynamic settings [12].
These calibration processes differ from RGB cameras, which
generally require a one-time calibration when the internal
configuration or operational mode is modified, and require
continuous periodic calibration, which usually repeats every
2-5 minutes, based on the thermal sensor sensitivity.
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Fig. 3: (a) In natural driving scenarios, plateau equalization
preserves dynamic range by redistributing pixel intensities.
(b) In scenes with high temperature variance, the image
distribution often falls below the plateau limit, preventing
redistribution and causing linearization. (c) The linearization
effect can be exploited by strategically placing heat sources,
inducing information loss in equalized images.

Non-Linear Image Equalization Thermal cameras often pro-
duce images with a narrow dynamic range, where most pixel
intensities cluster around certain temperature values, leading
to poor contrast and loss of critical details when acquiring
thermal data in diverse environments [31], [45]. Non-linear
equalization algorithms, such as plateau [46], CLAHE [20],
and BBHE [47], redistribute the intensities by enhancing un-
derrepresented (low visibility) regions while limiting dominant
intensity ranges, improving overall object visibility in com-
plex thermal scenes. In contrast, linear equalization applies
a uniform mapping across the image pixel distribution, often
resulting in a loss of details.

Plateau equalization, particularly, is a widely used equaliza-
tion method in advanced thermal cameras for object detection.
It achieves non-linearity by clipping the peaks of the image
histogram at a predefined or dynamic threshold, known as the
plateau limit, and redistributing the clipped intensities across
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the remaining image [46]. This prevents over-enhancement of
dominant pixel regions, improving overall contrast without
amplifying noise, as shown in Figure 3 (a). Plateau equal-
ization is adopted by major commercial automotive thermal
cameras vendors (e.g., FLIR [30], BAE [48]), holding ∼42%
of the current automotive thermal imaging market [49], due to
its balance of performance and computational efficiency, and
easy integration into embedded hardware compared to others
equalization algorithms (e.g., CLAHE) [50].

B. Thermal Camera-based Perception Systems

Automotive thermal cameras typically produce 14-bit or 16-
bit raw image resolutions, with pixel values ranging from
0–16,000 or up to 65,536, depending on the sensor. These
images are monochromatic, representing temperature varia-
tions in a single intensity channel. Such images are typically
converted to 8-bit format to facilitate visualization and pro-
cessing for various applications. Object detection models, in
particular, are pre-trained on RGB datasets such as COCO [51]
and then fine-tuned on thermal images to leverage the rich
visual representations learned in the RGB domain and enhance
performance in the thermal domain [30]. In critical applica-
tions such as obstacle avoidance of CAVs, RGB-thermal fusion
models combine feature representations extracted separately
from RGB and thermal images, typically at early or middle
stages of the neural network pipeline, to enhance robustness
and accuracy in perception systems [29], [52].
Adversarial Examples on Thermal Cameras. Adversarial
example attacks add noise to machine learning inputs to force
a change in the output [53], [54]. Previous research has
focused on generating such adversarial examples against ther-
mal image-based object detectors used in static surveillance
systems [13], [14], [15], [16], [17], [18]. For example, Zhu
et al. [17] and Wei et al. [18] show how to create adversarial
patches using infrared materials placed in the attacker’s cloth-
ing, while Zhu et al. [16] use heat bulbs to achieve similar
results. More recently, Wei et al. [15] and Hu et al. [13] use hot
and cold patches to cause misdetection in a black-box setting.
Separately from these works, Zhang et al [19] show how
electromagnetic interference can interrupt data transmission
from thermal imaging sensors, causing Denial-of-Service and
data errors.

However, all these works overlook flaws in thermal cam-
eras’ imaging processes, leaving such attack surfaces unex-
plored. Here, we demonstrate how such vulnerabilities can
undermine sophisticated dynamic perception systems, such as
the one used for obstacle avoidance.

III. THREAT MODEL AND VULNERABILITIES OVERVIEW

As described in Section II-A, thermal camera image pro-
cessing consists of particular image acquisition, calibration,
and equalization stages, encompassing capture, processing,
and refinement of the thermal images. In this section, we
describe the threat model and the discovered vulnerabilities
in each of these stages, starting from equalization.

A. Threat Model

In this work, we investigate three vulnerabilities in the
thermal imaging processing and their effect on object detectors
and fusion models for obstacle avoidance.
Adversary Goal. We consider the adversary’s goal of com-
promising the overall safety of autonomous systems (e.g.,
a self-driving car) by intentionally inducing edge cases in
state-of-the-art thermal camera-based perception systems (e.g.,
FLIR ADAS object detection benchmark [30]), resulting in
misdetections or the false detection of non-existent obstacles
as shown in Figure 1, which in turn can trigger the activation
of emergency brakes, freezing, or collision.
Previous Knowledge and Assumptions. We assume that the
adversary has knowledge of the thermal image processing and
acquisition of the victim thermal camera, such as the plateau
configuration and calibration period. This information can be
acquired from thermal camera manuals or data sheets available
online [24], [55], [56]. Furthermore, an attacker can perform
black-box analysis on a thermal camera similar to the one
used in the victim CAV to study its sensitivity and precisely
control the manipulation. For all three attack methodologies,
the remote adversary does not require access to any hardware
or firmware of the victim camera and autonomous system,
including object detection and fusion models used in their
perception (e.g., black-box setting). Finally, for false obstacle
creation, we do assume the most effortless shapes that a
non-expert attacker can use (e.g., human shapes) without
resorting to sophisticated optimization techniques or adver-
sarial machine learning. The adversary can also choose more
complicated patterns or adversarial examples to achieve the
same goal. We discuss such cases in Section IX.
Capabilities. The adversary can exploit the three vulnera-
bilities using a simple, commercially available heat lamp or
emitters [57], [58] strategically placed in the expected victim
camera field of view (FoV), such as along the roadside,
near intersections, or on the back of a lead vehicle in front
of the victim. Such heat sources (e.g., ceramic heat lamps)
emit long-wave infrared radiations, which are detected by the
thermal camera but remain invisible to the driver and nearby
pedestrians, enabling stealthy manipulation of the thermal
images. Moreover, due to its high diffusion, the heat signal
dissipates within just a few feet (approximately 3–4), making
it unnoticeable beyond that range. In detail, the adversary can
use the setup to perform the following actions.

• Exploiting Linearity in Plateau Equalization. The
adversary generates high-contrast thermal images in sce-
narios where the linear behavior of plateau equalization
algorithms is naturally triggered. This can be achieved in
common driving scenes containing objects with diverse
thermal signatures, such as buildings, other cars, and
trees. The adversary uses the heat source to drop the
relative pixel intensity of the resulting thermal images,
causing misdetection of genuine obstacles in the scene.

• Exploiting Thermal Calibration. The adversary induces
persistent and delayed artifacts in the victim camera
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thermal images, which appear minutes after the attack
is concluded and are perceived as genuine obstacles by
object detectors. The adversary achieves this by structur-
ing the appearance of the heat source (e.g., resembling
a human shape) and performing the attack during the
periodic calibration as described in Section II-A. For
example, the heat source can be placed within a lead
vehicle or along the roadside during a traffic stop, lever-
aging prolonged idle periods (e.g., 60–120 seconds at
intersections or traffic lights), as detailed in Section IV-B.
Since the radiation is invisible to human eyes, the shape
appears in the resulting thermal images after sufficient
heat intensity accumulation (e.g., in minutes), triggering
a delayed detection of false obstacles.

• Exploiting Image Acquisition Weaknesses. The ad-
versary generates non-existent objects in the CAV front
view by exploiting the special material lens and circular
apertures of thermal cameras used in automotive [24],
[55], [56], [23]. The setup allows for retaining the
structural features and shapes of flares, which is not
possible in RGB cameras [22], [59]. Thus, by altering
the heat source’s appearance, the adversary can generate
ghost artifacts of arbitrary shapes, which are detected as
genuine obstacles.

B. Vulnerabilities Overview

1) Plateau Equalization Vulnerability: Real-world scenar-
ios exhibit significant temperature variance due to a combina-
tion of environmental conditions, weather, and the presence of
objects with varying thermal signatures (e.g., buildings, cars,
living beings) [30], [60]. Plateau equalization algorithms, as
described in Section II-A, are employed in thermal cameras
to enhance contrast by adjusting the gain in a nonlinear
fashion based on a distribution threshold (plateau limit) to
optimize the visibility of targets and contextual information.
Generally, thermal cameras used for obstacle avoidance, such
as the automotive FLIR Tau2 [56], require the configuration
of a fixed plateau limit, which typically depends on sensor
sensitivity and application. This value is expressed as the mean
or median of the pixel intensity and typically ranges from
1000 to 4095 [61], [56] as lower values overly redistribute the
pixel intensities, leading to loss of contrast and detail in the
thermal images. However, the choice of such limit can trigger
involuntary undesirable effects due to the discrepancy between
the expected accuracy and the variability of driving scenario
scenes. In other words, if the pixel intensity distribution in a
scenario is below this value, the plateau equalization exhibits
linear behavior, leading to information loss. For example,
shadow regions in a highly bright image (e.g., on a sunny
day) will be poorly enhanced, causing loss of relevant image
details. This occurs because the algorithm does not perform
the clipping and redistribution, thereby increasing the contrast
of the image, as illustrated in Figure 3 (b).

To show the widespread nature of this phenomenon, we con-
duct an analysis on three popular thermal camera datasets used
in automotive and drone perception: the FLIR ADAS [30],
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Fig. 4: Percentage of images in the three datasets below the
corresponding plateau limits. Higher plateau limits trigger
linearization.

LTIR [62], and ASL [60] thermal datasets. Figure 4 shows
that 19%, 35%, and 61% of scenes in the FLIR, ASL, and
LTIR datasets, respectively, exhibit peak histogram intensity
frequencies below a plateau limit of 2500, while 32%, 56%,
and 70% fall below a plateau limit of 3500. These trends
indicate that real-world scenarios frequently present natural
conditions under which linear equalization can be triggered.
Attackers can take advantage of such contexts to introduce
heat sources and amplify the effect to cause extreme contrast
and information loss, as shown in Figure 3 (c). This results in
misdetection and a decline in perception performance, which
we analyze in detail in Section V-A.

2) Calibration Vulnerability: To suppress thermal drift,
NUC algorithms in thermal cameras track changes in the
sensor’s noise characteristics in real time using frame av-
eraging techniques and periodic calibration, as discussed in
Section II-A. At the end of each calibration cycle, which
usually lasts for a few minutes, they compute an offset based
on the accumulated noise profile. This offset is then applied to
all subsequent thermal images during the next cycle. When the
next calibration cycle ends, a new offset is calculated using
the updated noise profile, and the process repeats, ensuring
continuous correction as the dynamic scene evolves.

Unaccounted hot objects in the thermal camera FoV, such
as direct sunlight or heat sources, can elevate the estimated
noise profile, resulting in an overestimation of the offset
in the regions. Although this behavior is inherent to the
calibration process, artifacts can appear if the hot object is
removed from the FoV after the offset is updated. Since
the offset remains fixed until the next calibration cycle, the
overestimated correction continues to be applied to subsequent
thermal images, assuming the hot object will remain in the
scene, as shown in Figure 5. Consequently, if the heat source
exits the FoV (e.g., the CAV moves far from the heat source),
the algorithm suppresses not only noise but also part of the
actual image signal, leading to a reduction in pixel inten-
sity. This results in persistent artifacts in the affected region
where the heat source was located, which remain visible until
the next calibration cycle. An adversary can exploit this to
induce controlled artifacts by exposing the camera to timed
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timed heat sources manipulate the estimated pixel-wise offset,
inducing artifacts in the image (bottom).

heat sources between periodic calibrations. We further study
this vulnerability and characterize its effects in Section IV-B
and evaluate its impact on thermal image and fusion-based
detection models in Sections V-B and VI, respectively.

3) Acquisition Vulnerability: Bright light coming from a
source (e.g., the sun) can reflect off the front or internal lens
surfaces, producing undesirable artifacts appearing as a sec-
ondary image in RGB cameras. This phenomenon is referred
to as the lens flare effect [63], [64]. The flares are typically
formed as polygonal artifacts called ghosts on the image [22],
[65], because their shape depends on the polygonal aperture
used by the cameras [66], [67]. In contrast, thermal camera
apertures are typically circular to allow uniform heat capture
and the special material lenses minimize the diffusion of long-
wave infrared radiation [34] as described in Section II-A. Such
characteristics allow for the creation of arbitrarily shaped ghost
artifacts. An adversary can leverage heat sources placed in the
thermal camera FoV to craft and create ghosts with controlled
shapes on the thermal image, and trigger detection of fake
obstacles, as shown in Figure 1. We study and evaluate the
impact of such structured ghost artifacts on thermal-image-
based and fusion-based detection models in Sections V-C
and VI, respectively.

IV. VULNERABILITY CHARACTERIZATION

To explore the vulnerabilities and the induced pixel-level
changes, we first conduct proof-of-concept experiments in a
controlled indoor lab scenario. We then verify our findings
with three different thermal cameras for autonomous system
applications (e.g., drones, CAVs) in real-world dynamic sce-
narios in VII. In all our evaluations in this work, the attacker
setup consists of a single $20 commercial dimmable ceramic
heat lamp used for terraria and animal care [68], which can
reach a maximum temperature of 240◦C. An adversary can
also use more sophisticated setups, as discussed in Section IX.

Victim T2S Camera Heat Source at 180°C

Wall for blocking source after 
exposure

da = 50 cm

Fig. 6: Illustration of the experimental setup in our character-
ization analysis.

Calibration after 
exposure

Next calibration 
eventt

Exposure Duration (te) Artifact Duration (tc)

Exposure for td seconds before calibration Artifact formed after calibration

Fig. 7: Calibration artifact generation after exposure to the heat
source. Note that the artifact persists in the resulting images
until the next calibration event.

The victim thermal camera is the InfiRay XTherm2 T2S [23]
(referred to as T2S for the rest of the paper). The experimental
setup is illustrated in Figure 6.

A. Analysis of the Linear Equalization Effect

As discussed in Section III-B, adversaries can amplify
(under certain environmental conditions) the linear properties
of plateau equalization algorithms to reduce the pixel intensity
of perceived obstacles (Ieq). To characterize the relationship
between the heat source presence and intensity changes in
the output thermal images under linearization, we measure the
T2S linear response in terms of relative pixel intensity drop
(meaning the perceived relative temperature) in the resulting
thermal images of a genuine obstacle (a pedestrian) under three
different factors: temperature of the source Ta, distance from
the victim camera da, and distance of the target pedestrian
obstacle from the camera dt.
Heat Source Temperature vs Pixel Intensity Drop. Placing
the heat source at da at 3 m and the target pedestrian obstacle
at a distance dt of 5 m, to allow the entire figure in the
camera FoV, we increase the temperature starting from 30◦C to
240◦C (maximum temperature of the heat source). The average
relative drop in pixel intensity (average of 50 images) increases
exponentially to 83%, leveling off at 91% for any further
increase in temperature, up to 240◦C as shown in Figure 8
(left). This result highlights the significant drop in measured
relative temperature of the target obstacle after equalization,
especially with increasing heat source temperature.
Heat Source Distance vs Pixel Intensity Drop. Maintaining
dt = 5 m and Ta = 240◦C, we increase the distance of the heat
source to the camera da from 2 up to 20 m at a 1 m increment
for each iteration. As shown in Figure 8 (right), at da = 2 m,
the relative intensity of pedestrian pixels drops by 91% and
gradually decreases to 50% at da = 20 m. Based on these mea-
surements, the linear equalization algorithm used by the victim
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Fig. 8: Relative pixel intensity drop at increasing heat source
temperature (left) and distance (right).

thermal camera is formalized as Ieq = α · Ixy−Imin

Imax−Imin
· 255,

where Ieq and Ixy indicate the pixel intensity of the pedestrian
obstacle before and after the equalization, respectively, Imin

and Imax are the minimum and maximum pixel intensity
in the entire image before equalization and α indicates the
linear scaling factor. When α = 0.83, the model best fits the
observed results for the T2S camera. We then verify that our
formalization applies to all our target thermal cameras under
the same scenarios in Section VII.
Obstacle Position vs Pixel Intensity Drop. To verify if the
linearization effect varies based on the target obstacle position,
maintaining da = 3 m and Ta = 240◦C, we increase the target
pedestrian distance from dt = 5 m to 15 m at 1 m intervals
and their lateral position from 1 m to 5 m at 1 m intervals.

We observe that the drop in relative pixel intensity re-
mains unchanged regardless of the obstacle position. This
demonstrates that the measured relative temperature is uniform
throughout the images. As a result, the adversary can place the
heat source at any location in the FoV of the victim camera
to trigger the same drop in pixel intensity.

B. Analysis of the Calibration Artifacts

To analyze the decrease in average pixel intensity (and
correlated relative temperature variation) induced by cali-
bration in response to heat source exposure, we consider
the temperature of the heat source Ta and the duration of
heat source exposure before (te) and after calibration (tc),
as shown in Figure 7. These factors directly influence the
offset compensation estimated by the calibration algorithm as
described in Section III-B.
Exposure Duration vs Intensity Offset. We expose the victim
camera to the heat source at 50 cm distance (da = 50 cm),
for 10, 20, and 30 sec durations before the calibration. Then
we apply a physical block to emulate the heat source dis-
appearance from the camera’s FoV, as illustrated in Figure 6,
collecting the resulting images for the subsequent two minutes
until the next calibration occurs. The offset estimated by the
calibration algorithm, as shown in Figure 9 (top-left), follows a
weighted moving average trend, resulting in a gradual decrease
in artifact intensity that is directly proportional to the increase
in exposure time. The equivalent model based on the weighted
moving average equation used to estimate the offset from
the pixel intensity of the new image (Inew) is given by

It = ω · Inew + (1− ω) · It−1, where It and It−1 refer to the
pixel intensity after calibration in the current (at the instant t)
and previous (at the instant t − 1) images, respectively, and
ω indicates the weight of the moving average. Based on this
model, the time required to converge to the maximum intensity
drop tmax is obtained as tmax ≥ ln( p

100 )/ ln(1 − ω) , where
p refers to the convergence percentage. Our characterization
shows that the T2S camera uses a weight ω ≈ 0.2 and the
maximum intensity drop in the artifact reaches p = 0.1%
convergence percentage tc = 30.9 seconds after the exposure.
As in the case of the equalization analysis, we verify that this
calibration model also applies to our tested thermal cameras,
as shown in Figure 9 (top-right), converging to the same 0.1%
at 2 minutes and 48 sec for the Boson and 41 sec for the
XC-C130 camera, allowing the attacker to generate delayed
attacks.
Heat Source Temperature vs Intensity Offset. We expose
the heating source at 50 cm in front of the victim camera for
30 seconds before the calibration occurs. We then increase
the temperature of the heat source from 20 to 240◦C at 40◦C
intervals. We observe that a heating source of at least 60◦C
is required to induce a measurable drop in pixel intensity
relative to the background. Beyond this point, the intensity of
the artifact decreases linearly with temperature up to 100◦C.
After this, we observe an exponential drop in the average pixel
intensity until 240◦C. An adversary can select the heat source
to control the resulting artifact intensity.
Calibration Timing. To induce calibration artifacts, an ad-
versary typically needs to time the heat source exposure to
align it with the calibration event. A sophisticated attacker
can estimate the timing using physical cues, such as audible
clicks emitted by the camera [24]. In addition, our experiments
at da = 50 cm, shows that 30 second heat source exposure
can still trigger a pixel intensity drop if the exposure duration
ends 10 seconds before or after the calibration event, indicating
that precise synchronization is not required. Particularly, we
observe a relative pixel intensity drop of 18% compared to
≈ 21% at the exact calibration time. Based on this observation,
following our threat model, the adversary can place the heat
source close to a traffic light stop and adjust the heat exposure
time to improve the probability of spoofing a fake obstacle
(Pspoof) as Pspoof = (Tl/tc) · (te + k)/tc, where Tl is the
traffic light duration, tc is the calibration period (which can
be derived from publicly available information such as sensor
manuals), te is the duration of heat source exposure, and k
is the duration before calibration event, when the heat source
can be exposed (e.g., k = 10 seconds). For example, a thermal
camera with tc = 60 seconds and Tl = 120 seconds allows
the attacker to succeed ≈ 83.3% of the time. Based on this
formalization, the adversary can adjust te based on the camera
and the intersection setup to maximize the probability of
inducing successful artifacts and spoofing a fake obstacle.

C. Analysis of Ghost Artifacts

As described in Section III-B, an adversary can create ghost
artifacts in the resulting thermal images by leveraging the
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Fig. 9: The relative drop in average pixel intensity due to
calibration with respect to artifact duration (tc), after the
calibration event (top-left). The pixel intensity drop due to
increasing exposure (td) for Boson and T2S cameras (top-
right) and the corresponding artifacts on the images captured
from the T2S camera (bottom).
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Fig. 10: Infrared light from a heat source reflecting within
the lens system, resulting in an inverted ghost artifact at the
geometrically opposite location in the thermal image.

aperture and special lenses of thermal cameras. As lens flair
phenomena in RGB cameras, ghost images formed due to
the heat source appear at a position spatially opposite to the
actual heat source, relative to the optical center of the thermal
camera. Precisely, the pixel coordinates of the ghost (xg , yg)
can be estimated using the equation (xg , yg) = (2xo − xs,
2yo−ys), where (xo, yo) and (xs, ys) are the pixel coordinates
of the camera optical center and the heat source respectively, as
illustrated in Figure 10. However, in contrast with RGB camera
flares, the ghost artifacts preserve their structure, allowing the
creation of arbitrary shapes as in Figure 11. Our experiments
with the heat source placed at 1 m in front of the victim
camera verify this hypothesis. Based on this formulation, an
adversary can adjust the position of the heat source to create
a ghost artifact in a target region of the camera FoV.
Relationship with Equalization Algorithms. As discussed in
Section IV-A, the presence of heat sources in the FoV of the
camera reduces the dynamic range of the image when linear
equalization is triggered. This causes a drop in pixel intensity
not only for genuine obstacles in the scene but also for ghost
artifacts created by the lens flare effect. This introduces an
inherent trade-off in thermal image acquisition, where stronger
equalization algorithms (such as the plateau), while enhancing
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Fig. 11: Ghost artifact of human shape with preserved heat
source structure in the resulting thermal image (left). The
relation between ghost artifact intensity and the temperature
of the heat source (right).

contrast, can inadvertently amplify lens flare effects, thereby
increasing the visibility of ghost artifacts in the final image.
On the contrary, thermal cameras with weaker equalization
algorithms (such as linear equalization) increase the contrast
of the image, inducing the loss of ghost artifact features,
along with relevant scene information. For this reason, we
use the automotive FLIR Boson camera [24] with plateau
equalization to accurately characterize the lens flare effect.
We manually set the plateau limit of the Boson camera below
the image distribution to prevent triggering the linearization
vulnerability and investigate the relationship between the heat
source temperature and the artifact intensity.
Heat Source Temperature vs Ghost Artifact Intensity.
Based on the considerations above, we set da = 0.5 m and
gradually increase Ta from 0 to 240◦C. We calculate the av-
erage pixel intensity difference in the camera FoV region with
and without the artifact. Figure 11 (right) illustrates the ghost
artifact pixel intensity increase with increasing temperatures
of the heating source, as captured by the Boson camera.

V. EVALUATION ON OBJECT DETECTION MODELS

We use the three vulnerability characterizations and forma-
lizations described in Sections IV to evaluate the extent of
the threat on three object detection models. We achieve this
by synthesizing the real-world results in our laboratory setting
on the state-of-the-art FLIR ADAS dataset [30]. Details on the
methodology are described in Appendix A. We further present
the evaluation results on two RGB-thermal fusion models and
real-world experiments in Section VI.
Experimental setup. Heat lamps can be shaped into arbitrary
patterns by placing structured aluminum foil in front of the
heating source, selectively blocking heat in certain regions
to create distinct shapes. Leveraging this, we synthesize
calibration-induced and ghost artifacts of different pedestrian
structures and poses, as shown in Figure 13.

Our evaluation covers three state-of-the-art object detection
models: (i) YOLOv5 [26], (ii) YOLOv8 [27], and (iii) Faster
R-CNN [28]. While the YOLO models employ a single-
stage architecture that directly predicts bounding boxes from
feature maps, the Faster-RCNN model employs a two-stage
architecture with a Region Proposal Network (RPN) that first
generates candidate object regions, then classifies and refines
those proposals. These models are fine-tuned on thermal
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Fig. 12: The drop in mAP@50 for car and pedestrian obstacles
for YOLOv5 (left) and YOLOv8 (right) at increasing heat
source temperature, synthesized at 3 m distance.

images from the FLIR ADAS dataset and trained based on
prior work methodology [13], [14], [15], [16], [17], [18]. We
set the confidence threshold of YOLOv5 and v8 models to
0.25 and the FasterRCNN model to 0.7 (default values).

A. Evaluation of Equalization Vulnerability

16-bit raw images from the Boson camera are captured
at heat source temperatures ranging from 0 to 240°C, in
40°C intervals. We employ the Boson camera for its image
processing pipeline, similar to the Tau2 thermal camera used
in the FLIR dataset. The heat source distances from the camera
varied from 3 to 15 meters, in 2-meter intervals. Then we
synthesize the heat source as described in Appendix A to
emulate the linearization effect on the dataset.

We measure the mAP@50 score for the three models across
pedestrian and car obstacle detection, which refers to the mean
Average Precision computed at a 50% Intersection over Union
(IoU) threshold, indicating how accurately predicted bounding
boxes match the ground truth.
Results and Observations. The mAP@50 scores for pedes-
trian detection across the entire FLIR validation dataset drop
below 0.1 (from 0.35, 0.3, and 0.73 for YOLOv5, YOLOv8,
and Faster-RCNN models, respectively) when the heat source
is set to 150◦C, regardless of the distance, for all three models.
Similarly, for car detection, the mAP@50 scores fall below 0.1
for YOLOv5, 0.15 for Faster-RCNN, and 0.25 for YOLOv8
when considering a heat source temperature of 240◦C. These
results suggest that scene-induced linear equalization effects
can be exploited to substantially degrade the performance of
object detection models, causing misdetection. Furthermore,
Figure 12 shows the decline in mAP scores with increasing
temperature follows a linear trend for YOLOv8, whereas it
is exponential for both YOLOv5 and Faster R-CNN. We
hypothesize that this difference arises from the data augmen-
tation used during training. The baseline YOLOv8 model, pre-
trained on the COCO dataset, incorporates pixel intensity and
contrast augmentations [27], making it more robust to thermal
distortions. In contrast, the baseline YOLOv5 and Faster R-
CNN models are trained using more basic augmentations,
such as rotation, random cropping, and geometric distortions,
resulting in greater sensitivity to intensity shifts.

CrossingRunningFront face

Impact of the pose on ASR 
for calibration artifacts

CrossingRunningFront face

Impact of the pose on ASR 
for ghost artifacts

Faster-RCNN YOLOv5 YOLOv8

Fig. 13: Impact of artifact pose and structural characteristics
on the attack success rate (ASR) across three models, for
calibration-induced artifacts in the three thermal cameras (left)
and ghost artifacts created with the Boson camera (right).

B. Evaluation of Calibration Vulnerability

Using the synthesis methodology in Appendix A, we gen-
erate human shape artifacts resulting from calibration offset
manipulation on the test set of the FLIR dataset, which
contains 3,749 images. The synthesized artifacts are gener-
alizable across all three thermal cameras, as demonstrated
through the modeling presented in Section IV-B. We select
three distinct human shapes, each reflecting different poses
of pedestrian target obstacles, as shown in Figure 13. These
poses correspond to general pedestrian activities in driving
scenarios, such as crossing the road or walking on the side-
walk. For each pose, we vary the pixel intensity drop within
the synthesized artifacts corresponding to different durations
of heat source exposure, as characterized in Section IV-B. The
artifacts correspond to a 10 cm diameter heat source placed at
0.5–2.5 m distances from the camera, in 0.5 m increments, to
reflect varying spatial placements during calibration exposure.
We then evaluate the Attack Success Rate (ASR) over the test
set, defined as the percentage of images with the synthesized
artifact incorrectly detected as a pedestrian obstacle.
Results and Observations. We observe that artifacts gen-
erated due to calibration vulnerabilities reach up to 93.9%
ASR on the FLIR dataset across all three evaluated models.
Particularly, the artifacts achieve consistently 100% ASR on
the Faster R-CNN model. This is potentially due to the model’s
higher sensitivity to pedestrian-like structures present in the
artifacts. As illustrated in Figure 14, a given reduction in
pixel intensity results in a higher ASR across all three models
when the heat lamp is positioned 1.5–2 m from the thermal
camera. We hypothesize that this is because, at this distance,
the pedestrian structure on the 10 cm diameter heat lamp
artifact closely approximates the average 118-pixel height of
pedestrians in the FLIR training set. Moreover, as shown in
Figure 13 (left), the pose depicting a pedestrian walking on
the street consistently results in a higher ASR for a given
distance and pixel intensity drop. We hypothesize that this is
because the induced artifact primarily retains the structural
features of the pedestrian, which are most clearly defined in
the crossing pose. This pose retains the outlines of limbs, such
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Fig. 14: Resulting attack success rate (ASR), at increasing
drop in artifact pixel intensity (left) and heat source distance
(right) for the pedestrian crossing pose.

as arms and legs, resulting in a more recognizable and detailed
silhouette that is more effective at triggering model detections.
Overall, we observe that a 40 pixel intensity drop, relative to
the background, achieved with the heat lamp positioned at a
distance of 1.5-2 m, can reliably trigger an ASR of ≥80%
across all three models. These values correspond to exposure
durations of only 30, 38, and 43 seconds for the T2S, XK-
C130, and Boson cameras, respectively.

C. Evaluation of Ghost Artifacts

We use the same methodology of the calibration vulner-
ability to evaluate the ASR resulting from structured ghost
artifacts created with the Boson camera.
Results and Observations. Figure 13 (right) shows that
ghost artifacts generated by a heat source temperature of
80◦C can achieve an ASR of ≥ 90% across all three tested
models. Similar to the artifacts induced by the calibration
vulnerability, these human-shaped ghost artifacts exhibit high
detection when the heat lamp is positioned within the 1–2 m
range. However, unlike calibration-based artifacts, where the
pose significantly influences effectiveness, the ASR remains
consistently high across all pedestrian poses due to their higher
pixel intensity.

D. Other Equalization Algorithms

We determine the generality of the equalization vulnera-
bility by investigating two other state-of-the-art algorithms,
CLAHE [20] and BBHE [21], on the three object detection
models (YOLOv5, YOLOv8, and Faster-RCNN). The analysis
evaluates the detection rates of targeted pedestrian and car
objects under the attack using the validation set of the FLIR
dataset.
Evaluation on CLAHE. CLAHE enhances image contrast
by applying histogram equalization in image regions while
suppressing noise through contrast clipping. We simulate the
presence of the heat source at Ta = 240◦C, using the method-
ology described in Section V-A. Due to CLAHE’s localized
contrast enhancement, an adversary can strategically place the
heat source in a specific region in the image space to target
objects in that region, selectively increasing local contrast and
triggering localized linear equalization behavior. We find that
this targeted manipulation results in pedestrian misdetection
of 66%, 69%, and 81% for YOLOv8, YOLOv5, and Faster-
RCNN models, respectively, while 38%, 31%, and 46% for car

obstacles. Consistent with the plateau results, we hypothesize
that the disparity between objects arises because the models
exhibit stronger baseline performance for car obstacle detec-
tion compared to pedestrians. Moreover, the large obstacle
surface of cars typically contains multiple local regions which
are impacted differently by the heat source. Nevertheless,
the results indicate that the underlying vulnerability can be
effectively exploited through local regions.
Evaluation on BBHE. BBHE enhances contrast by splitting
the histogram at the mean intensity and applying histogram
equalization separately to the lower and upper sub-histograms,
thereby preserving overall brightness. We observe that mali-
cious heat sources shift the histogram balancing point, altering
contrast allocation between the sub-regions. The resulting im-
balance increases linearly with heat source temperature Ta and
inversely with distance da. Using the same FLIR validation
set as CLAHE, we observe 72%, 78%, and 87% pedestrian
misdetection rates on YOLOv5, YOLOv8, and Faster-RCNN
models, and 51%, 54%, and 65% for car obstacles. Similar to
plateau and CLAHE, we observe lower misdetection rates for
cars due to better baseline performance in benign car detection.
These results confirm the inherent vulnerability across state-of-
the-art algorithms and the significant susceptibility of Faster-
RCNN model in all our testing. For the rest of the work, we
focus primarily on plateau equalization due to its widespread
adoption in real-world autonomous systems [30], [48].

VI. EVALUATION ON SENSOR FUSION MODELS

RGB-thermal fusion models extract feature representations
from both RGB and thermal images, leveraging the com-
plementary characteristics of each and improving the overall
performance of object detection systems [29], [69], [70]. This
can be achieved with two different approaches. The first,
feature-level fusion, extracts feature maps from RGB and
thermal images independently and then combines them [69],
[70]. The second, image-level fusion combines the images
at the pixel-level to learn and detect joint feature repre-
sentations [36]. Our evaluation considers the state-of-the-art
feature-level fusion model DAMSDet [29], which employs a
transformer model to dynamically select basic salient modality
feature representation for each object from both images. To
evaluate image-level fusion instead, we fine-tune the Faster-
RCNN detection model described in Section V, modifying
its input layer to accommodate four-channel data (RGB +
thermal). We chose this model due to its better performance
on the FLIR dataset relative to the YOLO-based models. The
DAMSDet and the fused Faster-RCNN models demonstrate
mAP@50 scores ≥ 0.94 and ≥ 0.98 for pedestrian and car
obstacles.
Experimental setup. To assess the impact of each vulnera-
bility on the fusion-based models, we use the same method-
ology as described in Section V by synthesizing the artifacts
collected from the Boson camera on thermal images of the
FLIR dataset. Note that the RGB images remain unchanged
for this analysis, as they are not affected by the vulnerabilities.
For calibration and ghost artifacts, we consider the pose
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Fig. 15: Drop in pedestrian mAP@50 for fusion models (left).
Attack success rate (ASR) due to the calibration-induced
artifacts at increasing heat source distance (right).

corresponding to a pedestrian crossing the road, as it exhibited
a higher success rate during evaluation against object detection
models (worst-case scenario from the attacker’s perspective).

A. Impact of Equalization Vulnerability

We observe that the mAP@50 for pedestrian obstacles
gradually drops with an increase in temperature. As shown in
Figure 15 (left), the mAP@50 score over the entire validation
set drops by 0.80 and 0.31 for the Fused Faster-RCNN and
DAMSDet models, respectively, when exposed to a 240◦C
heat source placed at a distance of 3 m. For car obstacles,
the mAP@50 score drops by only 0.1 and 0.18 for Fused
Faster-RCNN and DAMSDet, respectively. We hypothesize
that the greater performance drop for pedestrian obstacles
is due to their typically higher pixel intensities in thermal
images compared to their RGB counterparts, which is no
longer satisfied because of the intensity drop caused by linear
equalization, thereby leading to misdetection.

B. Impact of Calibration Vulnerability

Similar to the results in Section V-B, the calibration artifacts
demonstrate high ASR, with da = 1-2 m, as shown in Figure 15
(right). The maximum ASR of 56.4% and 69.7% occurs
with da = 1-2 m and te = 36 s, where the average drop
in pixel intensity, relative to the background, reaches ≈ 50
for a 240◦C heat source. We observe that any higher drop
in pixel intensities (from longer exposures) further decreases
the ASR, consistent with the measurements in Section V-B.
The lower ASR observed in comparison to detection models is
expected, primarily due to the reduced thermal image intensity,
as the model concurrently extracts features from RGB images.
Nevertheless, the artifact can still induce false pedestrian
detections, achieving more than 50% ASR with only 18 sec
of exposure from a distance of 1.5 m. This demonstrates
that RGB-thermal fusion models are susceptible to calibration-
induced artifacts, even though they only affect thermal images.

C. Impact of Ghost Artifacts

The results indicate that the ghost artifacts can achieve up to
98.0% and 91.1% ASR in inducing false detections on DAMS-
Det and fused Faster-RCNN models, respectively, with Ta =
240◦C and da = 1.5 m. Similar to the results in Section V-C,
the ASR remains high with da = 1–2 m, achieving ASR ≥
82.6% on both models with a lower Ta value of 100◦C. This
is because, at this distance range, the corresponding ghost

artifacts fall under the size distributions that resemble those
of pedestrian obstacles in the dataset. The higher success rate
of ghost artifacts against sensor fusion models is due to the
pixel intensity rise they introduce in the thermal images, which
overwhelms the feature selection process. This is particularly
true for the DAMSDet model, where thermal features are
prioritized based on the assumption that the corresponding
RGB images fail to capture complementary features under
adverse lighting conditions.

VII. EVALUATION IN OUTDOOR SETTINGS

We further conduct outdoor experiments to assess these
vulnerabilities in real-world scenarios using three thermal
cameras T2S, XK-C130, and Boson, located on top of our
autonomous, rugged unmanned ground vehicle (UGV) Agile-
X Hunter 2.0 [71] moving at speeds up to 10 km/h, and
on a car moving at 40 km/h for equalization and calibration
vulnerabilities. For this evaluation, we use the three thermal
image-based object detection models described in Section V,
and the ceramic heat lamp set to 240◦C as our heat source,
placed on the side of a road as in Figure 1. The experiments
were conducted in nighttime conditions, with the average
scene temperatures reaching 26-28◦C and daytime with scene
temperatures reaching 31–33◦C.

A. Equalization Vulnerability

To investigate the extent to which an adversary can exploit
equalization vulnerabilities to induce misdetections, we design
and conduct experiments across two distinct real-world scenar-
ios: a real pedestrian crossing at an intersection and a vehicle
moving towards the pedestrian at different speeds.
Nighttime Scenario. We set da = 5 m and capture images
from all three cameras as a pedestrian crosses in front of the
camera at distances ranging from 5 to 12 m, in 1 m increments.
We set the plateau limit of the Boson camera above the image
pixel intensity distribution, emulating a highly diverse thermal
scene and triggering linear equalization. In the absence of the
heat lamp, all three detection models successfully detect the
pedestrian at each distance with an accuracy of ≥96%.
Results and Observations. Across all pedestrian crossing
distances, thermal images from the T2S and Boson cameras
result in 100% misdetection across all three tested models. In
contrast, images from the XC-C130 camera show a maximum
detection rate of 46% for the Faster R-CNN model when the
pedestrian crosses at 5 m, which gradually declines to 26%
at 12 m. We hypothesize that the difference might arise from
the proprietary non-linear equalization algorithm used in XC-
C130, different from standard plateau algorithms. However,
the results suggest that the algorithm’s linear characteristics
can be triggered, as seen with the drop in detection rates
compared to the pedestrian crossing scenario without the
presence of the heat lamp.
Daytime Scenario. We repeat the same experiments with
pedestrian crossing in front of the camera at distance ranges
from 5 to 12 m and da = 5 m in daytime conditions (≈ 5000
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lux ambient illumination). Consistent with nighttime experi-
ments, we observe 100% misdetection across all tested models
when using thermal images from the T2S and Boson cameras.
For the Faster-RCNN model on the XC-C130 camera, the
success rate of the attack drops from 51% when the pedestrian
crossed at 12 m to 24% at a 5 m crossing distance for Faster-
RCNN model, following the observation in night conditions.
These results show that the equalization vulnerability does not
appear to be influenced by environmental light changes.
Dynamic Scenario. In this scenario, we set da = 20 m and
assume a static pedestrian adjacent to the heat lamp (at 20 m).
We place the thermal cameras on our ground vehicle and move
towards the pedestrian from 20 m away, until it crosses the heat
lamp at speeds of both 5 and 10 km/h. We collect the thermal
images from all three cameras and evaluate the misdetection
rates across all three detection models.
Results and Observations. The YOLOv5 and YOLOv8 mod-
els exhibit 100% misdetection rates for images captured by
both the T2S and Boson cameras at UGV speeds of 5 and
10 km/h. The Faster R-CNN model shows similarly high
misdetection rates, with 97% and 94% for the T2S camera, and
93% and 90% for the Boson camera at 5 km/h and 10 km/h,
respectively. In contrast, the XC-C130 camera demonstrates
comparatively lower misdetection rates of 56% and 48% at
5 km/h and 10 km/h, respectively. These results indicate that
linear properties can be triggered across non-linear algorithms,
inducing misdetections in real-world conditions.
On-road Driving Scenario. We further demonstrate the attack
with the thermal camera mounted on a car, repeating the
dynamic experiment at 40 km/h (da = 50 m). Our results show
a 100% misdetection rate across all three detection models
with Boson camera images, and for the YOLOv5 and YOLOv8
models with T2S camera data. The Faster R-CNN model on
T2S images exhibits a misdetection rate of 93%. For the XC-
C130 camera, we observe a misdetection rate of at least 43%
and up to 78% across the three models. These results indicate
the effectiveness of the vulnerability at high speeds.

B. Calibration Vulnerability

Using the experimental methodology in Section IV-B, we
estimate the exposure duration te required to trigger misde-
tections across the three thermal cameras. For this setup, the
heat source distance da is fixed at 50 cm for both the T2S
and XC-C130 cameras. The Boson camera’s focal point is set
to infinity by default, and a heat lamp positioned close to the
camera (within ≈ 10 feet) is out of focus, resulting in blurred
artifacts. For this reason, we set da = 3 m for the Boson
camera and use a 15 cm diameter heat source to emulate the
corresponding artifact pixel-size on the thermal image.
Nighttime Scenario. As described in Section IV-B, the arti-
facts emerge after a delay following calibration. To evaluate
the delay, we capture images post-calibration to determine the
time required for the misdetection to be induced.
Results and Observation. For the T2S camera, we observe
that an exposure duration te = 5 sec is sufficient to induce mis-
detection. The artifact intensity progressively increases over

Artifact induced at different durations after calibration
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Fig. 16: Trend showing the increase in attack success rate with
respect to the time elapsed since the last calibration event (top).
Induced artifact at increasing time intervals (bottom).

time, ultimately leading to 100% misdetection approximately
25 seconds after the calibration. Figure 16 illustrates the
gradual increase in ASR over 10 seconds average after the
calibration. For the XC-C130 camera, an exposure duration
(te) of 21 seconds results in a 100% ASR, with the artifact
reaching full intensity drop within 50 seconds. For the Boson
camera, we find that an exposure duration of 60 seconds is
necessary to achieve a 90% ASR, approximately 2 minutes
after calibration. The longer required te is attributed to the
farther da used for the Boson camera, which results in
smaller artifact projections within the image. As discussed in
Section V, these smaller artifacts require a higher drop in pixel
intensity to successfully trigger misdetections.
Daytime Scenario. Under daytime conditions (31–33◦C), we
observe that an exposure time of te = 12 seconds is required to
induce misdetection on the T2S camera. In daytime scenarios,
a 100% ASR is achieved with 25-second exposure after
calibration. Similarly, for the XC-C130 camera, an exposure
duration of 46 seconds is needed to reach 100% ASR, oc-
curring 50 seconds post-calibration. For the Boson camera,
83 seconds of exposure are required to achieve 73% ASR,
observed 2 minutes after calibration. These results indicate
that daylight conditions require longer exposure to achieve
comparable ASR, as higher temperatures of the surfaces in
daytime conditions (upon which artifacts are formed) demand
greater contrast in the induced artifact to trigger misdetection.
Dynamic Scenario. We collect the thermal images with the
UGV moving at speeds of up to 10 km/h over a 120 m
trajectory, to evaluate the robustness in dynamic conditions.
In this scenario, we observe ASR ≥ 94.6% for T2S, ≥ 81%
for the XC-C130, and ≥ 61% for the Boson camera across all
three detection models. These results confirm that calibration
artifacts induced due to unaccounted or malicious heat sources
in the scene can trigger persistent fake obstacle detection.
On-road Driving Scenario. We collect thermal images from
all three cameras mounted on a car moving at 40 kmph
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over a 500 m trajectory. We observe a ASR ≥ 91.8% for
T2S, ≥ 83.6% for CX-C130, and ≥ 55.1% for the Boson
camera across all detection models. These results indicate the
consistency of the induced artifacts and the practicality of the
attack in high-speed driving conditions.

C. Ghost Artifacts

This analysis is conducted on the Boson camera, which has
amplified ghost effects due to its strong equalization and lens
setup, as discussed in Section IV-C. We position a heat lamp
with the pedestrian structure at distances of 1, 1.5, and 2 m
in front of the camera. We set the heat lamp temperature to
240◦C, and capture 120 images at each distance, containing
the resulting ghost artifacts to assess the ASR across all three
detection models.
Nighttime Scenario. We observe that the ghost artifact con-
sistently triggers pedestrian detections on the Faster R-CNN
model, achieving a 100% ASR across all tested heat lamp
distances. For the YOLOv5 and YOLOv8 models, the attack
achieves 100% ASR at a 2 m distance, but it drops to 76% and
61%, respectively, when the heat lamp is placed at 1 m. These
results align with Section V-C, where larger ghost artifacts,
typically produced at closer distances, exhibit lower ASR.
Daytime Scenario. Similar to the nighttime evaluation, the
ghost attack achieves 100% ASR on Faster-RCNN and
YOLOv5 models for all the tested distances. Similarly, the
ASR for YOLOv8 drops from 100% at 2 m to 81% at 1 m heat
lamp distance. As for equalization vulnerability, ghost artifacts
appear not to be influenced by changes in environmental light.
Dynamic Scenario. We collect thermal images by driving
the UGV toward the heat lamp from a distance of 2.5 m to
approximately 1 m at a controlled speed of 2.5 km/h. The
evaluation shows ASR of 76%, 28%, and 24% for Faster
R-CNN, YOLOv5, and YOLOv8, respectively. As observed
in the other vulnerabilities, Faster R-CNN exposes higher
susceptibility compared to other models under motion.

In this case, the vehicle speed is intentionally limited to
ensure safety, as creating ghost artifacts with our 15 cm
diameter heat source requires proximity within 1–2 m, as
seen in the nighttime scenario and simulation in Section V-C.
Driving at higher speed at such close proximity poses risks
of collision. Our capability analysis shows that an adversary
can potentially increase the required distance for a successful
attack by using a larger heat source. For example, spoofing
artifacts of similar size can be induced as far as 4.5 m away
with a heat source of 30 cm diameter. However, similar to pre-
vious ghost attacks [22], the heat source requires adjustment
under movement to ensure correct lens reflection.

VIII. DEFENSES

While LiDARs and radars are commonly employed to en-
hance perception in autonomous systems, they can also serve
as complementary modalities to validate the consistency of
thermal imaging data. However, each sensor type has inherent
limitations. LiDARs performance deteriorates under adverse
weather conditions such as fog and rain due to scattering

and absorption of laser signals, resulting in reduced range
and accuracy compared to thermal cameras [72]. Radars,
though more resilient to weather, lack the spatial resolution
required for fine-grained scene understanding [73]. Dynamic
plateau limits can reduce linearization in thermal image equal-
ization [47], but they introduce variability in heat mapping
based on scene content [74], [75]. Additionally, hot objects
outside the dynamic range can still trigger linear behavior,
undermining contrast enhancement.

Adversarial detection techniques [76], [77] offer a potential
defense against calibration-induced and ghost artifacts. How-
ever, distinguishing real-world artifacts (e.g., heat reflections)
from malicious ones remains challenging. Finally, lens hoods
can mitigate ghosting by limiting infrared reflections [78], but
at the cost of reduced FoV. While these trade-offs may be
acceptable for certain applications (e.g., surveillance systems),
they quickly become inapplicable in autonomous systems with
real-time reaction constraints. To address this, we propose
three novel threat-aware signal processing techniques to miti-
gate equalization effects and suppress unwanted artifacts.

1) Attack Aware Equalization: We enhance the plateau
equalization algorithm to address the linearization effect. Our
method explicitly detects and excludes high-intensity regions
caused by malicious heat sources, which manifest as sharp
spikes in the image histogram. Excluding these spikes by
filtering the histogram bins corresponding to abrupt intensity
peaks allows the algorithm to adaptively mitigate the resulting
linear effect and minimize the pixel-intensity drop.

We evaluate the effectiveness of this proposed algorithm
under real-world conditions, using the methodology outlined
in Section VII. Thermal images of a static pedestrian are
captured at distances of 20, 15, 10, and 5 meters, with a heat
source positioned adjacent to the pedestrian. At each distance,
100 image frames are collected. The proposed equalization
method is applied to these frames, and detection performance
is assessed using the Faster R-CNN model. Results show
a notable improvement in detection accuracy, with average
detection rates increasing to 96.3% and 98.1% at 20 and 15
meters, respectively, and reaching 100% at 10 and 5 meters.
Next, we validate the ability to preserve scene integrity in the
presence of natural heat sources. To do this, we select 565 test
images from the FLIR dataset containing only benign heat
sources (e.g., sunlight). We then apply plateau equalization
using both a plateau limit set below the scene threshold and
our proposed method. The resulting images yield a mean
structural similarity index (SSIM) of 0.96 with a standard
deviation of 0.002. These results indicate that the proposed
method maintains the structural integrity of thermal images
even under natural sources such as sunlight.

This technique can complement existing plateau equaliza-
tion algorithms by effectively mitigating performance degra-
dation when linear equalization is triggered in the scene.

2) Attack Aware Calibration: The calibration algorithms in
automotive thermal cameras are designed with the assumption
that the camera operates in a highly dynamic scene, where
the estimated offset is averaged out, preventing extremely
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(a) Artifact created after 10 seconds of 
heat source exposure

(b) Artifact suppressed using the proposed 
attack-aware calibration strategy

Fig. 17: Example of artifact created in real-world (left).
Resulting image with the suppressed artifact by the proposed
mitigation strategy (right).

high offset values. However, the exposure to natural heat
sources (e.g., sunlight, vehicle tailpipes, or motorcycle exhaust
cylinders) or malicious heat sources can induce the artifact, as
demonstrated in Section V-B. We design a novel calibration
algorithm that limits the incremental updates to the estimated
offset, suppressing the artifacts formed on the thermal images.

Our real-world experiments in Section VII show that only
5 seconds of exposure to a heat lamp is sufficient to induce
artifacts capable of triggering object detection. This duration
corresponds to approximately 125 frames on the T2S camera
and 600 frames on the Boson camera under continuous ex-
posure. To mitigate this, we implement a pixel-wise offset
counter that tracks the number of consecutive images dur-
ing which the averaged offset at each pixel increases. The
counter resets if the averaged offset decreases, indicating
the removal of the heat source. Using this mechanism, we
design a calibration algorithm that temporarily halts offset
updates for pixels exhibiting continuous offset increases over
a predefined threshold (e.g., <125 frames for T2S and <600
for Boson), preventing excessive drift and artifact formation.
Offset updates resume once a decrease in the average offset
is measured. This approach suppresses the escalation of offset
value due to unaccounted heat sources while preserving the
algorithm’s ability to correct for genuine thermal drift.

We evaluate the proposed calibration algorithm using our
real-world image sequences captured by the Boson camera.
Following the experimental setup detailed in Section IV-B, we
position a heat lamp at 240◦C at a distance of 50 cm in front
of the camera and expose it for 30 seconds prior to calibration.
This prolonged exposure creates an average relative pixel
intensity drop of 24. The resulting artifact is illustrated in
Figure 17 in the Appendix. Using the image frames collected
during the exposure period, we apply our attack-aware cali-
bration algorithm, which restricts the offset accumulation once
it has continuously increased for 600 images. As a result, the
induced artifact is mitigated as shown in Figure 17. Further-
more, we evaluate the capability of our calibration algorithm
not to suppress genuine obstacles by positioning a pedestrian
5 m in front of the camera for a duration of 5 minutes
with the heat source. The algorithm pauses the offset update

for only 3.6 seconds throughout the sequence, due to the
subtle body movements of the pedestrian, introducing slight
fluctuations in the averaged offset rather than the consistent
increase observed with malicious heat signal injection. Faster-
RCNN model maintains a high detection confidence of 92%,
demonstrating that minor variations in pixel intensity do not
significantly impact detection performance.

3) Mitigating Ghosts: Leveraging the geometric character-
istics of ghost artifacts, we propose a mitigation strategy to
suppress their formation. As demonstrated in Section V-C,
inducing ghost artifacts capable of triggering false obstacle
detection with high success rates (≥ 90%) requires a heat
source with temperatures reaching 80◦C. This corresponds to
an average pixel intensity of approximately 9500 in the raw
thermal images. Building on this observation, our method-
ology identifies such high-intensity regions and suppresses
the intensity of the corresponding geometrically opposite pix-
els, where ghost artifacts appear, based on the relationship
characterized in Figure 10. Using the methodology outlined
in Section VII-C, the proposed mitigation achieves a 100%
success rate in suppressing ghost artifacts. The typical raw
pixel intensity of human subjects in the scene ranges between
7000–7500 (corresponding to 30–36◦C), which is insufficient
to induce ghost artifacts capable of triggering false detections.
As a result, the mitigation algorithm does not alter such
regions, preserving the integrity of genuine detections.

IX. DISCUSSION

CLAHE as Defense. While CLAHE can be better in pre-
serving local contrast, compared to plateau equalization, im-
plementing it in real-world automotive applications has been
proven challenging due to its higher computational complex-
ity, difficult hardware implementation, and limited real-time
performance in dynamic scenarios, which is still an ongoing
research problem [50], [79]. Our analysis in Section V-D
shows how CLAHE is still affected by linearization, however,
future research may focus on augmenting its resilience.
Limitations. Our experimental setup is constrained to con-
trolled outdoor scenarios, focusing on close-proximity heat
sources ranging from 0.5 to 5 meters. This is due to the
relatively small heat lamp (10 cm in diameter) used as the heat
source. In practical settings, larger heat-emitting surfaces (such
as vehicle exhaust manifolds or engine cylinders) reaching
comparable temperatures could induce artifacts of similar size
from greater distances. Further, the perturbations demonstrated
in this work manifest as circular artifacts surrounding the
pedestrian silhouette, primarily due to the use of the circular
shape of the heat lamp. While effective in inducing pedes-
trian detections, this design is relatively simple and easily
identifiable. A more sophisticated adversary could enhance
stealth by tailoring the heat source’s structure or employing
adversarial optimization techniques [15], [80], [81] to generate
imperceptible or natural-looking artifacts, thereby making the
injection harder to detect while maintaining high effectiveness,
as shown in Figure 18 in the Appendix.

14



Heat Source Temperature. All experiments in this work
were conducted using a cheap commercial reptile heater [68]
which can reach 240◦C. As demonstrated in the outdoor
experiments (Section VII), 10 seconds or exposure is sufficient
to induce artifacts detected as obstacles. To compensate for
lower heat source temperatures, an adversary can increase
the exposure duration. For example, our capability analysis
(Section IV-B) shows that a 120◦C source can produce similar
artifact intensities with ≈ 42 seconds of exposure.
Safety Considerations. All experiments were conducted in
controlled environments. While the surface temperature of the
heat lamp reaches 240◦C, its diffusive emission characteristics
cause the temperature to drop to approximately 30◦C at a
distance of 50 cm, making it safe to operate at that range.

A. Related Work

Sensors, such as cameras, LiDAR, and radar, serve as the
foundation of perception in autonomous systems by collecting
environmental data [82], [83], [28], [84], [12]. However,
extensive research has shown that these sensors are susceptible
to spoofing and injection attacks. For instance, several works
demonstrated that LiDAR sensors are vulnerable to laser
injection [85], [86], [87], [88] and electromagnetic interfer-
ence (EMI) [89], [90]. Similarly, cameras are vulnerable to
laser [91], [92], [93], [65] and EMI injection [94] attacks.
Beyond perception systems, prior research has also identified
vulnerabilities in inertial measurement units (IMUs) [95],
[96] and GPS [97], [98] used in autonomous platforms. In
this work, we present a comprehensive investigation into
vulnerabilities of thermal camera image processing, motivated
by their growing adoption in autonomous driving systems.
Cao et al. [88] investigate the automatic transformation and
filtering mechanisms in LiDAR systems, demonstrating how
adversaries can manipulate input data to trigger point removal
before it reaches the perception model. Hunt et al. [99] expose
vulnerabilities in radar signal processing pipelines, highlight-
ing their susceptibility to adversarial interference. Similarly,
Ji et al. [100] identify weaknesses in image stabilization mech-
anisms embedded in camera sensors; their findings show that
acoustic signals can trigger unnecessary motion compensation,
resulting in image blur and degraded perception performance.

In addition to vulnerabilities at the sensor and processing
levels, machine learning models themselves pose significant
security concerns. Deep Neural Networks (DNNs), despite
their success in enabling accurate perception for autonomous
vehicles, have been shown to be highly susceptible to adversar-
ial perturbations [53]. This vulnerability has been extensively
demonstrated across various perception tasks, including ob-
ject detection [101], [102], [103], [104], [105], object track-
ing [106], [107], [108], semantic segmentation [109], auto-
mated lane centering [110], and traffic sign recognition [111],
[103], [102]. Unlike these works that directly manipulate DNN
inputs to trigger incorrect outputs, our study focuses on how
upstream vulnerabilities of thermal cameras can indirectly lead
to perception failures.

X. CONCLUSION

Our work identifies a new class of vulnerabilities against
thermal cameras, causing perception failures such as misdetec-
tion or creation of fake obstacles. Our evaluation demonstrates
the effectiveness of the induced pixel intensity drop or the cre-
ation of artifacts, which can undermine three thermal image-
based object detection models and two RGB-thermal fusion-
based models. We further provide feasibility evaluations of
attacks in real-world driving conditions. While the safety of
integrating thermal cameras into autonomous systems remains
uncertain, our work aims to serve as an initial step towards
understanding threats in thermal imaging processing designs,
while proposing attack-aware signal processing techniques to
effectively mitigate them.
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APPENDIX

A. Synthetization Methodology

This section outlines the methodology for synthesizing the
three vulnerability effects on thermal images that we charac-
terized and formalized in Section IV.
Linearization Effect. To synthesize the pixel intensity drop,
we first collect real-world heat source traces to accurately
replicate the intensity distribution patterns they produce in
thermal images. We use the FLIR Boson camera for this
purpose, as it provides access to raw pre-equalized thermal
images necessary for accurately modeling the pixel intensity
drop. Next, we synthesize the heat source traces onto the raw
images of the FLIR ADAS dataset by converting them to 14-
bit depth to match the dataset format and overlaying them
onto the validation images. We then apply linear equalization
to the augmented images, using the formalization described in
Section IV-A. This results in the final 8-bit images used for
object detection.
Calibration Artifacts. As detailed in Section IV-B, NUC
algorithms can be manipulated to introduce an additional
offset, resulting in unintended artifacts in the thermal image.
Adversaries can exploit this mechanism to induce controlled
artifacts in thermal images by using highly reflective materials,
such as aluminum foil cut in specific patterns and shapes
(e.g., human poses), and positioning them in front of a heat
source. This approach selectively blocks thermal radiation,
creating artifacts only at adversary-defined regions in the
image. Based on this approach, we synthesize controlled
artifacts by selectively reducing pixel intensities according to
the desired pattern, emulating the effects of sustained exposure
on the camera during calibration. We further modulate the
pixel intensity dro based on It and tmax as discussed in
Section IV-B and adjust the artifact scale to simulate heat
sources of different distances and locations.
Ghost Artifacts. Using the same methodology for controlled
calibration artifacts described above, an adversary can selec-
tively create flares and structured ghosts in thermal images.
These ghosts appear as overlays on the background pixel data
captured by the thermal camera. To emulate this effect, we
synthesize ghost artifacts in the FLIR dataset by increasing
the pixel intensity within adversary-targeted regions, based on
the heat source temperature as characterized in Section IV-C.

B. Ethics Considerations

In adherence to ethical guidelines, we follow a responsible
disclosure process and have shared our findings with the

Fig. 18: Real-world arbitrary calibration-induced artifacts in
the thermal image generated by applying reflective material
such as aluminum foil over a heat source.

vendors of the tested devices. At the time of writing, we are
currently awaiting their response. This study utilizes publicly
available datasets to ensure transparency and reproducibility.
All real-world case scenarios involving pedestrians were con-
ducted by the authors. No human studies were conducted as
part of this research.
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APPENDIX

ARTIFACT APPENDIX

A. Description & Requirements

The artifact includes scripts and models used to evaluate
the vulnerabilities presented in the paper, The Heat is On:
Understanding and Mitigating Vulnerabilities of Thermal Im-
age Perception in Autonomous Systems, https://dx.doi.org/10.
14722/ndss.2026.230330. It also contains datasets for both
simulated and real-world evaluations, along with detailed
instructions to set up the models, run the evaluation tests,
and extract results. Additionally, the artifact provides scripts
to validate the defense mechanisms proposed in the paper.

1) How to access: Our research artifacts, including the
simulated data, the models and scripts to evaluate them,
along with the real-world experimental data for evaluating
the vulnerabilities, and the scripts for testing the proposed
defense methodologies are available at: https://zenodo.org/
records/17051228, Artifact DOI: 10.5281/zenodo.17051228.

We include a README file in the repository to guide
the reviewers through the setup of the environment and the
information regarding the provided data corresponding to the
experiment in the paper.

2) Hardware dependencies: Our implementation does not
support certain experiments on non-x86 64 systems as the
required libraries are compiled for x86 64. While most experi-
ments are architecture-independent, evaluating the equalization
attack on FasterRCNN models requires an x86 64 CPU.

3) Software dependencies: To run the inference codes,
users need Python 3.9+, a Conda environment with ultralytics,
torch, and paddledetection. An optional Docker implementa-
tion is provided and tested on Ubuntu and Windows, running
an Ubuntu container. It is not intended for macOS, as included
dependencies (e.g., mmcv 2.1.0, PaddleDetection) are com-
piled for x86 64; building on macOS (Apple Silicon/ARM)
causes architecture mismatches. macOS users should set up
the environment natively outside Docker.

4) Benchmarks: We use the FLIR ADAS v2 dataset for
attack synthesis and evaluation. However, the synthesized
images are included in the provided artifact, and no additional
data download is required.

B. Experiment Workflow

The artifact provides comprehensive validation of the pro-
posed attack and defense methods, including evaluation scripts
and pre-trained weights to reproduce top attack results on three
object detection models (YOLOv5, YOLOv8, Faster R-CNN)
and two sensor fusion models (Faster R-CNN, DMASDet).
It also includes real-world data from outdoor experiments to
assess attack effectiveness and scripts to evaluate the proposed
defenses, supporting analysis of the paper’s results.

C. Major Claims

The artifact supports validation of the key evaluation claims
in the paper. Focusing on the most significant results due to
data and computational constraints, it includes all components
needed to reliably replicate these core findings.

• (C1): SIMULATION: The key evaluation results for the
three vulnerabilities across the tested object detection
models are as follows:
(i) YOLOv5 : Equalization - pedestrian mAP@50 < 0.1,
calibration Attack Success Rate (ASR) = 93%, ghost
attack - ASR = 99%, showing the best attack results
illustrated in Section V of the paper. This is proven by
experiments (E1).
(ii) YOLOv8 : Equalization - pedestrian mAP@50 < 0.1,
calibration ASR = 91%, ghost ASR = 99%. These are the
best attack results illustrated in Section V of the paper.
This is proven by experiments (E2).
(ii) FasterRCNN : Equalization - pedestrian mAP@50 <
0.1, calibration ASR = 100%, ghost ASR = 100%. These
values are the best attack results illustrated in Section V
of the paper. This is proven by experiments (E3).
(iv) FasterRCNN-Fusion : Equalization - mAP@50 =
0.24, calibration ASR = 69%, ghost ASR = 91%. This is
proven by experiments (E4).
(v) DAMSDet : Equalization - mAP@50 = 0.55, calibra-
tion ASR = 56%, ghost ASR = 98%. This is proven by
experiments (E5).

• (C2): REAL WORLD: The key evaluation results for the
vulnerabilities in real world conditions are as follows:
(i) Equalization : 100% ASR in both static and dynamic
conditions, proven by experiments (E6).
(ii) Calibration : 100% and 95% ASR in static and
dynamic scenarios, proven in experiments (E6).
(iii) Ghost : ASR of 100% is achieved in static scenarios
across 10 frames. This is proven by experiments (E6).

• (C3): DEFENSE: The key evaluation results for the
proposed defenses against vulnerabilities in real world
conditions are as follows:
(i) Equalization : We achieve 100% success rate pedes-
trian obstacle is detected after mitigating the equalization
vulnerability. This is proven by experiments (E7).
(ii) Calibration : The proposed attack aware algorithm
suppresses the calibration artifacts on the image with
100% success rate. This is proven by experiments (E7).
(iii) Ghost : The proposed attack aware algorithm sup-
presses the ghost artifacts on the image with 100%
success rate. This is proven by experiments (E7).

D. Evaluation

Here, we provide the steps to follow and the commands to
run for experiments and validating the results claimed in our
paper. The README attached with the artifact submission
repeats the below process and details the setup instuctions.

1) Experiment (E1): [YOLOV5] [5 human-minutes + 1
compute-hour]: Demonstrates the results of the three attacks
tested on the simulated FLIR dataset with YOLOv5 model.

[How to] The data and scripts required to run the evaluation
are provided in the artifact:

[Preparation] Move into the cd Simulation/object detection
path to execute the commands
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[Execution] Run the following commands as described in
the README to execute

python yolov5_eval.py calibration_simulated results/
v5_calibration_results

python check_iou.py results/v5_calibration_results
python yolov5_eval.py ghost_simulated results/

v5_ghost_results
python check_iou.py results/v5_ghost_results
python yolov5_val.py

[Results] The equalization experiment result will show
mAP@50 for pedestrian below 0.1. The ASR for calibration
and ghost attacks is 93.9% and 99.9%, respectively.

2) Experiment (E2): [YOLOV8] [5 human-minutes + 1
compute-hour]: Demonstrates the results of the three attacks
tested on the simulated FLIR dataset with YOLOv8 model.

[How to] The data and scripts required to run the evaluation
are provided in the artifact:

[Preparation] Move into the cd Simulation/object detection
path to execute the commands

[Execution] Run the following commands as described in
the README to execute

python yolov8_eval.py calibration_simulated results/
v8_calibration_results

python check_iou.py results/v8_calibration_results
python yolov8_eval.py ghost_simulated results/

v8_ghost_results
python check_iou.py results/v8_ghost_results
python yolov8_val.py

[Results] The equalization experiment result will show
mAP@50 for pedestrian below 0.1. The ASR for calibration
and ghost attacks is 91.3% and 99.7%, respectively.

3) Experiment (E3): [FasterRCNN] [5 human-minutes + 1
compute-hour]: Demonstrates the results of the three attacks
tested on the simulated FLIR dataset with FasterRCNN model.

[How to] The data and scripts required to run the evaluation
are provided in the artifact:

[Preparation] Move into the cd Simulation/ThermalAttack-
master/mmdetection path to execute the commands

[Execution] Run the following commands as described in
the README to execute

python tools/infer.py configs/faster_rcnn/faster-
rcnn_r50_fpn_1x_coco_flir_finetune.py
faster_rcnn_epoch_6.pth ./../../object_detection
/calibration_simulated/ --out
calibration_results

python check_iou.py calibration_results
python tools/infer.py configs/faster_rcnn/faster-

rcnn_r50_fpn_1x_coco_flir_finetune.py
faster_rcnn_epoch_6.pth ./../../object_detection
/ghost_simulated/ --out ghost_results

python check_iou.py ghost_results
python tools/test.py configs/faster_rcnn/faster-

rcnn_r50_fpn_1x_coco_flir_finetune.py
faster_rcnn_epoch_6.pth

[Results] The equalization experiment result will show
mAP@50 for pedestrian below 0.1. The ASR for calibration
and ghost attacks is 100%.

4) Experiment (E4): [FasterRCNN-SF] [5 human-minutes
+ 1 compute-hour]: Demonstrates the results of the three

attacks tested on the simulated FLIR dataset with FasterRCNN
model with IR+RGB fusion.

[Preparation] Move into the cd Simulation/ThermalAttack-
master/mmdetection path to execute the commands

[Execution] Run the following commands as described in
the README to execute
python tools/infer_msf.py configs/faster_rcnn/faster

-rcnn_r50_fpn_1x_align_msf.py faster-
rcnn_r50_fpn_1x_align_msf.pth ./data/
calibration_msf/ --out calibration_res_msf

python recheck_ASR.py calibration_res_msf/results/
calib.txt

python tools/infer_msf.py configs/faster_rcnn/faster
-rcnn_r50_fpn_1x_align_msf.py faster-
rcnn_r50_fpn_1x_align_msf.pth ./data/ghost_msf/
--out ghost_res_msf

python recheck_ASR.py ghost_res_msf/results/ ghost.
txt

python tools/test.py configs/faster_rcnn/faster-
rcnn_r50_fpn_1x_align_msf.py faster-
rcnn_r50_fpn_1x_align_msf.pth

[Results] The equalization experiment result will show
mAP@50 for pedestrian below 0.25. The ASR for calibration
and ghost attacks is 69% and 91%, respectively.

5) Experiment (E5): [DAMSDet] [5 human-minutes + 5
compute-hour]: Demonstrates the results of the three attacks
tested on the simulated FLIR dataset with DAMSDet model.

[Preparation] Move into the cd Simulation/DAMSDet/-
DAMSDet path to execute the commands

[Execution] Run the following commands as described in
the README to execute
python tools/multi_infer.py -c configs/damsdet/

damsdet_r50vd_flir.yml --infer_vis_dir=dataset/
coco_FLIR_align/val_imgs/vis_imgs --infer_ir_dir
=dataset/coco_FLIR_align/val_imgs/calib --
output_dir=calib_results -o weights=
flir_best_model.pdparams

python recheck_ASR.py calib_results/ calib_ref.txt
python tools/multi_infer.py -c configs/damsdet/

damsdet_r50vd_flir.yml --infer_vis_dir=dataset/
coco_FLIR_align/val_imgs/vis_imgs --infer_ir_dir
=dataset/coco_FLIR_align/val_imgs/ghosts --
output_dir=ghost_results -o weights=
flir_best_model.pdparams

python recheck_ASR.py ghost_results/ ghost_ref.txt

[Results] The equalization experiment result will show
mAP@50 for pedestrian below 0.55. The ASR for calibration
and ghost attacks is 43.6% and 98.0%, respectively.

6) Experiment (E6): [Real World] [5 human-minutes + 15
compute-minutes]: Demonstrates the results of the equaliza-
tion, calibration, and ghost attacks on the real world data.
[Execution] Perform the evaluation of the FasterRCNN model
by running the command ./real world.sh
[Results] The expected real world results are described in C2.

7) Experiment (E6): [Defense] [5 human-minutes + 15
compute-minutes]: Demonstrates the results of the proposed
defense methodologies in real world data.
[Execution] Perform the evaluation of the FasterRCNN model
by running the command ./defense.sh
[Results] The expected results are described in C3.
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